Chapter 5 ®)
Econometric Modelling: Basics oo

Abstract This chapter addresses basic topics related to choice data analysis. It
starts by describing the coding of attribute levels and choosing the functional form
of the attributes in the utility function. Next, it focuses on econometric models
with special attention devoted to the random parameter mixed logit model. In this
context, the chapter compares different coefficient distributions to be used, addresses
specifics of the cost attribute coefficient and it pays attention to potential correlations
between random coefficients. Finally, topics related to the estimation procedure such
as assuring its convergence or random draws are discussed.

5.1 Coding of Attribute Levels: Effects, Dummy
or Continuous

In the choice experiment literature, the two most common ways of coding attribute
levels for modelling are dummy and effects coding. Most often the choice between
dummy or effects coding arises when researchers consider how qualitatively (cate-
gorically) described attributes should enter the utility function, and when researchers
want to relax assumptions about linearity of continuously coded attributes (see
Sect. 5.2).

Consider an attribute with L levels. The (quantitative or qualitative) levels of this
attribute are transformed into L — 1 dummy variables taking a value of one if a level
is present in an alternative and equalling zero if it is not. The L-th level is omitted
from analysis in order to avoid perfect collinearity. The utility of the Lth level is
per definition zero, and the L — 1 parameter estimates for the dummy variables
capture the utility difference relative to the omitted baseline level. However, the
utility of the status quo alternative is defined to be zero with respect to this attribute.
In this case, the effect of the Lth attribute level will be perfectly correlated with the
constant term for the status quo alternative. This makes it impossible to independently
identify the utility effect of the status quo alternative that is unrelated to the attributes
characterising the non-status quo alternatives.

Effects coding implies that the effects of attribute levels are uncorrelated with a
constant term for the status quo alternative. Again, L — 1 variables are created, which
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receive a value of minus one if the Lth attribute level is present, and a value of one
for each of the L — 1 attribute levels. Importantly, the utility of the reference level is
directly related to utility of the L — 1 attribute levels, defined as the negative sum of
the L — 1 parameter estimates. Therefore, the estimates are likely uncorrelated with
the constant for the status quo alternative. See Table 1 in Daly et al. (2016, p. 38) for
an example of dummy and effects coding for a 4-level attribute.

The above differences, described by Bech and Gyrd-Hansen (2005), have quickly
led to the widespread belief that effects coding would be “superior” to dummy coding
and that dummy coding would imply confounding between base (reference) levels
of dummy-coded attributes and dummy-coded alternative-specific constants (ASCs;
typically associated with either the status quo or the non-status quo alternatives).

But does it really matter if effects coding or dummy coding is used? To start with,
the concern about confounding of base (reference) levels of dummy-coded attributes
and ASCs s only relevant for cases where the experimental design includes an opt-out
or status quo alternative, and if any of the attributes relate exclusively to non-status
quo alternatives. What characterises these cases is that none of the attribute levels of
the experimental design will be shared with the status quo alternative. An example
may be an attribute describing spatial location (e.g. an attribute describing where
proposed changes would take place) in a WTP context. If there is no policy change
in the status quo option, this attribute does actually not characterise the status quo.
In supply contexts (e.g. studies aimed at estimating ecosystem service suppliers’
WTA to participate in contract schemes), attributes of conservation contracts (e.g.
collaborative participation; contract length) do not apply for the status quo or opt-out
alternative, which typically is a “no contract” alternative.

Furthermore, the estimation process of marginal values differs slightly. In a WTP
context, effects coding requires taking the negative ratio of twice the utility param-
eter of interest, By, plus the sum of the utility of utility parameters associated with
remaining L — 1 levels and the cost parameter. For example, for a 2-level effects
coded attribute, marginal WT P = —28; /8 and for 3-level effects coded attribute,
marginal WT P = —(28; + $2)/8. Importantly, however, whether effects coding
or dummy coding is used will not affect the log-likelihood value of multinomial
logit models (i.e. the models are statistically equivalent), marginal WTP or WTA
estimates, nor will it affect welfare estimates of CS (using the approach proposed
by Hanemann 1984). This is the most important insight and is due to the fact that
what matters are differences in utility between the individual levels of an attribute
(or differences in utility between alternatives). Effects coding only uses a different
normalisation of the reference level, while the difference in utility between levels
remains the same for either form of coding.

Apart from requiring more attention when coding and estimating WTP, effects
coding can further complicate the interpretation of utility effects. Daly et al. (2016)
provide an example related to imposing an equality constraint on some of the attribute
levels. Overall, therefore, the reasons above seem to be sufficient to discourage the use
of effects coding as a “superior” model specification. We strongly recommend that
researchers consult Daly et al. (2016) for a more detailed theoretical and empirical
investigation of the impacts of coding before making any decisions on whether to



5.1 Coding of Attribute Levels: Effects, Dummy or Continuous 63

use effects and dummy coding. Beyond the arguments raised above, we also wish
to note that the equivalence between dummy coding and effects coding disappears
when random coefficients are applied to these variables (Burton 2018).

