
Chapter 3
Experimental Design

Abstract This chapter covers various issues related to the experimental design,
a statistical technique at the core of a discrete choice experiment. Specifically, it
focuses on the dimensionality of a choice experiment and the statistical techniques
used to allocate attribute levels to choice tasks. Among others, the pros and cons of
orthogonal designs, optimal orthogonal in the differences designs as well as efficient
designs are addressed. The last section shows how a simulation exercise can help to
test the appropriateness of the experimental design.

3.1 The Dimensionality of a Choice Experiment

The following five features can characterise the dimensionality of a choice exper-
iment: the number of attributes, the number of levels used to describe the corre-
sponding attribute, the range of the attribute levels, the number of alternatives
presented in a choice task and, finally, the number of choice tasks. Considering the
dimensions of a DCE is important as trade-offs might exist between their size and
what is referred to as response efficiency. Response efficiency, according to Johnson
et al. (2013, p. 6), refers to “measurement error resulting from respondents’ inatten-
tion to the choice questions or other unobserved, contextual influences”. Therefore,
a low response efficiency means that respondents are less likely to identify the alter-
natives they prefer the most and will reduce choice consistency, i.e. the unexplained
part or error term will vary to a greater extent. However, this effect does not take
place uniformly for all design dimensions as the literature shows.

Two studies so far have systematically investigated the influence of all five dimen-
sions on respondents’ choices: Caussade et al. (2005) in transportation andMeyerhoff
et al. (2015), building on Caussade et al. (2005) and Hensher (2006), in environ-
mental economics. Both studies have used a so-called design-of-designs approach.
Other important studies on this topic have been conducted by DeShazo and Fermo
(2002), Boxall et al. (2009), Boyle and Özdemir (2009), Rolfe and Bennett (2009),
Zhang and Adamowicz (2011), Hess et al. (2012), Czajkowski et al. (2014), and
Campbell et al. (2015). Below we look at the various design dimensions separately.
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3.1.1 Number of Choice Tasks

People responsible for designing a DCE are often afraid of presenting respondents
with too many choice tasks. There are several published papers where it is suggested
that presenting respondents “with more than four or six choice tasks” would be too
much for them as it would be too complex and respondents would tire when having
to respond to numerous tasks. However, the literature does not support this idea.
There is, of course, a maximum number of choice tasks an individual is able (and
willing) to respond to, but the number of tasks that respondents can answer before
becoming fatigued seems to be higher than is often assumed. Hess et al. (2012),
investigating different data sets from choice experiments conducted in transportation,
argue that concerns about fatigue are probably overstated. Accommodating for scale
heterogeneity had little or no impact on substantive models results, and the role of the
constants in the models generally decreased. Czajkowski et al. (2014), for example,
presented respondents with 26 choice tasks and were not able to identify clear signs
of fatigue. Meyerhoff et al. (2015) were also not able to conclude that respondents
who faced numerous choice tasks were significantly more likely to drop out of the
survey. They presented splits of respondents in their design-of-designs approach
with 6, 12, 18 and 24 choice tasks. Also Campbell et al. (2015) could not find strong
evidence for fatigue in their study either, respondents were asked to respond to 16
choice tasks. Presenting more choice tasks than originally thought is therefore an
option to be considered.

Moreover, a higher number of choice tasks is also crucial when calculating
individual-specificWTPvalues as these conditional values are onlymeaningfulwhen
a sufficient number of choices is available for each respondent (Train 2009, Chap. 11;
Sarrias 2020). However, further research would be helpful as the present findings
might depend on the specific study contexts or on survey mode. Responding to 16
choice tasks in an online survey might, for example, be different from responding
to 16 choice tasks in a paper and pencil survey. In any case, it is important to test
prior to the survey whether the intended number of choice tasks can be considered
manageable for the average respondent.

