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Traffic-induced vibrations on a simple frame: Influence of
external action coherence on structural response

S. Pastò*,y, G. Bartoli and L. Facchini

Civil and Environmental Engineering Department, University of Florence, 3, v. S. Marta, 50139 Florence, Italy

SUMMARY

The study of the traffic-induced response of a simple frame structure is presented. In particular, the effect of
the spatial correlation, among the traffic-induced ground displacements, is discussed by means of a
parametric study to achieve the purpose of outlining those configurations yielding the less-conservative
structural response. Ground excitations are estimated by the model of Hunt (J. Sound Vib. 1991; 1:41–51;
J. Sound Vib. 1991; 1:53–70) assuming a quarter-car vehicle model moving on an uneven roadway placed
on the top of a homogeneous half-space. The structure consists of a rigid slab supported by four columns
and subjected by traffic-induced forces suitably condensed in its center of mass. Copyright # 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Traffic-induced vibrations on buildings are usually due to heavy vehicles traveling along roads
with irregular surfaces. Typical examples are given by the roads of the historic center of cities.
The unevenness of a road surface interacts with the wheels of traveling vehicles causing dynamic
excitations, due to vehicle mass, suspension system and tyres, which are applied to the roadway
and then transmitted to the nearby buildings through soil.

Ground vibrations are of great concern to human beings, above all when they result in
dynamic excitations of buildings. The three main areas of concern are building damage, people
discomfort and diseases, and malfunction of sensitive equipments. Each area of interest involves
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different levels of peak accelerations, according to the intensity and the frequency contents of
traffic-induced vibrations.

To predict traffic-induced ground vibrations acting at the base of structures placed in
proximity of a roadway, it is first necessary to define a dynamic vehicle model from which tyre
forces may be computed for a given road unevenness profile as a consequence of the dynamic
interaction between the same roadway and vehicle. The randomness of road surfaces is suitably
described in the frequency domain (see, e.g. [1, 2]), so that the power spectra of the tyre forces,
applied to the roadway, are given by filtering the power spectral density of the unevenness by the
vehicle admittance function which in turn depends on its dynamic modeling.

Traffic-induced random forces propagate through soil generating spatial ground vibrations
which are random processes as well. These ground vibrations may be computed by using the
formulas reported in several references starting from the pioneering work of Lamb [3]. At
the roadside, these vibrations are non-stationary since the vibrations level rises and falls with the
passage of each individual vehicle. In this case, time-dependent power spectra of ground
vibrations are needed (see, e.g. [4, 5]). Nevertheless, away from the road, an observer cannot
distinguish the passage of a single vehicle; hence, the ground motion may be considered
stationary (see e.g. [3, 6]) as well as the forces induced on the above structures. In particular,
these forces are generated by the free-field ground displacements acting at the structure base. In
more refined models, the assessment of these forces and of their induced structural response also
considers the road–soil and the soil–structure interactions, respectively. Whenever these
interactions are neglected, the spatial ground displacements are directly imposed on the
structure foundations.

Since the spatial components of the ground vibrations occur simultaneously, a key role is
played by the mutual correlation among these components when the structural response is being
assessed. In the present study, a very simple structure has been modeled with the aim of studying
the influence of either large or small coherence among the ground displacements applied to the
structure foundation. A parametric study has been performed in the frequency domain
assuming stationary loading processes for the sake of simplicity and because this assumption
leads to conservative structural responses. No interactions have been considered. The examined
structure is composed by a simple rigid slab supported by four columns, and placed 10m away
from a roadway understood as the source of traffic-induced waves propagating all over a free
field until the structure base. Such waves, resulting in spatial ground accelerations, have been
supposed to be induced by a vehicle traveling along the roadway. The ground accelerations have
been modeled by the numerical model of Hunt [6, 7] and then reduced in forces acting at the
center of mass of the rigid slab, in order to reduce computational efforts. In particular, the
structure response, in terms of slab accelerations, has been computed in the frequency domain
considering the spectra of the above forces and defining their cross-spectra by means of a
coherence function decaying with the distance among the bases of the columns where the
ground accelerations were applied. The higher or lower coherence has been controlled by
parameters whose variation has led to a parametric study of the slab accelerations.