Given the above, in most cirumstances effects coding offers no additional benefits
over dummy coding and may lead to some undesirable complications. However,
there may be a single reason for considering effects coding, which is traced back
to an argument presented by Bech and Gyrd-Hansen (2005). This relates to the aim
of giving the ASC parameter (associated with a status quo) a direct (behavioural)
interpretation. If, for example, the aim is to interpret the ASC parameter as evidence
for status quo bias, it may be tested if the coding of attributes has a strong impact on
the ASC parameter estimate. However, in DCE applications that include a monetary
attribute which enters the indirect utility function in a continuous fashion, the utility
difference between zero (used only for status quo) and the lowest level of the monetary
attribute in the non-status quo alternatives will still be captured by the ASC (see
Appendix in Hess and Beharry-Borg 2012). Hence, in most applications the constant
will in any case be confounded with attributes, even if effects coding has been applied,
because the cost attribute is unlikely to be effects coded to enable estimation of WTP
and WTA.

In summary, for multinomial choice models (DCE data) and the most typical appli-
cations, we recommend to use dummy coding; effects coding offers no advantages
while making interpretation more difficult.

5.2 Functional Form of the Attributes in the Utility
Function

Following random utility theory, the utility an individual derives from choosing an
alternative comprises of a deterministic, observable component and a random, unob-
servable component (Sect. 1.2). The most common specification of the deterministic
component is linear and additive in attributes. One of the first choice experiment
applications in environmental economics that introduces non-linear terms into the
utility specificationis Adamowicz etal. (1998). They used quadratic terms for some of
the continuously coded attributes, which helped identify threshold effects for these
attributes: utility increases at a diminishing rate up to a threshold, beyond which
utility decreases at an increasing rate. They find that the non-linear specification
outperforms the linear one. This suggests that it can be important to test and assess
if indeed there is non-linearity in sensitivity towards attributes.

Perhaps the simplest and most effective way of testing for non-linearity is to use
dummy coding for L — 1 attribute levels. The resulting estimates for each level can
be directly inspected or displayed graphically to investigate if utility changes linearly
to (proportionally with) changes in the attribute. Figure 5.1 presents example of two
different effects the attributes can have on the utility. The effect of the first attribute
(Attr. 1) is approximately linear over attribute levels and the effect of the second
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Fig. 5.1 Example of plotting utility of dummy-coded attribute levels of two 5-level attributes

attribute (Attr 2.) is non-linear. Generally, likelihood-ratio tests can be used to test
if a non-linear specification outperforms a linear one. To test if utility increases
proportionally over two dummy-coded attribute levels, a Wald test may be used to

test if B — B> §—f = 0, where X and X, refer to quantities associated with two

attribute levels and g8; and B, are correspondings parameters. When investigating or
plotting utility parameters of dummy or effects coded levels, care should be taken if
the attribute levels are not evenly spaced so that utility differences between attribute
levels relate to varying differences in quantities. If there is an indication of a non-
linear utility surface across the range of attribute levels, the dummy specification
can be retained, or a number of alternative options can be considered for introducing
non-linearity in an attribute’s utility surface.

The first is a non-linear transformation of the independent variables (attributes
and/or socio-demographic variables if included). For example, this may be done
through the use of polynomials (quadratic, cubic, etc.) as described above, or a
logarithmic transformation. Note that the resulting specification is still linear and
additive in parameters—merely the utility of an attribute will be described by a non-
linear function. Non-linear transformation may also include Box-Cox, Box-Tukey, or
alternative power transformations. Examples of the use of such applications include
Farsi (2010), Glenk and Colombo (2013) and Tuhkanen et. al. (2016) (see also
Stathopoulos and Hess 2011 for a transportation application). Non-linear transfor-
mation does not make sense for 2-level attributes, and the advantages of a non-linear
transformation over simple dummy coding may be questioned for 3-level attributes.
As an aside, of course any of the above non-linear transformations may also be applied
to socio-demographic variables included in the model (as interactions with attributes,
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as independent variables explaining class membership in latent class models or as
part of structural equations in hybrid choice models).

A second approach is the use of a piecewise specification (splines). Assume a
continuous attribute with five attribute levels ranging from 10 to 100 (10, 30, 60,
80, 100). The “dummy specification test” described above suggests marginal utility
is not significantly different between 10 and 30, then increases but is not different
between 30 and 60, then increases again but is constant between 60 and 100. In this
case, the following three categories and corresponding dummy variables could be
created (as opposed to five dummy variables, of which four enter the utility function
for the “dummy specification test”): X;: [10-30[ = 1, otherwise 0; X;: [30-60[ =
1, otherwise 0; [60—100] = 1, otherwise 0. With one acting as a reference category,
two of the above dummies can be entered into the utility function. This will produce
two utility parameters corresponding to the attribute-level intervals defined above.
However, this approach has the drawback that marginal utility is zero within the inter-
vals, and the resulting function is discontinuous (there are discrete steps or “jumps”,
see Fig. 5.2). One alternative is to use a piecewise linear specification. Marginal
utility is allowed to vary within intervals and a continuous function is enforced (i.e.
no “jumps”, see Fig. 5.2)—in the example above this may be relevant if marginal
utility is found not to be zero within intervals but is, for example, increasing, but
at different rates. For the example above, three variables are specified as follows:
X1 = min(x, 30); X, = max(0, min(x — 30, 30)); X3 = max(0, min(x — 60, 40)),
where x describes the value of the initial attribute level. A piecewise linear specifi-
cation can be useful in choice experiment applications that investigate some form of
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reference dependency (Lanz et al. 2010; Ahtiainen et al. 2015). Combining the poly-
nomial approach with the piecewise approach can result in a piecewise non-linear
specification (Glenk 2011).