3.1.2 Number of Attributes

The studies by Caussade et al. (2005) and Meyerhoff et al. (2015) also suggest that
increasing the number of attributes does not affect response efficiency negatively.
Caussade et al. (2005) varied the number of attributes from 3 to 6, while Meyerhoff
et al. (2015) varied them from4 to 7.However, both expanded the number of attributes
without adding new content. Caussade et al. (2005) presented to a split sample, for
example, the attributes “free flow time” and “congestion time” instead of the attribute
“total travel time” to increase the number of attributes. Meyerhoff et al. (2015)
increased the number of attributes by splitting the attribute “overall biodiversity”
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into “biodiversity in forests” and “biodiversity in other parts of the landscape”, for
instance. Thus, it is not clear from either study whether this approach of expanding
attributes is the reason why negative effects are not found with a higher number
of attributes. Outcomes might be different when each attribute introduces a new
characteristic of the good in question and thereforewould clearly increase the amount
of information a respondent would have to process. For the selection of attributes,
see also Greiner et al. (2014).

3.1.3 Number of Alternatives

A dimension that might be more critical in terms of negative impacts on response
efficiency is probably the number of alternatives. Findings by Zhang andAdamowicz
(2011) suggest that with a larger number of alternatives the complexity increases.
They compared choice tasks with two and choice tasks with three alternatives. They
also point out that the increase in complexity might outweigh the benefits from the
fact that people who are presented with more alternatives are more likely to find the
alternative that matches their preferences best. Boyle and Özdemir (2009) find that
respondents were more likely to choose the status quo (SQ) alternative when there
were three alternatives on a choice task compared to tasks with two alternatives.
This finding is supported by Oehlmann et al. (2017) who found that the number
of alternatives has a significant impact on the frequency of status quo choices, i.e.
the alternative with a zero price offer describing the current situation. The more
alternatives a choice task comprised, the less often the status quo alternative was
chosen.

A processing strategy that might be triggered by the number of alternatives is
a switch from comparing the overall utility of an alternative to using the levels of
the cost attribute as an indicator of quality alone. Meyerhoff et al. (2017) compared
the effects of varying the number of choice tasks by comparing results from split
samples where respondents faced different numbers of alternatives. In the splits with
four and five alternatives, in addition to the status quo alternative, people seem to be
more likely to switch to cost as an indicator of quality. In contrast, Czajkowski et al.
(2014) observed no differences toWTP estimates when comparing choice tasks with
two and three alternatives.

3.1.4 Other Dimensionality Issues

The number of attribute levels and the value range of the levels can have a positive
effect on response efficiency and thus, choice consistency but also in identifying
potential non-linear relationships for a given attribute. In line with the findings by
Caussade et al. (2005),Meyerhoff et al. (2015) found that a higher number of attribute
levels seems to impact on choice consistency positively, as does a narrow range of
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the level values. In both cases, it is probably easier for respondents to identify the
preferred alternative when comparing the set of alternatives presented on a choice
task. Also a higher number of attribute levels also makes a level balanced design
more likely (see Sect. 3.2).

Another important point to consider is the randomisation of the order of appear-
ance of the choice tasks if the survey mode allows for this to reduce the impact of
anchoring (Jacobsen and Thorsen 2010) and to accommodate for scale heterogeneity
(see Sect. 6.2). Also note that respondents might react differently to a long sequence
of tasks in an online survey compared to a paper and pencil survey, so knowing the
survey mode when deciding on the design dimensions is beneficial.

Regarding attribute non-attendance (Sect. 6.5), Weller et al. (2014) investigated
whether stated or inferred attribute non-attendance are linked to the dimensions of the
DCE. Overall, their results indicated only a weak relationship between attribute non-
attendance and the design dimensions. They suggest, however, that a higher degree
of non-attendance might take place when the number of alternatives and choice sets
increases; more evidence is needed to draw stronger conclusions here.