2. MODELING OF THE TRAFFIC-INDUCED FORCES AND FRAME RESPONSE

As mentioned above, the traffic-induced ground motion, in terms of displacements or
accelerations, acts at the base level of the structure. Contrary to seismic action, traffic-induced
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ground motion does not act uniformly, but the motion components differ from each
other in time and space. In the latter case, to assess the structure response it is necessary to
evaluate the structure displacement, along its degrees of freedom, induced by each component
of the ground motion. It is possible to achieve this aim considering the ground displacements
as sinking constraints applied at the base of each column. Since the slab has been supposed
to be a rigid plate, the traffic-induced forces may be condensed in its center of mass.
Consequently, the spatial displacements of any point of the rigid body may be computed
suitably starting from the motion of the slab center of mass by the theory of rigid body, as
described later.

The rigid slab may translate and rotate along the spatial coordinates x; y and z defined in
Figure 1. The vector of total displacements is given by the sum of its independent movements,
usðtÞ; and those induced by the sinking constraints, ucðtÞ; that is

utðtÞ ¼ usðtÞ þ ucðtÞ ð1Þ

The displacements grouped together in the vector ucðtÞ should be understood as quasi-static,
so they may be computed easily by solving the following system of equations:

Kss Ksg

KT
sg Kgg

" #
ucðtÞ

ugðtÞ

" #
¼

0

fgðtÞ

" #
ð2Þ

where Kss and Kgg are the stiffness matrices related to

usðtÞ ¼ ½u5;xðtÞ; u5;yðtÞ; u5;zðtÞ;j5;xðtÞ;j5;yðtÞ;j5;zðtÞ�
T ð3Þ

and

ugðtÞ ¼ ½u1;xðtÞ; . . . ; u1;zðtÞ;j1;xðtÞ; . . . ;j1;zðtÞ; . . . ; u4;xðtÞ; . . . ; u4;zðtÞ; . . . ;j4;xðtÞ;j4;zðtÞ�
T ð4Þ

respectively, whereas Ksg is the matrix composed by the elastic forces induced along usðtÞ by ugðtÞ
which themselves are supposed to be generated by the unknown forces fgðtÞ:

Figure 1. Illustration of the scheme of the structure (left) supposed to be placed near a roadway (right).
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The system of equations in Equation (2) may be solved easily to obtain

ucðtÞ ¼ �K
�1
ss KsgugðtÞ ¼ K�1ss fsðtÞ ð5Þ

where fsðtÞ ¼ �KsgugðtÞ are the quasi-static forces induced by the ground motion. In this way,
neglecting the soil–structure interaction, the dynamic response of the slab may be computed by
solving the well-known problem below:

Mss .us þ Css ’us þ KssusðtÞ ¼ fsðtÞ ð6Þ

In the frequency domain, the problem in Equation (6) enables to assess the power spectral
density matrix of the response Susus ðoÞ:

SususðoÞ ¼ AHðoÞSfsfs ðoÞH
nðoÞAT

ð7Þ

where A is the structure eigenmodes matrix (see Figure 2),

A ¼ ½a1; . . . ; a6� ð8Þ

whereas HðoÞ is the structural admittance as a function of the angular frequency o; given the
modal mass, mi; the ith natural angular frequency of the structure, oi; and the modal damping
ration ni:

HðoÞ ¼

H1ðoÞ . . . 0

..

. . .
. ..

.

0 . . . H6ðoÞ

26664
37775; HiðoÞ ¼

1

mio2
i 1�

o
oi

� �2

þ2jni
o
oi

� �" # ð9Þ

HnðoÞ is the complex conjugate of HðoÞ: Finally, the power spectral density matrix of the traffic-
induced forces is given taking the Fourier transform of the cross-correlation function matrix of
fsðtÞ ¼ �KsgugðtÞ; that is

Sfsf sðoÞ ¼ KsgðoÞSugugðoÞK
T
sg ð10Þ

where Sugug ðoÞ is given by the model of Hunt [6, 7] and in the present case it writes as
follows:

SugugðoÞ ¼

Sx1x1ðoÞ 0 0 . . . 0 0 0

..

. . .
. ..

.
. . . ..

. ..
. ..

.

0 0 Sx4x4 ðoÞ 0 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 0 Sz1z1ðoÞ 0 0

..

. ..
. ..

.
. . . ..

. . .
. ..

.