The use of any type of non-linear specification for the utility of attributes implies
that marginal WTP/WTA estimates depend on the attribute value, i.e. there is no
unique estimate, but values differ for different levels of provision of an attribute.
Sensitivity to cardinally scaled attributes (e.g., distance in km, area in km?, frequency,
percentage change, change in objects that can be counted) may not change at a
constant rate. Such non-linear utility effects can sometimes be motivated by economic
theory, for example, through the principle of diminishing marginal utility. See Sage-
biel et al. (2017) for an example related to changes in forest cover, or Glenk et al.
(2011) for an example related to water quality improvements.

It can be easily assessed if non-linearity in the utility surface is present by using
dummy coding of attribute levels. If there is an indication of a non-linearity, the
dummy specification can be retained, or a number of alternative options for speci-
fying the observed part of utility for an attribute can be considered. Such non-linear
transformations might be more convenient compared to a dummy specification if the
attribute entails at least three, but is better if there are more than three levels. When
reporting marginal WTP/WTA estimates for attributes based on non-linear specifica-
tions, researchers should clarify the corresponding level of provision that underpins
the estimate. With reference to Sect. 1.1, one should be reluctant to introduce any
form of non-linearity on the cost coefficient to maintain valid welfare estimates.

Finally, a practical challenge with the testing of different functional forms of
attributes, relates to the design and how the attribute was specified there (see Chap. 3).
If, for example, a D-efficient design is generated assuming a continuous attribute,
and we want to code it using dummy levels, the results obtained may not reflect
the underlying preferences. Thus, care should be taken when the functional form
deviates from the design (see Sect. 3.3).

5.3 Econometric Models

5.3.1 Multinomial (Conditional) Logit

The econometrics literature makes a distinction between the multinomial logit and the
conditional logit model. In practice, the two labels are often used interchangeably.
The term multinomial refers to a situation where more than two alternatives are
available to consumers (or respondents). Both the multinomial and the conditional
logit model aim at explaining the observed choices. The distinction between the
multinomial and the conditional model arises in the use of explanatory variables.
The multinomial logit model explains the observed choices only by means of
characteristics of the individuals (e.g. gender and age). The conditional logit model,
as introduced by McFadden (1974), allows choices to be explained by means of
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variables describing the characteristics of the available alternatives (e.g. quality and
cost). The latter are henceforth denoted as (product) attributes. It is good practice
to use a combination of individual and attribute specific variables in discrete choice
models. As aresult, amore general model combining the multinomial and conditional
logit formulations is commonly used, hence explaining the inconsistent use of termi-
nology. To avoid confusion, this document will refer to the above general model
as the MNL model. Moreover, the two models are identical from a mathematical
perspective (see also Greene 2017; Long 1997).

Chapter 2 in Train (2009) makes the connection between the MNL model both as
a behavioural and as an econometric model. It should be noted that the econometric
flexibility offered by the MNL model (and more advanced choice models) is not
always in line with the behavioural restrictions imposed by, for example, economic
theory (e.g. Batley and Ibafiez-Rivas 2013). Section 2.5 in Train (2009) is particularly
important as it highlights a number of identification issues related to the MNL model
with significant implications for the use of constants, sociodemographic variables
and scale parameters in the MNL model.

5.3.2 Mixed Logit Models—Random Parameter, Error
Component and Latent Class Models

Mixed logit models (MXL), including the random parameters MXL (RP-MXL), error
components MXL (EC-MXL) and latent class models (LCM), extend the MNL model
by allowing for unobserved heterogeneity in the estimated parameters. While in the
MNL model, the estimated preference parameters are fixed, MXL models allow
preferences to vary across choices (Brownstone and Train 1998—also known as
cross-sectional modelling), individuals (Revelt and Train 1998—also known as panel
modelling) or both (Hess and Rose 2009—also known as inter-and-intra respondent
heterogeneity).

The MXL assumes the unobserved heterogeneity follows a continuous or discrete
distribution across the population. In the early years of its application, the discrete
distributions were represented by LCM and the continuous distributions were
restricted usually to univariate normal densities.