A recommendation made by Zhang and Adamowicz (2011) is supported here.
If you can afford another split in your survey design, you may consider employing
choice tasks with only two alternatives that are said to perform better concerning
incentive compatibility (see Sect. 2.4). Splits with choice tasks with two alternatives
provide a yardstick for judging the effects of choice task with more alternatives.
Also, if the sample is large enough and the order of appearance is randomised, it
is possible to estimate simple models such as the conditional logit using only the
responses to the first choice task each respondent faced while checking for potential
differences.

An issue that requires further research is the relationship between dimensionality
and incentive compatibility (see also Sect. 2.4). Generally, binary choices are seen as
incentive compatible, i.e., respondents to this format should theoretically reveal true
preferences.Whether this also applies to (a) a sequence of taskswith two alternatives,
and (b) to sequences of choice tasks with more than two alternatives is still an open
question.Vossler et al. (2012) show that under certain conditions, sequences of binary
choice questions are incentive compatible but additional work on the association
between the dimensionality of a choice experiment and incentive compatibilitywould
be well received.

3.2 Statistical Design of the Choice Tasks

The purpose of an SP study is to learn about individual preferences. The benefit of
using an SP survey is that, in contrast to RP, we can control the choices we present
to people. In designing these choice tasks, two criteria are of importance. First,
the choices presented to respondents need to be relevant. Second, the informational
content (from a statistical point of view) of the design needs to be maximised. We
need to present respondents with the trade-offs that provide us the best possible
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information about the preferences in the sample of interest (i.e. the coefficients of
the utility function). Below, it is assumed that the attributes and the relevant levels
are given and have been defined in a stage prior to the experimental design.

Originally, orthogonal designs were applied in DCE. Orthogonal designs ensure
that the attribute levels are independent of each other, i.e. have zero correlation. In
linear economic models, such as the linear regression model, orthogonal designs are
also optimal from a statistical point of view. However, when working with discrete
choice models, which are highly non-linear, this equivalence no longer holds. It is
important to note that the underlying utility functions may be linear-in-parameters,
but the choice probabilities are highly non-linear. A benefit of orthogonal designs is
that they remove the correlation across key attributes of interest and thereby allow
easy identification of their influence on utility. Moreover, orthogonal designs ensure
that (i) every pair of attribute levels appears equally often across all pairs of alterna-
tives and (ii) attribute levels are balanced, i.e. each level occurs the same number of
times for each alternative.

Orthogonality, however, does not consider the realism of the choice tasks and
often the design includes alternatives that are dominated (e.g. both worse in quality
and more expensive). Also, random and orthogonal designs are more robust across
modelling assumptions but inherently result in a loss of efficiency (Yao et al. 2015).
Hence, alternative design generation strategies were being formulated. One of these
strategies is Optimal Orthogonal in the Differences (OOD) designs as introduced
by Street et al. (2001, 2005). These D-optimal designs still maintain orthogonality,
but attributes that are common across alternatives are not allowed to take the same
level in the design, hence the term optimal in the differences. The Ngene manual
(ChoiceMetrics 2018) highlights that OOD designs can only be used for unlabelled
experiments and may stimulate certain types of behaviour since specific attributes
may influence the entire experiment given that the levels are never the same across
alternatives. Due to this nature of OOD designs, efficient designs have developed as
a popular alternative. By optimising for a specific utility function, we obtain more
information about the parameters of interest from the same amount of choices.

More information typically means obtaining more efficient parameter estimates
and generally that implies lower standard errors. However, the efficient design liter-
ature makes use of alternative efficiency definitions. That is, different definitions
of efficiency have an objective that goes beyond reducing the standard error of the
parameter estimates. To make this clearer, we need to trace back to the origin of
the standard errors. They are generally obtained from the Hessian (i.e. the matrix of
second-order derivatives of the log-likelihood function) evaluated at the estimated
values of the parameters. The Hessian summarises all the uncertainty associated with
the parameters of interest. The negative inverse of this matrix is also known as the
asymptotic covariance (AVC) matrix of parameter estimates and the square root of
the diagonal terms gives us our standard errors of interest. The off-diagonal elements
capture the extent to which alternative parameters can be identified independently
from each other. The latter is crucial information since reducing the standard error
on one parameter may mean we may no longer be able to separate that specific effect
from other attributes in the SP study.
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In short, we want to minimise the uncertainty, or maximise the informa-
tional content, in our experiment as summarised by the Fisher information matrix.
Maximising something, however, requires a unique number and not a matrix. Hence,
we need to reduce the dimensionality of the Hessian to a single number and that
is where the efficient design alphabet soup comes into play (Olsen and Meyerhoff
2017).

