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SUMMARY

Many structural engineering problems of practical interest involve pronounced non-linear dynamics the
governing laws of which are not always clearly understood. Standard identification and damage detection
techniques have difficulties in these situations which feature significant modelling errors and strongly non-
Gaussian signals. This paper presents a combination of the ensemble Kalman filter and non-parametric
modelling techniques to tackle structural health monitoring for non-linear systems in a manner that can
readily accommodate the presence of non-Gaussian noise. Both location and time of occurrence of damage
are accurately detected in spite of measurement and modelling noise. A comparison between ensemble and
extended Kalman filters is also presented, highlighting the benefits of the present approach. Copyright #
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Technologies, such as sensors and microprocessors, supporting health monitoring of civil
structures and infrastructure have been advancing rapidly, in the process alleviating many of the
challenges associated with implementing these monitoring systems. For instance issues of
displacement measurements, spatially distributed measurements, and networked sensors have
been alleviated if not completely resolved. A significant difficulty remains that is associated with
the physical complexity of the systems comprising these structures. Mathematical models
representing these systems incur significant uncertainties to the point that any health monitoring
algorithm that is not very robust with respect to modelling errors is likely to fail in a practical
setting. Moreover, in the presence of non-linearities associated with post-damage behaviour, it
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can be expected that the statistical description of many of the signals involved in the monitoring
process will deviate significantly from the Gaussian prototype assumed in most current
procedures. This again presents a challenge to many current identification and health
monitoring algorithms. These challenges notwithstanding, this has been a very active research
area, specially over the past decade [1–6].

Broadly, identification methods can be grouped according to whether they process
information in the frequency or the time domain. In the frequency domain, indices of
performance are usually obtained from estimates of natural frequencies, damping ratios and
mode shapes. These methods, in general, cannot capture sharp changes occurring over short
time intervals, as is the case with structural damage taking place in the course of an extreme
event. The time domain methods, on the other hand, permit a recursive estimation of the
parameters, and are thus well-positioned to detect significant changes in the structure. Many of
these methods are based, either implicitly or explicitly, on least squares minimization concepts
[7–9]. One of the most significant recursive algorithms involves various approaches based on the
Kalman filter [10, 11]. These approaches integrate a predictive phase with a corrective phase to
assimilate measurements as they are taken. Non-recursive time-domain methods have also been
proposed and developed that rely on Galerkin projections, and where the whole time series is
analysed at once. In particular, methods that combine Galerkin schemes with wavelet
expansions have been successful at this task [12, 13].

A method is reviewed and applied in this paper that extends the Kalman filtering approach to
problems involving non-Gaussian and non-linear dynamics that cannot be linearized.
Specifically, these ensemble Kalman filtering approaches, have been developed for geophysical
applications and have proven to be very robust in the presence of significant modelling and
measurement errors [14–17]. This ensemble Kalman filtering approach is coupled, in this paper,
to a non-parametric model of the non-linearities in the system [18] thus providing robustness
against missing dynamics and other modelling errors.

The next section provides a brief overview of the Kalman filter together with its relation to the
extended Kalman filter (ExKF) and the ensemble Kalman filter (EnKF). Following that,
implementation issues of the EnKF are described before, finally, the method is demonstrated by
its application to the detection of a degrading hysteretic element in a multistorey building.

2. FROM THE KALMAN FILTER TO THE EXTENDED AND ENSEMBLE
KALMAN FILTER

Starting with a brief overview of the standard Kalman filter (KF), this section presents its
extension towards the ExKF and to the EnKF forms, respectively.

The KF addresses the general problem of estimating the state W of a time controlled process
the evolution of which is governed by a linear difference equation. The model is driven by a
stochastic process. The filter enables the estimations of past, present, and future states, and is
somewhat robust to modelling errors. In addition to providing estimates of the state, the KF
permits the evaluation of the error covariance. The Kalman filter works using a two-step cycle:
(1) In the first cycle, the predictor phase, the current (at time instant k) state estimate Wðk=kÞ and
error covariance Pðk=kÞ are projected ahead in time, using the system model resulting in the a
priori estimate for the next time step Wðkþ1=kÞ and Pðkþ1=kÞ; (2) in the second cycle, the corrector,
or filtering phase, the projected estimate is adjusted using actual measurements d at time instant
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kþ 1; resulting in an improved a posteriori estimate (Cðkþ1=kþ1Þ and Pðkþ1=kþ1Þ), for both state
and error covariance, respectively. The two phases are briefly reviewed next.