However, the unrestricted domain (negative and positive values between minus
and plus infinity) of the normal density goes against many behavioural predictions,
such as negative cost sensitivities. We often know whether an attribute has a positive or
negative influence on utility and this has resulted in the implementation of alternative
distributional forms, such as the log-normal density (e.g. Train and Sonnier 2005).
Also, correlations between preferences across distributions have been implemented
to make the models more flexible (see again Train and Sonnier 2005). Another
important extension has been the introduction of willingness-to-pay space models,
as will be shown in Sect. 6.1 (Train and Weeks 2005; Daly et al. 2012a).
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The extensions of the MNL and MXL, particularly beyond univariate normal
densities and working in willingness-to-pay space, have significant implications on
the data and estimation requirements. First, a significant number of draws need to
be taken to accurately approximate the integral in the likelihood function (Train
2009, Chap. 6) and alternative routines (e.g. Halton, MLHS and Sobol) to draw from
the specified densities might work better than others (Bhat 2003; Hess et al. 2006;
Czajkowski and Budziriski 2019). Irrespective of the number of draws, the standard
classical maximum simulated likelihood method struggles with the complexity of
the MXL, especially when multivariate distributions are included in the model spec-
ification. Moreover, robustness across starting values and the number of draws needs
to be tested, but alternative estimation strategies, such as Bayesian analysis (Huber
and Train 2001), Expectation Maximisation (see Train 2009, Chap. 14) or Maximum
Approximate Composite Marginal Likelihood (Bhat and Sidharthan 2011) have been
proposed.

A special case of the MXL is the EC-MXL (Scarpa et al. 2005). The error compo-
nent acts as an additional error term in the utility function and is either implemented at
the cross-sectional or panel level. Most applications now adopt a panel specification,
that is more than one choice occasion per respondent. The benefit of the additional
error term is that it allows for different correlation patterns across alternatives and
thereby alleviates the Independence of Irrelevant Alternatives assumption underlying
the MNL model. A common application is that of an additional error component on
the status quo and none on the hypothetical alternatives in the choice set. The error
component is modelled as a zero mean continuously (normally) distributed vari-
able such that only the variance term needs to be estimated. That can easily lead to
identification issues as can be the case of error components and random alternative
specific constants. Important identification and normalisation strategies are discussed
in Walker et al. (2007).

Discrete mixed logit (DM-MXL) and LCMs move away from the continuously
distributed random parameters specification. Instead, they assume the random param-
eter(s) can only take a limited (discrete) number of values and each mass point is
associated with a probability (Hess 2014). Hence, for each discrete random param-
eter K location and (K — 1) probabilities need to be estimated. Here, K refers to
the number of mass points and since the probabilities need to sum to one, one prob-
ability parameter cannot be estimated. In estimation, the number of combinations
between mass points and the total number of parameters rapidly increases with the
number of random parameters included. For this reason, the DM-MXL model is
hardly applied in practice. Instead, the LCM has gained much more in popularity
(Greene and Hensher 2003). Like the DM-MXL model, the LCM assumes a finite
number of potential values for the random parameters, but assumes there exists corre-
lation across some of the random parameters in the model—preference parameters
are random (discrete), but assumed the same for several “classes” of preferences. In
addition, a probability of each respondents’ membership in each class is estimated
(and can be made a function of their socio-demographic characteristics). As a result,
there is a probability of belonging to a class. More recent versions of the LCM allow
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for random parameter heterogeneity within classes (e.g. Greene and Hensher 2013;
Campbell et al. 2014; Karldseva et al. 2016).

The LCM has often been misinterpreted due to its behavioural appeal. Many
applications forget that class membership is only known up to a probability and each
respondent has a finite probability of belonging to each class. Mean probability of
belonging to each class is not the same as a share of respondents belonging to each
class. Moreover, LCMs are even more subject to local maxima and convergence
issues than the conventional MXL. The EM-algorithm is very effective in estimating
LCMs, but even then, robustness checks using a wide range of starting values are of
the utmost importance. Recent improvements in the estimation of LCMs with a large
number of mass points and flexible mixing densities are reported in Train (2016).

5.3.3 G-MXL Model

The generalised mixed logit (G-MXL) model (Fiebig et al. 2010; Greene and Hensher
2010) received significant attention for its acclaimed ability to separate preference
and scale heterogeneity. As argued by Hess and Rose (2012), this claim is incorrect,
because preferences and scale are confounded and the interpretation of the estimated
parameters as preferences or scale is always the arbitrary decision of the researcher.
Some forms of the G-MXL model can be seen as a middle-ground between the
RP-MXL model without correlated parameters and the RP-MXL model with fully
correlated parameters, as G-MXL introduces a single additional parameter capturing
simultaneous correlation between all parameters, rather than modelling all correla-
tions separately, which requires many more parameters. Overall, the model is now
rarely used, because of the problems with the interpretation of the estimated correla-
tion coefficient, which cannot be definitely attributed to scale heterogeneity. However,
its specific versions can still be useful, provided they are correctly interpreted (e.g.
Keane and Wasi 2013; Hess and Train 2017).