The most widely used efficiency measure is the D-error, where alternative designs
are compared based on the determinant of the AVC matrix. A D-efficient design is
the design that has a sufficiently low D-error. Note that it is often impossible to
find the D-optimal design, which has the lowest possible D-error, due to the large
number of possible design combinations. By focusing on the determinant, it does
not solely focus on minimising the standard errors, but also takes into account the
degree of correlation between parameters. The D-error can also be directly related
to the measure of information in the Fisher information matrix through the eigen-
vectors, hence explaining the popularity of this measure. Software packages, such as
Ngene (ChoiceMetrics 2018), also allow us to find efficient designs using alternative
efficiency measures:

(a) A-efficiency: this efficiency measure minimises the trace of the AVC matrix
and thereby only looks at the variances (standard errors) and not the covari-
ances between parameters estimates. It is important for this measure to work
effectively that all parameters are of comparable scale.

(b) C-efficiency: this efficiency measure works particularly well when interested in
WTP measures since it focuses on minimising the variances (standard errors)
of parameter ratios.

(c) D-efficiencyminimises the determinant of theHessian. Thus, it tries tominimise
the standard errors on the diagonal, while at the same time controlling for the
degree of correlation between parameter estimates. The D-efficiency criterion
is the most commonly used criterion in the literature.

(d) S-efficiency: this efficiency criterion finds its origin in the t-value (ratio of the
parameter over its standard error). It aims to identify the number of repetitions
in the design that are needed for a parameter to be significant. S-efficient designs
spread the amount of information across the parameters of interest and hence
minimises the number of repetitions needed to obtain significant parameter
estimates for all parameters. The S-statistic is merely a lower bound, since
the optimisation assumes that respondents act according to the specified prior
parameter values.

An detailed description of the alternative design measures and the theory of effi-
cient design is given in the Ngene manual (ChoiceMetrics 2018). It should be noted
that all efficiency criteria make use of the AVC matrix, which inherently depends
on the parameters of the model. More explicitly, the AVC matrix of the multinomial
logit (MNL) model is a function of the parameters of the model. This explains the
requirement of efficient designs to define prior parameter values when generating
the design. As such, the design will be optimised for these specific parameter values
and is therefore optimised locally. If preferences in society differ, it is therefore
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not guaranteed that this will be the best design. Alternative strategies can therefore
be employed. First, it is always good practice to base prior parameters on existing
values in the literature. Second, it is also commonpractice to generate an initial design
based on non-efficient design criteria (random designs, or orthogonal designs). This
non-optimal design then serves as the basis in a pre-test from which a set of prior
values can then be elicited. However, it needs to be ensured that the sample size of
the pre-test is sufficiently large to make useful inferences about the parameters of
interest.

Even after employing these strategies, the researcher is typically left with a signif-
icant degree of uncertainty about the parameters of interest. To optimise the design
over a larger region of parameter estimates one typically reverts to Bayesian designs.
The terminology for Bayesian designs is rather unfortunate, since the design criterion
is still based on the AVC matrix which plays no role of interest in Bayesian estima-
tion. Nevertheless, the terminology does capture that the parameters of interest are
inherently uncertain. The researcher is therefore requested to specify a prior density
(e.g. normal or uniform distribution) describing the possible range and likelihood
for the potential parameter values (Bliemer and Collins 2016). The design genera-
tion then optimises the design by taking a weighted average of the design criterion
over all possible parameter values. A direct result of optimising over a wider range
of parameter values is that the design is more generic and is thereby likely to lose
some efficiency. However, this would only be the case when we accurately know our
parameters of interest. Bayesian designs can therefore be labelled as good practice.
A general guideline here is that the less known about the parameter estimates of
interest, the wider the range should be of parameter values specified for the Bayesian
design to reflect this uncertainty.