0 0 0 . . . 0 0 Sz4z4ðoÞ

2666666666666666666664

3777777777777777777775

ð11Þ
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For instance, the power spectral density of the traffic-induced ground displacement along x of
the point 1 of the structure (see Figure 1) is given by

Sx1x1ðoÞ ¼ jHxf ðx1;oÞj2Sff ðoÞ ð12Þ

where Sff ðoÞ is the power spectrum of the force applied on the roadway surface because of its
random unevenness and jHxf ðx;oÞj2 is the ground admittance along the directions x: The latter
quantities, however, will be discussed in details later.

3. POWER SPECTRAL DENSITY OF THE VEHICLE-INDUCED FORCES

The vehicle is modeled as a single-degree-of-freedom system as shown in Figure 3. The force
induced on the roadway may be formulated in the frequency domain starting from the definition
of the vehicle frequency response function. As a first approach, assume that m ¼M1; M2 ¼ 0;
c1 ¼ c2 ¼ 0; k ¼ k1 þ k2 and x ¼ x1; in the vehicle model shown in Figure 3. The system
response to a harmonic profile of the road unevenness, xpðtÞ ¼ YðoÞejot; will be x ¼ XðoÞejot;
hence, the frequency response function may be derived easily as

HxyðoÞ ¼ XðoÞ=YðoÞ ¼ 1=½1� ðo=onÞ
2
� ð13Þ

Figure 2. Structure natural modes of vibration and respective frequencies.
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where on is the vehicle natural angular frequency. As a consequence of xpðtÞ; the vehicle exerts
on the roadway an inertial force, f ðtÞ ¼ �m .xðtÞ; whose frequency response function can be
expressed as

HfyðoÞ ¼ FðoÞ=YðoÞ ¼ �mo2=½1� ðo=onÞ
2
� ð14Þ

The power spectrum of the applied forces due to a random profile is then given by the following
formula:

Sff ðoÞ ¼ jHfyðoÞj2SYY ðoÞ ð15Þ

The expression in Equation (15) means that the spectrum of the road profile, SYY ðoÞ; is filtered
by the vehicle admittance function, jHfyðoÞj2:

In the case of the two-degrees-of-freedom system in Figure 3, it is possible to derive the
vehicle admittance function in a similar way. In particular, the system motion is governed by the
following system of differential equations:

M1 .x1ðtÞ þ c1 ’x1ðtÞ � ’x2ðtÞð Þ þ k1 x1ðtÞ � x2ðtÞð Þ ¼ 0

M2 .x2ðtÞ þ c2 ’xðtÞ þ k2x2ðtÞ � c1 ’x1ðtÞ � ’x2ðtÞð Þ � k1 x1ðtÞ � x2ðtÞð Þ ¼ c2 ’xpðtÞ þ k2xpðtÞ ð16Þ

Because of the roadway unevenness, the force that the system exerts on the roadway is

f ðtÞ ¼ ½M1 .x1ðtÞ þM2 .x2ðtÞ� ¼M .ZðtÞ ð17Þ

Figure 3. Illustration of the vehicle dynamic system: M1 is the vehicle mass, k1 and c1 are, respectively, the
suspension stiffness and damping, M2 is the unsuspended mass, k2 and c2 are, respectively, the pneumatic

stiffness and damping, xp is the ground height variation.
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where M ¼M1 þM2 and .Z ¼ ½M1 .x1ðtÞ þM2 .x2ðtÞ�=M is the weighted-mean acceleration. By
considering a harmonic excitation xpðtÞ ¼ Yejot and response, X1e

jot and X2e
jot; the equations

in Equation (16) may be rewritten in the following form:

A11 A12

A21 A22

" #
X1

X2

" #
¼

0

B2

" #
Y ð18Þ

where

m ¼
M2

M1
; n1 ¼

c1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
k1M1

p ; n2 ¼
c2

2
ffiffiffiffiffiffiffiffiffiffiffiffi
k2M2

p

o1 ¼

ffiffiffiffiffiffiffi
k1

M1

s
; o2 ¼

ffiffiffiffiffiffiffi
k2

M2

s
; a ¼

o2

o1
; b ¼

n2
n1
; O ¼

o
o1

A11 ¼ �O
2
þ 2in1Oþ 1; A12 ¼ �ð2in1Oþ 1Þ; A12 ¼ A21

A22 ¼ �mO2
þ 2iðmabþ 1Þn1Oþ ðma2 þ 1Þ; B2 ¼ 2imabn1Oþ ma2 ð19Þ

By inverting the matrix in Equation (19), we can express:

X1

X2

" #
¼

1

D

A22 �A12

�A21 A11

" #
0

B2

" #
Y ð20Þ

where D ¼ A11A22 � A12A21: By fixing the parameter m ¼M2=M1; it is possible to see from
Equations (19) and (20) that the vehicle frequency response is independent of the total vehicle
mass, M; but it is dependent only on M1; hence, the force exerted on the roadway (see Equation
(17)) may be rewritten as

f ðtÞ ¼M1
.ZðtÞ ð21Þ

whereas the weighted acceleration is given by the following expression:

.Z ¼ ðM1
.X1 þM2

.X2Þ=M1 ¼ ð .X1 þ m .X2Þ ¼ o2ðX1 þ mX2Þ ¼ o2 B2

D
ðA12 � mA11ÞY ð22Þ

From Equation (22) it is possible to distinguish the vehicle response function for the two-
degrees-of-freedom system:

H .ZY ðoÞ ¼ o2 B2

D
ðA12 � mA11Þ ð23Þ

Consequently, the power spectrum of the vehicle-induced force due to a random road profile is
finally expressed as

Sff ðoÞ ¼
M2

1

V
jH .ZY ðoÞj

2SYY ðgÞ ð24Þ

where g ¼ o=V is the spatial wave number of road surface roughness and V is the vehicle velocity.
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4. POWER SPECTRAL DENSITY OF THE ROAD PROFILE

The road surface profile is assumed, as suggested by the International Standard Organization
[2], to be a Gaussian random process defined by the power spectrum:

SYY ðgÞ ¼
SYY0
ðg=g0Þ

�n1 ; g4g0

SYY0
ðg=g0Þ

�n2 ; g > g0

(
ð25Þ

where g represents the wave number of the road profile (g being related to wavelength l ¼ 2p=g).
The choice of SYY0

; g0; n1 and n2 depends on the surface quality (see [2]).
For a vehicle moving at a speed V along the uneven road, the power spectrum of the

displacement of the tyre contact point can be expressed as

SYY ðoÞ ¼
1

V
SYY ðg ¼ o=VÞ ð26Þ

as reported in [8].

5. THE HALF-SPACE FREQUENCY RESPONSE FUNCTION

The homogeneous isotropic damped half-space model employed in the current paper is based on
the works of Lamb [3]. It neglects the vehicle–roadway interaction.

Disturbances in an homogenous isotropic half-space propagate through it as compressive and
shear waves, and as Rayleigh waves along the surface. These three wave types travel at speeds c1;
c2 and cr; respectively. In detail, one obtains

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG=rÞ2ð1� nÞ=ð1� 2nÞ

p
; c2 ¼

ffiffiffiffiffiffiffiffiffi
G=r

p
ð27Þ

where G; n and r are, respectively, the elastic shear modulus, the Poisson ratio and the density of
the half-space. The Rayleigh wave speed, cr; cannot be expressed explicitly in terms of G; n and
r; but a method to compute it may be found in [3].

Shear and compressive waves both decay inversely as the square of distance from a point of
excitation, whereas Rayleigh waves decay as the square root of distance. Accordingly, the
surface response is progressively dominated by Rayleigh waves.

The frequency–response functions of a damped system may be obtained by extending those
obtained by Lamb [3] for an elastic half-space. In particular, the half-space frequency–response
functions found by Lamb, along the spatial coordinate x; y and z; are expressed as follows:

Hxf ðx;oÞ �
x

r

oH
2rc3r

H
ð2Þ
1

or
cr

� �

Hyf ða;oÞ � �
a

r

oH
2rc3r

H
ð2Þ
1

or
cr

� �
ð28Þ

Hzf ðz;oÞ �
oK
2rc3r

H
ð2Þ
0

or
cr

� �
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p

(see Figure 1), r is the half-space density, H and K are material constants
depending on the Lamé constants of the half-space.