5.3.4 Hybrid Choice Models

Besides the use of socio-economic characteristics (such as age and gender), it is often
useful to explain the observed choices by means of attitudes or other not directly
observable constructs (latent behavioural traits). For example, assume one wishes to
explain the decision to buy an electric car by the extent to which the respondent is
“environmentally friendly”. Attitudinal statements included in surveys measure the
degree of environmental friendliness of respondents. However, these responses are
associated with measurement error and introducing them directly in the choice model
may result in endogeneity issues. Therefore, we instead try to explain the observed
choices (the choice model) and responses to attitudinal statements (the measurement
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model) by means of the same underlying latent variable. In addition, the structural
component can be added, which explains how latent environmental friendliness varies
across respondents with respect to their socio-demographic characteristics. While the
hybrid choice model (HCM, sometimes called integrated choice and latent variable—
ICLV model) addresses the measurement error of indicator variables, to date there
has only been limited attention to the extent that the HCM addresses endogeneity as
opposed to more traditional instrumental variable approaches or alternatives (Hoyos
etal. 2015; Budzifiski and Czajkowski 2018; Mariel et al. 2018; Guevara et al. 2018).

Hybrid choice models can be estimated simultaneously or sequentially. The former
is more efficient, but makes the estimation more complex and slower due to the use of
additional integrals in the likelihood function. Estimation times can be significantly
reduced by means of Bayesian estimation (e.g. Dekker et al. 2016). Mariel and
Meyerhoff (2016) show that the use of hybrid models is justified when one is primarily
interested in learning about preference heterogeneity, but not in predictive power.

Chorus and Kroessen (2014) represent the main source of criticism of the HCM
when commenting on its use in transportation. Their first point of criticism is that
HCMs do not support the derivation of travel demand policies that aim to change
travel behaviour through changes in a latent variable, because of the non-trivial
endogeneity of the latent variable regarding travel choice. Their second point is that
the cross-sectional nature of the latent variable does not allow for claims concerning
changes in the variable at the individual level.

Vij and Walker (2016) present a comprehensive comparison between MXL and
HCM concluding that HCM can lead to an improvement in the analyst’s ability to
predict outcomes in the choice data, and it allows for the identification of structural
relationships between variables that could not otherwise be identified by a choice
model without latent variables. Moreover, HCM can help correct for bias arising from
omitted variables and measurement error, it can in some cases reduce the variance of
the parameter estimates, and, finally, it can quantify the impact of latent constructs
on observable behaviour, preferences and WTP and demand elasticities (e.g. Boyce
et al. 2019; Czajkowski et al. 2017a, b; Zawojska et al. 2019).

The latest discussion in the HCM literature points to perceptions and their use in
HCM. For example, Bahamonde-Birke et al. (2017) discuss the differences between
attitudes and perceptions and Borriello and Rose (2019) highlight the difference
between global and localised attitudinal responses. The potential of perceptions
within HCMs has thus far been largely overlooked in environmental valuation.

5.4 Coefficient Distribution in RP-MXL

Choosing the correct distribution to capture the heterogeneity in underlying popula-
tion preferences has been one of the major research interests in DCE in recent years,
but it is still a central problem. Extensive literature exists on this subject (Daly et al.
2012b; Dekker 2016; Fosgerau and Bierlaire 2007; Fosgerau and Mabit 2013; Scarpa
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et al. 2008a; Train 2016), but the question of choosing the correct distribution still
seems to be open.

Before we analyse the type of distribution to be used for our coefficients, we could
test whether they should be considered random. The z-statistics of the estimated
deviations of the random parameters are usually used to test this. An alternative
and more sophisticated way to test the randomness of a coefficient is the Lagrange
Multiplier (LM) test proposed by McFadden and Train (2000). Mariel et al. (2013),
however, show that, on the one hand, the z-statistic test usually has high power
achieved at the expense of a distorted empirical size and that, on the other hand, the
LM test has very low power.

A model in which all parameters are assumed to be random is more flexible
than a model in which some of the parameters are assumed to be non-random.
Obviously, this flexibility is achieved at the expense of the loss of degrees of freedom.
Nevertheless, it is better to work with a more flexible model by assuming that all
parameters are random than imposing incorrect constraints on the randomness of the
parameters.

If a parameter is assumed to be random, the distributions of monetary and non-
monetary attributes are often set to normal. But that distribution choice can cause
serious problems in the WTP calculation. The distribution of WTP for an attribute is
generally derived from the distribution of the ratio of coefficients corresponding to
the non-monetary and monetary attribute. Since the monetary coefficient enters the
denominator, its distribution is crucial for the distribution of WTP. Daly et al. (2012b)
show that some popular distributions used for the monetary coefficient in random
coefficient models, including normal, truncated normal, uniform and triangular, can
imply infinite moments for the distribution of WTP, even if truncated or bounded at
zero. Therefore, their mechanical application to the monetary coefficient may lead to
undefined moments of the distribution (e.g. mean). To avoid that problem, the analyst
can interpret quantiles of the distribution (e.g. median), adopt other distributions for
the monetary coefficient (e.g. log-normal) or re-parameterise the model in WTP space
(Sect. 6.1). It is important to note that if a log-normal distribution is assumed, then
the interpretation of the estimated parameters (8) and standard deviation (o) is not
straightforward, as the median, mean and standard deviation of the distribution are

given by exp(8), exp(,B + 02/2) and exp(ﬂ + 02/2) A\ /exp(az) — 1 respectively.