The AVC matrix does not only depend on the parameters of interest, but also on
our assumption about the error term and the functional form of the utility function.
Van Cranenburgh et al. (2018), for example, illustrate that designs generated for
a RUM decision criterion may not be overly suited to identify choices based on a
Random Regret Minimisation (RRM) decision rule. Similarly, Ngene (ChoiceMet-
rics 2018) allows us to generate designs for non-MNL models, such as nested logit
and MXL. Indeed, such models are associated with a much more complicated like-
lihood function and thus a definition of the Hessian, but the underlying principles
of generating efficient designs are not affected. The challenge, however, is that a
priori we typically do not know which models we will estimate. Moreover, unlike
Bayesian efficient designs, there are currently no design algorithms that allow optimi-
sation of the design over a range of model specifications. As such, it is good practice
to generate the design for the most generic model possible (typically the MXL).
Generating mixed logit designs takes much longer and is therefore often avoided
despite being good practice. An alternative is again to use random or orthogonal
designs which are more robust across modelling assumptions but inherently result
in a loss of efficiency. In the end, the researcher should be reminded that variations
in the attribute levels is of most importance and that efficient designs are only aimed
at obtaining more information from the same amount of choices for a set of given
modelling assumptions.
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Recently, the focus in the literature has been on the generation of efficient designs.
Statistical efficiency is, however, not the panacea and only criteria that determine the
quality of the design. An efficient design is optimised for a given model and there
are numerous reasons why that model may be misspecified and hence it would not
be appropriate to characterise the response behaviour. Accordingly, it is considered
good practice to have a larger number of choice tasks to better cover the space of
potential attribute level combinations.

Finally, most experimental designs are only based on main effects and do not
consider interaction effects between parameters. As an analyst, when we wish to
learn about two-way interaction effects (i.e. how combinations of attributes and their
levels influence utility) this requires presenting specific combinations of attribute
levels. These requirements can be accommodated in both orthogonal and efficient
designs relatively easily.However, to empirically identify interaction effects typically
significantly larger sample sizes are required as opposed to identifying main effects.
To see this, one can easily compare the S-efficiency statistic across designs (not)
including interaction effects.

In summary, practitioners should bear inmind that the key to obtaining informative
results is presenting respondents with different trade-offs. Hence, the more attribute
levels and the more choice tasks the better. Using blocking across respondents to
obtain more versions of the design to learn more about preferences across respon-
dents may also be recommended. Alternatively, tasks can be randomly assigned to
respondents, especially when the overall number of choice tasks is rather large. Also,
when developing surveys start off with simple orthogonal designs or random designs
and use the result from the pilot for updating the priors. Finally, convention so far
states that MNL-based efficient designs perform well and not much worse compared
to the designs optimised for more advanced models (Bliemer and Rose 2010, 2011).

3.3 Checking Your Statistical Design

The so-called right-hand side matrix in a linear regression is formed by the explana-
tory variables. In a discrete choice model, this matrix is defined by the variables
included in Vnjt in Eq. (1.3) that can be alternative specific constants, attributes,
individual-specific variables or their interactions. The right-hand side matrix of
discrete choice models plays a crucial role in parameter identification and the preci-
sion of their estimation. As described above, the right-hand side matrix in SP data
sets is usually set by the experimental design. A high number of attributes, and/or
attribute levels, can make the search for a convenient experimental design a tricky
task. The literature on experimental designs (Street and Burgess 2007; Louviere and
Lancsar 2009; ChoiceMetrics 2018) describes how to generate them, how to analyse
their properties and efficiency or how to block them.Nevertheless, in the applied liter-
ature, not sufficient attention is usually paid to all these steps and they are usually
not sufficiently described. Moreover, sometimes the coding used in the experimental
design has been changed in the econometric analysis. For example, efficient designs
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Fig. 3.1 Flowchart of a simulation exercise

with attribute levels specified as continuous (e.g. 1, 2, 3, 4) are coded as categor-
ical after the data were collected. This categorical coding can be inappropriate for
parameter identification.