Predictor phase: Consider a dynamical system, characterized at any instant of time, k; by an
n-dimensional state vector. This state vector could either refer to a physical constraint on the
description of a continuum system or can be induced by a numerical discretization process.
Denote by F the operator that characterizes the transition between successive states. For linear
time-invariant finite-dimensional systems, F is thus represented by a time invariant n� n
transition matrix. The predicted state vector is propagated from the current state vector using
this transition operator in the form

Wðkþ1=kÞ ¼ FWðk=kÞ þ wðkÞ; Wðk=kÞ;Wðkþ1=kÞ;wðkÞ 2 Rn; F 2 Rn�n ð1Þ

where n is the dimension of the state vector Wðk=kÞ at time k; and w is a Gaussian vector white
noise reflecting the possibility of modelling errors. Using Equation (1) as the definition of the
predicted state, it is possible to define a priori and a posteriori errors as

eðkþ1=kÞ ¼Wkþ1
t �Wðkþ1=kÞ; eðkþ1=kþ1Þ ¼ Wkþ1

t �Wðkþ1=kþ1Þ

eðkþ1=kÞ; eðkþ1=kþ1Þ;Wk
t 2 Rn ð2Þ

where Wk
t denotes the true state vector at instant k: The a priori and a posteriori error covariance

matrices are defined, respectively, as

Pðkþ1=kÞ ¼E½eðkþ1=kÞeðkþ1=kÞ
T

�; Pðkþ1=kþ1Þ ¼ E½eðkþ1=kþ1Þeðkþ1=kþ1Þ
T

�

Pðkþ1=kÞ;Pðkþ1=kþ1Þ 2 Rn�n ð3Þ

In light of the variance minimization implicit in the KF, the error covariance matrix is projected
forward in time according to the following equation:

Pðkþ1=kÞ ¼ FPðk=kÞFT þQ ð4Þ

where the n� n matrix Q is the covariance matrix for the model errors, w: Equations (1)
and (4) describe the evolution in time of Wðkþ1=kÞ and Pðkþ1=kÞ:

2.1. Filtering phase

The filtering step in the KF provides an update to the predictions whenever observations are
made available. The filtered values of Wðkþ1=kþ1Þ and Pðkþ1=kþ1Þ can be shown to be given by [10],

Wðkþ1=kþ1Þ ¼ Wðkþ1=kÞ þ Kðdðkþ1Þ �HWðkþ1=kÞÞ ð5Þ

and

Pðkþ1=kþ1Þ ¼ ðI� KHÞPðkþ1=kÞ I;K;H 2 Rn�n ð6Þ

where I is the identity matrix and K is the Kalman gain defined as

K ¼ Pðkþ1=kÞHTðHPðkþ1=kÞHT þ RÞ�1 ð7Þ

where R is the error covariance matrix for measurement noise, H is the measurement operator
relating the true model state to the m-dimensional observation vector d:Measurement noise are
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included in the form of vector c; according to the linear observation equation,

d ¼ HWt þ c ð8Þ

2.2. Extended Kalman filter

The filtering equations for the state and error covariance, presented above, depend on the
assumption of model linearity. Extensions to non-linear dynamics can be readily accommodated
through a linearization process. This has proven most useful for situations where system
parameters are appended to the state vector, the foregoing procedure enabling the use of
Kalman filtering as a recursive parameter estimation framework. Thus, if the state vector is
governed by a non-linear model, Equation (1) can be replaced by the following equation:

Wðkþ1=kÞ ¼ fðWðk=kÞÞ þ wðkÞ f 2 Rn ð9Þ

By linearizing the function fðWÞ around the most recent estimate of the state, equations
associated with the Kalman filter can be applied, resulting in approximations to both the state
and the error covariance. Defining the operator F has been defined as the linearized version of f;
the error covariance is given by a similar equation to (4), and the filtering phase retains the same
formulation.