Independently of the type of distribution used, a wide spread of the preferences
often means extreme preferences for a non-marginal share of respondents and in this
case, a pre-analysis of the data is needed. It can indicate lexicographic, non-trading
or protest responses that can require a specific treatment (Hess et al. 2010).

The analyst can also properly test the coefficients’ distribution by the use of the
Fosgerau and Bierlaire (2007) semi-nonparametric test for mixing distributions in
discrete choice models. It tests if a random parameter follows an a priori postulated
distribution. Unfortunately, it is not included in standard software packages with the
exception of Biogeme (Bierlaire 2020). A less sophisticated but simpler procedure
is proposed by Hensher and Greene (2003). They suggest plotting the contributions
(incremental marginal utility) of all individuals to the overall sample mean parameter
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estimate and hence the profile of individual preference heterogeneity. It is a proce-
dure which is easy to perform with any software package and although it is not a
proper statistical test, it can give an idea of the underlying distributions of the parame-
ters. Alternatively, Fosgerau and Mabit (2013) propose a method to generate flexible
mixture distributions. Their proposal takes draws from a distribution and transforms
them using a power series. It allows for a use of a flexible and non-standard distribu-
tion without restrictive assumptions. In general, there is still limited information for
practitioners regarding the performance of the above-described tests and approaches.
If the underlying theory implies a specific sign of the coefficient (e.g. negative
sign for cost coefficient) a log-normal (with changed or unchanged sign) can be
used. In other cases, the normal distribution can be appropriate bearing in mind that
wide standard deviations indicate inappropriateness of the assumed distribution. If
the focus of the analysis is on WTP, the model can be estimated in WTP space
(Sect. 6.1). If there is a clear indication that the distribution of the parameters is non-
standard (non-symmetric, bi-modal) some of the flexible, but technically complex,
parametric (e.g. LCM) or non-parametric approaches can be applied (Train 2016).

5.5 Specifics for the Cost Attribute

The cost coefficient is one of the mostimportant elements of the choice model. Indeed,
when one treats a choice model as an econometric model, the cost coefficient is just
like any other explanatory variable in the model. Similarly, when the choice model is a
(non-economic) behavioural model, then prices and their corresponding coefficients
simply describe how the attractiveness of an alternative varies as a function of its
price. However, we often treat the choice model as an economic model and wish to
use it to obtain welfare measures expressed in terms of WTP or WTA. By working ina
RUM context, we implicitly assume the respondent maximises his/her utility subject
to a budget constraint (Small and Rosen 1981). For the indirect utility function, which
we estimate and specify in the choice model, to be consistent with economic theory
the utility function needs to be linear in price when conditional demand is restricted
to unity (Batley and Ibanez Rivas 2013). If that is not the case, any estimated welfare
measure is invalid. When the utility function is linear for prices, then the negative
of the cost coefficient measures the marginal utility of income and can be used to
translate utilities into monetary terms. In effect, this is what the WTP-space model
(see Sect. 6.1) does directly (Train and Weeks 2005). For this reason, we also often
use a negative log-normal density to describe any preference heterogeneity in the
cost coefficient (Daly et al. 2012b).

While for simplicity of the calculation of WTP some applications assume the
monetary attribute parameter to be fixed, this is discouraged, as heterogeneity with
respect to the monetary variable is almost always substantial, and constraining it
introduces significant bias to the model and the estimated WTP. This point is analysed
further in Sect. 6.1.
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5.6 Correlation Between Random Coefficients

McFadden and Train (2000) showed that any choice model, with any distribution
of preferences, can be approximated to any degree of accuracy by a mixed logit,
demonstrating that this is a highly flexible model. Nevertheless, Train and Weeks
(2005) show that widely applied models with uncorrelated utility coefficients imply
that scale is constant across all utilities and implies that corresponding WTP values
are correlated in a very particular way. Similarly, a model specified in WTP space with
uncorrelated parameters implies a specific pattern of correlation in utility coefficients
(Carson and Czajkowski 2019).

The assumed distributions of random coefficients and their possible correlations
impose specific restrictions, which should be in line with the actual respondents’
behaviour. Correlations among utility coefficients can arise for many reasons and
have been observed in different fields (Revelt and Train 1998; Scarpa et al. 2008b;
Hess and Train 2017). The most general form of a RP-MXL allows all utility coeffi-
cients to be randomly distributed and correlated. It allows for the type of correlation
that would result from behavioural sources as well as scale heterogeneity. It is not
possible to empirically determine what portion is due to behavioural sources and
what portion of an estimated correlation is due to scale heterogeneity. In the case of
behavioural source, people who support one attribute can also be supportive of the
second attribute, creating a positive correlation between the coefficients of the two
attributes (Mariel and Meyerhoff 2018).