The appropriateness of an experimental design or, generally speaking, the appro-
priateness of the right-hand side matrix of discrete choice models can be easily
checked by a simulation exercise presented in Fig. 3.1.

This check is based on the generation of numerous hypothetical data sets based
on the generated (SP data) or collected (revealed preference (RP) data) right-hand
side matrix. The hypothetical data sets are generated by setting the values of the
parameters to a specific value assuming that these are the true population values and
generating specific values of the error components. In each iteration, a hypothetical
data set is used for a model estimation and the set of estimated parameters is saved.

Post-analysis of the empirical distribution of all parameters can reveal whether
the right-hand side matrix allows for an unbiased estimation of all the parameters,
as the true population parameters are known. This simple simulation exercise should
always be carried out both in RP and in SP studies. In RP studies, it allows us to check
whether the variation of the collected attribute levels is sufficient to identify all the
parameters correctly. In SP studies, it allows us to check the appropriateness of the
generated experimental design as well as the expected distribution of the parameter
estimates.

For example, imagine we want to analyse the appropriateness of the following
experimental design
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alt1.attr1 alt1.attr2 alt2.attr1 alt2.attr2 alt3.attr1 alt3.attr2

1 3 3 5 9 9

7 1 7 7 5 5

7 9 5 1 5 9

1 3 9 1 7 7

5 9 3 9 7 1

9 5 1 7 1 3

3 7 9 3 1 5

5 1 7 9 3 3

9 7 1 3 3 7

3 5 5 5 9 1

corresponding to a one choice-occasion with three alternatives and two attributes
defined according to the Eq. (1.4), as

Un1 = ASC1 + β1attrn1 + β2attrn2 + εn1

Un2 = ASC2 + β1attrn2 + β2attrn2 + εn2

Un3 = β1attrn3 + β2attrn3 + εn3

Subsequently, we assume that the following values of the parameters are
population values

Un1 = 0.5+ 0.1 attrn1 − 0.1 attrn2 + εn1

Un2 = 0.5+ 0.1 attrn2 − 0.1 attrn2 + εn2

Un3 = 0.1 attrn3 − 0.1 attrn3 + εn3

and generate, for example, 5,000 times three sets of Gumbel-distributed errors εn1,
εn2 and εn3 for a specific sample size. Using these sets of errors, the above-presented
design and the assumed coefficient values, we can generate 5,000 utilities Un1, Un2

and Un3, and therefore, 5,000 hypothetical choices. Then, we can estimate 5,000
times aMNLmodel and draw histograms of these estimates for each parameter. This
is how we can analyse, for example, the impact of the number of observations on the
precision of the estimates based on the generated design.

Figure 3.2 presents histograms of 5,000 estimations of the four above-defined
coefficients. The first column in Fig. 3.2 shows the histograms for 100 observations
and the second row for 400 observations. This example shows, in a very simple and
graphicway, twowell-knownfindings. Firstly, the estimation of the coefficients in our
MNLmodel by maximum likelihood is consistent, because the spread of estimations
in the second column in Fig. 3.2 is narrower. Secondly, focusing on the x-axis of
the histograms, the precision of the estimations of the alternative specific constants
is in our case worse than the precision of the attribute coefficients. Please note that
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100 observa ons 400 observa ons 

Fig. 3.2 Histograms

all histograms are centred on the assumed population value (ASC1 = 0.5, ASC2 =
0.5, β1 = 0.1, β2 = −0.1) confirming the appropriateness of the experimental
design in providing unbiased estimates of the population parameter values.
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