2.3. Ensemble Kalman filter

In both KF and ExKF, the theoretical derivation of filtering equations rely on the simple
structure of linear dynamical systems excited by Gaussian noise, recognizing that the
ensuing dynamics is also Gaussian. In situations where either the noise is significantly
non-Gaussian or the dynamics is highly non-linear, the accuracy associated with filtering
the linearized system may not be acceptable. The analysis scheme proposed in the EnKF
[14] addresses this difficulty. It is relevant to note that the EnKF can be viewed as a
particular variation on the more general class of approaches referred to as interacting
particle systems or particle filtering [19]. EnKF relies on the traditional corrector equation of
the standard Kalman filter, except that the gain is calculated from the error covariances
provided by the ensemble of model states. This provides for the effect of non-linear dynamics on
the statistics of the state. The ensemble error covariance matrix used in the Kalman gain is thus
evaluated as

P� Pe ¼ ðW� %WÞðW� %WÞT ð10Þ

where the overbar denotes the operator of ensemble averaging. It is essential to note that
the observations are treated as random variables defining an ensemble of observations in
the form

dj ¼ dþ cj ; j ¼ 1; . . . ;N; dj ; gj 2 Rm ð11Þ

where N is the cardinality of the ensemble. The error covariance matrix of the measurements is
obtained from the ensemble as

Re ¼ ccT g 2 Rm�N ; Re 2 Rm�m ð12Þ

The filtering is performed by Equation (5) on each member of the ensemble,

Wðkþ1=kþ1Þ ¼ Wðkþ1=kÞ þ Kðdðkþ1Þj �HWðkþ1=kÞj Þ ð13Þ
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using the gain,

K ¼ Pðkþ1=kÞe HTðHPðkþ1=kÞe HT þ ReÞ
�1 ð14Þ

Clearly, in light of definition (10), it is not necessary to update the matrix Pe:

3. PRACTICAL IMPLEMENTATION OF THE ENSEMBLE KALMAN FILTER

In the following the particular implementation of the EnKF used in this paper is briefly
described. Consider the signal to be tracked, assumed to be governed by the stochastic difference
predictor equation,

Wðkþ1=kÞi ¼ fðWðk=kÞi Þ ¼ w
ðk=kÞ
i ð15Þ

where Wðk=kÞi is the state vector at time k for the ith ensemble member and wi is the process noise
vector perturbing the ith ensemble member. Once the state vectors Wi (when confusion can be
avoided, superscript are dropped for clarity) have been estimated, the following matrix can be
evaluated:

A ¼ ðW1; . . . ;WNÞ 2 Rn�N ð16Þ

where n is the number of state variables and N is the number of ensemble members. Defining 1N
as the N �N matrix having each element equal to 1=N; it is possible to define the ensemble
mean matrix as

%A ¼ A1N ; %A 2 Rn�N ð17Þ

Similarly, an ensemble perturbation matrix is defined as

A0 ¼ A� %A ¼ AðI� 1NÞ; A0 2 Rn�N ð18Þ

Now it is possible to define the ensemble covariance matrix around the ensemble mean
as

Pe ¼
1

N � 1
A0A0T; P 2 Rn�n ð19Þ

In implementing the filtering phase, consider the vector of measurements, d 2 Rm; expressed in
the form

d ¼ HWt ð20Þ

where H is the measurement operator relating the true model state to the observations, Wt is the
true model state vector and m is the number of measurements. The N vectors of observations
can thus be defined as

dj ¼ dþ cj ; j ¼ 1; . . . ;N ð21Þ

which can be conveniently aggregated into the following form:

D ¼ ðd1; . . . ; dNÞ D 2 Rm�N ð22Þ

Moreover defining the following matrix:

c ¼ ðc1; . . . ; cNÞ; c 2 Rm�N ð23Þ
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the error covariance matrix of the measurements can be expressed as

Re ¼
1

N � 1
ccT; Re 2 Rm�m ð24Þ

It is then possible to define the corrector equation as

Aa ¼ Aþ PeH
TðHPeH

T þ ReÞ
�1ðD� KAÞ ð25Þ

where H is the measurement operator relating the true model state to the observations, and A is
the matrix holding in its columns all filtering estimate state vectors.

4. APPLICATION TO STRUCTURAL HEALTH MONITORING

Both the ExKF and the EnKF can be adapted to the recursive estimation of model parameters.
However, it is clear from its formulation that for strongly non-linear systems, the EnKF can be
expected to have superior performance over the ExKF. It is the object of this paper to
demonstrate the efficacy of the EnKF to problems in structural health monitoring, and in
particular to situations that, while common in practice, cannot be readily treated using the
ExKF in view of the non-linearities involved.