In the case of scale heterogeneity, the correlation appears to be due to the fact
that a respondent’s choice can be more random (with all of the coefficients being
smaller) or more deterministic (with all of the coefficients being larger in magnitude).
The scale of utility, that is the magnitude of all utility coefficients, differs across
individuals. According to Hess and Train (2017), it is impossible to empirically
distinguish various sources of heterogeneity. A RP-MXL with full covariance among
coefficients includes not only correlation induced by scale heterogeneity but also
any other source of correlation. They recommend estimating a RP-MXL with full
covariance if the aim is to allow for all forms of correlation among utility coefficients.
The estimation of such a model is more complex than estimating a model with
uncorrelated coefficients, given the high number of parameters and possible non-
concave areas of the log-likelihood function, but software packages which do this
are widely available.

In summary, if enough data is available to warrant identification and convergence
of the model, allowing for correlations of random parameters is highly recommended.
This is especially important for utility functions with dummy-coded attribute levels
and error component models.
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5.7 Assuring Convergence

There are many papers in the literature presenting estimations of different discrete
choice models without giving any details regarding the estimation procedure. This
estimation procedure is usually a maximum likelihood estimator or a maximum simu-
lated likelihood estimator. If we focus on the most applied models, the maximised
likelihood function is globally concave only for a multinomial logit model, whereas
the likelihood function or simulated likelihood function of MXL models or HCMs is,
generally, not globally concave and may feature several local maxima. The selection
of starting values is a crucial issue to avoid an inferior local maximum. Empirical
studies rarely describe the choice of starting values used and there are not many
studies devoted to this topic, and, unfortunately, little guidance to solve this issue
exists.

The work of Hole and Yoo (2017) is an exception in this regard, as it proposes an
estimation strategy based on the joint use of heuristic optimisation algorithms and the
usual gradient-based algorithms to obtain the estimates from different models through
a simulated maximum likelihood method. The central idea is to use heuristic algo-
rithms to locate a starting point which is likely to be close to the global maximum, and
then to use gradient-based algorithms to refine this point further. Their results based
on simulation studies indicate that repeatedly finding a particular maximum from
several starting points is not reliable proof that this is in fact the global maximum and
their strategy generally results in higher maxima than more conventional estimation
strategies.

Optimisation procedures like Newton—Raphson, BHHH, BFGS or Nelder-Mead,
usually implemented in software packages, can end up easily in local maxima in
relatively simple MXL models. It is important to bear in mind that convergence
to the global maximum of the likelihood function or simulated likelihood function
is not guaranteed by any of these optimisation algorithms. Their performance is
case specific and it is difficult to give a general recommendation. Nevertheless, it is
strongly recommended to always estimate more complex models a couple of times
with different starting values, different optimisation procedures and, if possible, use a
mixture of heuristic procedures and the usual gradient-based algorithms as indicated
by Hole and Yoo (2017).

Mebane and Sekhon (2011) is another example of a similar approach that
combines evolutionary search algorithms with derivative-based (Newton or quasi-
Newton) methods to solve difficult optimisation problems. Their procedure finds a
global maximum of functions that are not globally concave and they may even have
irregularities such as saddle points or discontinuities. The generally implemented
optimisation methods such as Newton—Raphson, BHHH, BFGS or Nelder-Mead
that rely on derivatives of the objective function may be in these cases unable to
find any optimum at all. The only drawback of heuristic search methods is that
the computation time is usually much higher than that necessary for gradient-based
optimisation.
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As a general recommendation, the researcher can always use different sets of
random starting values and compare the final value of the log-likelihood func-
tion. On the other hand, MNL estimates should be reasonable starting values for
an RP-MXL model without correlations, and RP-MXL estimates without correla-
tions should provide reasonable starting values for RP-MXL with correlations. If it
is a RP-MXL model with normally distributed coefficients, the means can be set to
the MNL estimates, standard deviation to a small positive constant (e.g. 0.5) and the
remaining coefficients related to the covariances of the random coefficient can be set
to zero. It is important to highlight that very often the LCM ends up in flat regions
of its log-likelihood function. The more dummy variables are included in a model,
the more the severe problem of a flat region is likely to appear. If we do not have any
a priori hypothesis about the coefficients in different classes of our LCM that could
function as starting values in each class, the model should be estimated repeatedly
for randomly generated starting values.

There are other ways to reduce the problems with the optimisation procedures. The
magnitude of a coefficient multiplying an explanatory variable (usually an attribute)
in a discrete choice model is related to the scale of this variable. If the scale of
the variable is thousands of units, the corresponding coefficient is expected to be
in order of thousandths. The higher the differences in orders of the coefficients, the
more difficult it will be for the optimiser to reach a global maximum. It is, therefore,
a good practice to re-scale the attribute so that the order of all coefficients is similar
(ideally between 0.1 and 1). This simple procedure will ease the convergence of
the estimation procedure based on numerical optimisation. In order to recover the
original units, the estimated coefficients should be multiplied or divided accordingly.
For example, the values of an attribute x| are between 10 and 100, and its contribution
to the utility is ®1,j; = Bi - X1,j;. If the values of this attribute are divided by
100 (xj“njt = X1,;:/100) and, therefore, values between 0.1 and 1.0 are used in
the estimation process, the contribution to the utility remains the same: ®,;, =
B1 - X1ujr = (B1-100) - (xmj,/loo) = B xiknjt. The corresponding estimated
parameter B I = (/31/\100> should then be divided by 100 to obtain the estimation
of the original j;.