Within the elastic–viscoelastic analogy (see, e.g. [9]), the shear modulus, Poisson ratio and
bulk modulus are written as complex quantities GnðoÞ ¼ Gþ ioG0ðoÞ; nnðoÞ ¼ nþ ion0ðoÞ; kn�

ðoÞ ¼ kþ iok0ðoÞ; where the real parts of the complex moduli are not functions of frequency.
The damping properties of a homogeneous isotropic solid are uniquely defined by specifying any
two of G0ðoÞ; n0ðoÞ and k0ðoÞ: Usually, it is possible to assume that GnðoÞ ¼ Gð1þ ioDðoÞÞ as
well as knðoÞ ¼ kð1þ ioDðoÞÞ; where D ¼ G0ðoÞ=G ¼ k0ðoÞ=k:

In the case in which the bulk damping is zero, the complex shear and bulk moduli may be
expressed as

Gn ¼ Gð1þ ioDÞ; kn ¼ k ð29Þ

Accordingly, the Poisson ratio nn may be derived to obtain

nn � n� ioD1
3
ð1þ nÞð1� 2nÞ ð30Þ

in the case of light damping (D{1).
The elastic–viscoelastic analogy may be used to find the frequency–response functions for a

damped half-space from those derived for an elastic half-space and defined by Equation (28). In
particular, Gn; nn; cr; K and H are changed by small amounts @Gn; @nn; @cr; @K and @H;
respectively. Here, for the sake of brevity, the final results, derived by Hunt [6], are reported:

Hxf ðx;oÞ �
x

r

oH
2rc3r

exp �
Dro2

2cr
H
ð2Þ
1

or
cr

� �� �

Hyf ða;oÞ � �
a

r

oH
2rc3r

exp �
Dro2

2cr
H
ð2Þ
1

or
cr

� �� �
ð31Þ

Hzf ðz;oÞ �
oK
2rc3r

exp �
Dro2

2cr
H
ð2Þ
0

or
cr

� �� �
Finally, the power spectra of the traffic-induced ground displacements are given by the

following formulas:

SxxðoÞ ¼ jHxf ðx;oÞj2Sff ðoÞ

SyyðoÞ ¼ jHyf ða;oÞj2Sff ðoÞ ð32Þ

SzzðoÞ ¼ jHzf ðz;oÞj2Sff ðoÞ

where Sff ðoÞ is given by Equation (24). Hence, looking at Equation (32), it is possible to
summarize the origin of traffic-induced ground displacements in this way: the force induced by
the roadway profile is filtered by the vehicle-force admittance function to give a dynamic force
acting on the roadway at the tyre–road point of contact (see Equation (24)). This force induces
vibrations that propagate through soil. These vibrations are the result of the further filtering
process given by the same soil (see Equation (32)).
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6. COHERENCE EFFECT OF THE TRAFFIC-INDUCED FORCES ON THE
FRAME RESPONSE

A vehicle (characterized by o1 ¼ 18:8 rad=s; m ¼ 0:15; a ¼ 5:5; b ¼ 7:5; n ¼ 0:04) has been
supposed to transit by a velocity V ¼ 30 m=s covering a distance �100 m4x4100 m along
a roadway, placed at a distance equal to a ¼ 10 m from the middle of the
frame (see Figure 1). The roadway itself has been supposed to be in good condition,
so that SYY ¼ 3:18� 10�7 m2=rad=m (g0 ¼ 1 rad=s; n1 ¼ 2; n2 ¼ 1). Moreover, the vibrations
induced by the passing vehicle propagate until the frame base in a ground characterized
by the following quantities: r ¼ 2000 kg=m3; H ¼ 0:072; K ¼ 0:099; cr ¼ 214 m=s and
D ¼ 0:00035:

In Figure 4 the power spectra of the ground displacements induced by the vehicle transit are
shown. In particular, the spectra show a peak at the vehicle angular frequency, o1; around
which the most part of the energy is concentrated. Moreover, the spectra broaden at higher
frequencies where the frequency contents of the soil admittance are larger. As it is possible to
presume intuitively at first, the more the distance of the vehicle on the roadway, the lower the
energy content of the spectra of the ground displacements, as shown in the spectrograms of
Figure 4.

6.1. Frame response

The frame response has been evaluated in terms of the standard deviation of the slab
accelerations ½e.ux;e.uy;e.uz; e.jx; e.jy; e.jz�; which are composed using the SRSS method (see, e.g.
Chopra [10]). In particular, the total accelerations, along x; y and z; of a certain point on the
slab border is derived from the standard relations of a rigid body:

eax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffie.u2x þ e.jz

Ls

2

� �2
s

; eay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffie.u2y þ e.jz

Ls

2

� �2
s

; eaz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffie.u2z þ e.jx

Ls

2

� �2

þ e.jy

Ls

2

� �2
s

ð33Þ

where Ls ¼ 10 m is the side of the square slab, and

e.ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ1
�1

o4Suiui ðoÞ do

s
; i ¼ x; y; z; e.ji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ1
�1

o4Sjiji
ðoÞ do

s
; i ¼ x; y; z ð34Þ

where Suiui ðoÞ and Sjiji
ðoÞ are the diagonal components of the power spectral density matrix in

Equation (7).