Specifically, consider the frame structure depicted in Figure 1(a). This is a model of a four-
storey shear building, with constant stiffness on each floor and 5% damping ratio in all modes.
The input excitation is taken as a horizontal ground motion described by a sinusoidal wave. All
structural elements of this frame are assumed to involve hysteretic behaviour, and it is supposed
that, because of damage, an instantaneous change of the hysteretic loop occurs in one element,
namely that corresponding to the first floor. Of great interest is the localization of damage in
both space and time and also the tracking of the state of the system throughout and subsequent
to the evolution of damage. Both the EnKF and the ExKF are applied to this problem. A
dataset representing measurements of displacements and velocities at each floor, has been
synthesized numerically by representing the hysteretic restoring force according to the Bouc-
Wen model [20], which is therefore assumed to be the ‘exact’ model for the present hysteretic
behaviour. The equation of motion of the system with this type of hysteresis can be written as

M.uðtÞ þ C’uðtÞ þ aKeluðtÞ þ ð1� aÞKinzðx; tÞ ¼ �Ms.ugðtÞ ð26Þ

where M; C; Kel and Kin are the mass, damping, elastic and inelastic stiffnesses, respectively; a is
the ratio between the post-yielding stiffness and the elastic stiffness (considered for simplicity to
be constant for each floor), s is an influence vector, u is the displacement vector, x is the inter-
storey drift vector and z is the n-dimensional evolutionary hysteretic vector whose ith
component is represented by the Bouc-Wen model as

zi ¼ Ai ’xi � bi j ’xi jj zi j
ni�1 zi � gi ’xi j zi j

ni ; i ¼ 1; . . . ; n ð27Þ

Defining the 3n-dimensional state vector Y ¼ ½u ’u z�; the state space representation of Equation
(26) is given as

’Y ¼ fðYÞ þG.ug ð28Þ

where G is an influence matrix, and fðYÞ is the following 3n-dimensional vector:

fðYÞ ¼ ½’u �M�1ðC’uþ aKuþ ð1� aÞKzÞ z�T ð29Þ
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Figure 1(b) shows the pre and post-damage forms of the hysteresis loop. Two monitoring
scenarios are considered. In a first scenario, observations of displacement and velocity are
assumed to be available only on the first floor. In the second scenario these same measurements
are assumed to be available on both the first and the fourth floors. Two frequencies of
measurement are moreover explored in order to ascertain the impact of hardware limitations on
the performance of each of these filters. In a first set of trials, it is thus assumed that

Figure 1. (a) Shear building under analysis; and (b) hysteresis loop pre and post damage.
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measurements are available at every time step, while in a second set, they are assumed to be
available once every 20 time steps. In order to proceed with the identification process, a model
for the non-linearity must be adopted that is robust enough to account to depict a wide range of
potential behaviours. A non-parametric representation of the non-linearity [18] is adopted for
the model description in the Kalman filter which results in an equation of motion of the form