McCullough and Vinod (2003) present a four-step process for the verification of
the solution obtained. The procedure is based on the detailed analysis of the final
gradient and trace, hessian and quadratic approximation of the likelihood function in
the proximity of the obtained solution. Practitioners should always be cautious about
solutions obtained from statistical packages, no matter how convenient and expected
the outcomes are, and apply at least some of the checks described above.
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5.8 Random Draws in RP-MXL

Simulated maximum likelihood is the preferred estimator of most researchers dealing
with discrete choice models, as it is relatively straightforward and readily imple-
mented in most statistical software packages. Simulating the value of the log-
likelihood function is necessarily associated with the simulation error that depends
on the number and type of draws used. By using a different set of draws or even
changing the order of explanatory variables a researcher will arrive at somewhat
different estimation results, in terms of the value of the log-likelihood function,
parameter estimates and their estimated standard errors (and hence the associated
Z-statistics).

Several studies have demonstrated the advantages of using Quasi Monte Carlo
(QMC) methods in terms of reducing simulation-driven variation of the results (e.g.
using Halton draws, Modified Latin Hypercube Sampling or Sobol draws rather than
pseudo-random draws) and this has led to their wide proliferation. Unfortunately,
examples of 100 Halton draws leading to a smaller bias than 1,000 pseudo-random
draws (e.g. Bhat 2001) have in fact led some to use very few draws for simulations,
when in fact not much is known about the extent of the possible bias resulting from
using different numbers of different types of draws in various conditions (datasets).

One problem with using the popular Halton sequence is its poor performance in
higher dimensions (i.e. generating Halton sequences for a high number of coeffi-
cients), because the sequences generated using high prime numbers as bases tend
to be highly correlated. To address this problem, the use of scrambling or shuffling
the sequence (or other QMC methods) has been suggested. Wang and Kockelman
(2006) compared scrambled and shuffled Halton sequences, concluding that although
scrambling seems to perform better, the difference is relatively small.

Using more draws is always better than using fewer—not only will the estimates
become more precise (lower simulation error) but this can also lead to the detection
of identification problems (Chiou and Walker 2007). Using very few draws (e.g.
below 100) can therefore hinder estimation of even preliminary models, which are
used by researchers to guide their subsequent analyses, i.e. the choice of the final
preferred and published model. It is important to keep in mind that the estimation by
maximisation of a simulated likelihood function is based on an approximation of an
integral. A low number of draws lead to a poor approximation of this integral. That
can lead to a situation in which the log-likelihood of the estimated model with, e.g.
100 draws is higher than the log-likelihood with 500 draws. It does not mean that we
should use 100 draws, it just reflects a poor approximation of the integral. For a low
number of draws, the log-likelihood of the estimated model can differ markedly, but
the increase of draws usually leads to a stabilisation of the log-likelihood. We can
even find models that converge with a low number of draws but do not converge with
a high number of draws. This indicates an identification problem of the model that
must be solved and that we cannot trust the results with a low number of draws. In the
specification search stage of our research, we usually estimate different variations
of our model and to lower the estimation cost of numerous preliminary models we
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set a low number of draws. This is also an incorrect approach as a low number of
draws can lead to an incorrect specification decision. All the models we estimate in
our specification search must be estimated with a sufficiently high number of draws.

Czajkowski and Budzinski (2019) provide a systematic comparison of pseudo-
random, Halton, Sobol and Modified Latin Hypercube Sampling draws under a
wide set of experimental conditions in terms of experimental designs, the number
of individuals (400-1,200) and the number of choice tasks per individual (4-12).
Based on a Monte Carlo simulation, they demonstrate the extent of the simulation
error resulting from using 100 up to 1,000,000 draws. They show that a scrambled
Sobol sequence results in the lowest simulation error of all the simulation methods
compared, irrespective of the experimental conditions, with Halton draws a close
second.

Czajkowski and Budzifiski (2019) propose guidelines regarding how many draws
are “enough” for the required precision level. Their measure is based on 95% confi-
dence that log-likelihoods do not lead to simulation-driven erroneous inference and
that parameter estimates are within 5% of their true values for all experimental
settings considered. They find that as the number of observations increases, so do
the absolute levels of log-likelihood, and the minimum number of draws for the
required precision level. Conversely, in the case of parameter estimates, the reverse
relationship is observed—increasing the number of observations reduces the number
of draws required for a given precision level.

Overall, Czajkowski and Budzinski (2019) show that satisfying these precision
criteria depends on the number of observations and may require using over 2,000
Sobol draws in the case of S-attribute designs and over 25,000 Sobol draws in the
case of 10-attribute designs. It is also recommended to verify if the results are stable
with respect to an increase in the number of draws.
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