6.2. Studied cases

The frame response has been evaluated in different configurations differing from each other for
the coherence imposed to ground displacements. The slab accelerations have been computed
varying the power spectral density matrix of the ground displacements, SugugðoÞ: In particular,
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Figure 4. Power spectra of ground displacements: (left) SxxðoÞ; SyyðoÞ; SzzðoÞ induced by a vehicle passing
along a roadway (x ¼ 10 m and a ¼ 10m); (right) spectrograms of SxxðoÞ; SyyðoÞ; SzzðoÞ induced by a

vehicle traveling along a roadway (�100 m4x4100 m; a ¼ 10 m).
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the ground displacements have been supposed to be:

(A1) All uncorrelated among each other

Sugug ¼

Sug;xug;x 0 0

0 Sug;yug;y 0

0 0 Sug;zug;z

2664
3775 Sug;iug;i ¼

Si1i1 . . . 0

..

. . .
. ..

.

0 . . . Si4i4

26664
37775; i ¼ x; y; z ð35Þ

(A2) Correlated along their respective directions, but uncorrelated among orthogonal
directions

Sugug ¼

Sug;xug;x 0 0

0 Sug;yug;y 0

0 0 Sug;zug;z

2664
3775 Sug;iug;i ¼

Si1i1 . . . Si1i4

..

. . .
. ..

.

Si4i1 . . . Si4i4

26664
37775; i ¼ x; y; z ð36Þ

(A3) Equal along their respective directions (like a seismic action), but uncorrelated among
orthogonal directions

Sugug ¼

Sug;xug;x 0 0

0 Sug;yug;y 0

0 0 Sug;zug;z

2664
3775 Sug;iug;i ¼

Si5i5 . . . Si5i5

..

. . .
. ..

.

Si5i5 . . . Si5i5

26664
37775; i ¼ x; y; z ð37Þ

(A4) Correlated among each other along all directions

Sugug ¼

Sug;xug;x Sug;xug;y Sug;xug;z

Sug;yug;x Sug;yug;y Sug;yug;z

Sug;zug;x Sug;zug;y Sug;zug;z

2664
3775 Sug;iug;j ¼

Si1i1 . . . Si1j4

..

. . .
. ..

.

Sj4i1 . . . Si4i4

26664
37775; i; j ¼ x; y; z ð38Þ

(A5) Correlated among each other along all directions, but Sug;xug;yðoÞ ¼ 0

Sugug ¼

Sug;xug;x 0 Sug;xug;z

0 Sug;yug;y Sug;yug;z

Sug;zug;x Sug;zug;y Sug;zug;z

2664
3775 Sug;iug;j ¼

Si1i1 . . . Si1j4

..

. . .
. ..

.

Sj4i1 . . . Si4i4

26664
37775; i; j ¼ x; y; z ð39Þ

(A6) Correlated among each other along all directions, but Sug;xug;z ðoÞ ¼ Sug;yug;z ðoÞ ¼ 0

Sugug ¼

Sug;xug;x Sug;xug;y 0

Sug;yug;x Sug;yug;y 0

0 0 Sug;zug;z

2664
3775 Sug;iug;j ¼

Si1i1 . . . Si1j4

..

. . .
. ..

.

Sj4i1 . . . Si4i4

26664
37775; i; j ¼ x; y; z ð40Þ
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As it is possible to see, with the exception of the configuration A1, all the other configurations
are characterized by different cross-spectral densities among ground displacements. Such cross-
spectra are defined introducing the coherence function:

SihjkðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sihih ðoÞSjkjk ðoÞ

p
Cohðl; rx; ry;oÞ; i; j ¼ x; y; z; h; k ¼ 1; . . . ; 4 ð41Þ

The coherence function itself depends on the distance between two column bases, rx and ry; on
the angular frequency, o; and on a decay parameter, l:

Cohðl; rx; ry;oÞ ¼ exp �
ol
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q� �
ð42Þ