M.uðtÞ þ Fðu; ’uÞ ¼ �Ms.ugðtÞ ð30Þ

where Fðu; ’uÞ is the non-linear restoring force, with its elements described as

Fiðu’uÞ ¼ aiðui � ui�1Þ þ aiþ1ðui � uiþ1Þ þ biðui � ui�1Þ
2 þ biþ1ðui � uiþ1Þ

2

þ cið’ui � ’ui�1Þ þ ciþ1ð’ui � ’uiþ1Þ

þ diðui � ui�1Þð’ui � ’ui�1Þ þ diþ1ðui � uiþ1Þð’ui � ’uiþÞ ð31Þ

where i refers to the floor, a; b; c and d are the unknown parameters to be identified. It is
supposed that the true system is essentially linear in the neighbourhood of the origin so that the
initial guess for the parameters can be accurately obtained from a linearized model. A zero-
mean Gaussian white noise is assumed to perturb the model and the measurements with values
equal, respectively, to 0:5 and 0:001: At first both the ExKF and EnKF are applied assuming
measurements at the first and fourth floors and an interval between two observations equal to
one time step (Dt ¼ 0:005 s). Figure 2 shows the corresponding results. The vertical line in this
and all subsequent figures, at around 5 s; indicates the instant of damage initiation. The top plot
shows the estimated states for the first floor, while the bottom plot shows the states for the
fourth floor. The two plots in Figure 2 show that both filters are able to detect the state of the
system. Results for the other floors show perfect detection and hence support this conclusion.
Both ExKF and EnKF are able to describe the time and the location of damage as indicated in
the identified evolution of the unknown model parameters in Figure 3. Each plot in this figure
shows the evolution of the coefficients appearing in the non-parametric model (Equation (31))
for the non-linear restoring force at a given floor. It is clear from investigating the parameters
that the main change is concentrated in the first floor at a time equal to 5 s (in the displacement
and velocity results a vertical line represent the instant of damage). It is also clear from this
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Figure 2. (a) Estimate of the second floor velocity (first and fourth floor observed, Ds ¼ 1 time steps); and
(b) estimate of the third floor velocity (first and fourth floor observed, Ds ¼ 1 time steps).
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figure that the non-parametric model adopted here is sensitive to variations in the localized
hysteretic behaviour.

The second case considered involves an interval between two successive observations equal to
twenty time steps (Ds ¼ 20), when only displacement of the first floor is used in the
identification. Such time lag may be induced by hardware and processing limitations. Figures
4–6 show the corresponding results. Figure 4 shows the tracked displacement and velocity of the
first floor, while Figure 5 shows those of the fourth floor. It is readily noted that though before
the damage both filters perform adequately, after the damage only the EnKF is able to continue
tracking. The ExKF is not able to converge to the damaged state (Figures 4 and 5) and, as a
consequence, wrong values for the parameters are obtained (Figure 6). This can be attributed to
the better robustness of the EnKF with respect to severe non-linearities.

The second example investigates the same structural system as above, which is now subjected
to a base motion specified by a time series consistent with the El-Centro earthquake. Only the
EnKF is applied to this problem. It is assumed that only observations of displacement and
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Figure 4. (a) Estimate of the first floor displacement (first floor observed, Ds ¼ 20 time steps); and
(b) estimate of the first floor velocity (first floor observed, Ds ¼ 20 time steps).
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Figure 5. (a) Estimate of the fourth floor displacement (first floor observed, Ds ¼ 20 time steps); and
(b) estimate of the fourth floor velocity (first floor observed, Ds ¼ 20 time steps).
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Figure 10. Estimate of the model parameters for each floor (first floor observed, Ds ¼ 20 time steps).
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velocity from the first floor are available. It is also assumed that measurements are collected
once every 20 time steps. The noise signals perturbing the model and the measurements, both
have zero-mean and their RMS is equal, respectively, to 0.005 and 0.0001. Both damage and
observations are concentrated on the first floor, with the damage occurring at 5 s: Figure 7
describe the evolution of hysteretic restoring force related to the first floor. Figures 8 and 9
describe the tracking of displacement and velocity for the first and the fourth floor, respectively.
These figures compare the estimated state using the ensemble Kalman filter with the perturbed
observed state (which include measurement noise) for the first floor and with the real solution
for the other floors. Excellent match is observed. Figure 10 describes the evolution of the
unknown parameters identified by the EnKF for each floor. It is again readily noted that the
damage is perfectly detected at 5 s and on the first floor. The non-parametric model, coupled
with the EnKF seems to provide a superb capability for isolating the damage both in space and
time.

5. CONCLUSION

The EnKF is introduced to the area of structural health monitoring and its performance
assessed in relation to the ExKF, both for state and for parameter estimation. Although the
EnKF has been applied extensively in recent years in various geophysical areas, its application
to structural health monitoring merits some consideration. Specifically, issues of time delay and
space-time localization of peculiar events are more severe in the present context and present a
challenge that the EnKF seems to tackle quite well. While issues of numerical efficiency may be a
bottleneck at this stage, it is noted that the EnKF algorithm lends itself very readily to coarse-
grained parallelization and stands to benefit significantly from further advances in computer
technology.

Also worth noting in the present work, is the robustness with which a non-parametric model
for non-linearities has permitted the EnKF to identify damage and track dynamical states
beyond its inception. This point is quite significant as in most practical situations, models of
non-linear behaviour are not well understood or known a priori. Even if such models were
known, the performance of the surrogate non-parametric model permits the efficient
characterization of both state and parameters, which will greatly facilitate related activities
such as structural control.
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