The coherence function is shown in Figure 5. If rx and ry are fixed, the coherence effect
depends only by l; given o: In particular, the lower the l; the higher the coherence between two
ground displacements. Two limit cases may be discussed to understand the coherence
sensitiveness varying l: Whenever l! 0 then Cohðo; lÞ ! 1; it means that the frequency
contents of SihihðoÞ and Sjkjk ðoÞ (see Equation (41)) act simultaneously by their own magnitudes.
On the other hand, whenever l!þ1 then Cohðo; lÞ ! 0 and SihjkðoÞ ! 0 as well (see
Equation (41)), it means that the frequency contents of Sihih ðoÞ and SjkjkðoÞ act separately by
their own magnitudes.

7. DISCUSSION OF RESULTS

The slab accelerations, eax; eay; eaz within the configuration A1 (see Equation (35)) are shown in
Figure 6. As it is possible to see, the three accelerations are comparable with each other. This
testifies that unlike the seismic action, the traffic-induced vertical response, eaz; is important as
well. Moreover, it is dutiful to focus on the fact that the ground displacements are completely
uncorrelated with each other, so they trigger higher values of e.jx; e.jy and e.jz; which themselves

Figure 5. Illustration of the coherence function: (a) coherence decay varying l
and (b) coherence decay varying rx and ry:
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amplify the total displacements (see Equation (33)). Within the configuration A2 (see Equation
(35)), it is possible to deduce that the lower the correlation (higher values of l) among the
ground displacements, acting along the same direction, the higher the slab accelerations (see
Figure 7). This circumstance may be attributed to the greater capability of the slab to rotate
around x; y and z; whenever l is large. In fact, decreasing the decay parameter of the coherence
function, the ground displacements tend to be fully correlated, hence e.jx; e.jy and e.jz; along the
whole slab, decrease since they are more in-phase with each other, despite they are different. On
the other hand, increasing the decay parameter the slab accelerations increase and tend
asymptotically to the values obtained in the configuration A1, where the complete lack of
coherence has been considered (see Figure 6). The slab accelerations, however, are comparable
to each other (see Figure 7); hence, the vertical acceleration still assumes a key role in the
assessment of the frame response.

A seismic-like action has been modeled within configuration A3 where all the ground
displacements at the pillar base have been supposed to be equal to the traffic-induced ground
displacement at the projection of the slab center of mass on the foundation base (aG ¼ 10 m; see
Figure 1). In this configuration the slab rotations around x; y and z are completely inhibited;
hence, its accelerations decrease. In this configuration, the vertical acceleration is predominant
(see Figure 8). Further analysis has been carried out even imposing a certain coherence among
the traffic-induced ground displacements acting along the orthogonal directions (configurations
A4, A5 and A6, see Equations (38)–(40)). In these configurations, the coherence function of the
ground displacements acting along the same directions is characterized by the decay parameter

(a) (b)

(c)

Figure 6. Illustration of the slab accelerations eax; eay and eaz within configuration A1.
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Figure 7. Illustration of the slab accelerations within configuration A2. Left: eax; eay and eaz
varying the coherence decay parameter l: Right: spectrograms of eax; eay and eaz varying l and

the position of the vehicle along the roadway (along x).
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l; whereas Z is the decay parameter of the coherence function among orthogonal ground
displacements. These correlation functions, however, are always given by Equation (42),
respectively. The results of the three configurations are practically identical (see Figure 9) and
yield the conclusion that the slab response is independent of the correlation between the
orthogonal traffic-induced ground displacements acting at the frame base.

8. CONCLUSIONS

It is possible to conclude that the correlation between the traffic-induced forces acting on the
same direction provides less-conservative results. In the case of a real structure extending along
wider surfaces, the coherence tends to vanish as long as the distance between two ground
displacements increases (see Figure 5). Nevertheless, it is likewise evident that the knowledge of
the real correlation might decrease the structural response which itself sometimes could be too
conservative neglecting the coherence completely. The main effect of the traffic-induced forces is
triggering slab rotations, which contributes to increase the slab accelerations in comparison with
seismic-like actions. On the other hand, the correlation of the forces acting along orthogonal
directions does not affect the structure response, at least in the case of simple frames like the
frame studied here.

(a) (b)

(c)

Figure 8. Illustration of the slab accelerations eax; eay and eaz within configuration A3.
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