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Abstract. Ensemble forecasting is widely used in medium-range weather predictions to account for the uncertainty that is in-1

herent to the numerical prediction of high-dimensional, nonlinear systems with high sensitivity to initial conditions. Ensemble2

forecasting allows one to sample possible future scenarii in a Monte-Carlo-like approximation through small strategical per-3

turbations of the initial conditions, and in some cases stochastic parameterisation schemes of the atmosphere-ocean dynamical4

equations. Results are generally interpreted in a probabilistic manner by turning the ensemble into a predictive probability5

distribution. Yet, due to model bias and dispersion errors, this interpretation is often not reliable and statistical postprocessing6

is needed to reach probabilistic calibration. This is all the more true for extreme events that for dynamical reasons, cannot7

generally be associated with a significant density of ensemble members.8

In this work we propose a novel approach: a possibilistic interpretation of ensemble predictions, taking inspiration from9

possibility theory. This framework allows us to integrate in a consistent manner other imperfect sources of information, such as10

the insight about the system dynamics provided by the analog method. We thereby show that probability distributions may not11

be the best way to extract the valuable information contained in ensemble prediction systems, especially for large lead times.12

Indeed, shifting to possibility theory provides more meaningful results without the need to resort to additional calibration,13

while maintaining or improving skills. Our approach is tested on an imperfect version of the Lorenz 96 model, and results for14

extreme event prediction are compared against those given by a standard probabilistic ensemble dressing.15

Key-words: Ensemble prediction, Probabilistic weather forecasting, Recalibration, Statistical post-processing, Extreme16

event, Weather regimes, Possibility theory, Imprecise probabilities17

1 Introduction18

Predicting the weather through numerical models of the atmosphere is impeded by the mere nature of the atmospheric dy-19

namics, characterised by strong nonlinearities and high sensitivity to initial conditions. Limited grid resolution in the initial20
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conditions (ICs), discrepancies introduced by measurement errors and incomplete description of the system’s dynamics, con-21

tribute to error growth and limit the skill of short and medium-range point predictions. A shift in paradigm was introduced in22

parallel to the increase of computational resources at the beginning of this century, when low-resolution ensemble predictions23

started to replace, or complete, the traditional single high-resolution deterministic prediction. The idea behind these ensemble24

forecasts had been developed earlier by Leith (1974), who suggested to sample M ICs around the actual best ICs estimation,25

to run the model forward for each IC, and to interpret the M resulting predictions in a Monte-Carlo like fashion. Ensemble26

forecasts are thus interpreted in a probabilistic way, either to characterise the predictability of the associated deterministic27

forecast (e.g. through the variance of the ensemble) or to directly provide probabilities of observing a given event.28

Probabilistic interpretation of ensemble predictions29

However, such a probabilistic interpretation poses conceptual issues. First, the ICs are perturbed according to schemes designed30

to sample in a minimalist way particularly high-dimensional systems like numerical weather global models. These schemes31

generally select the initial perturbations leading to the fastest growing perturbations (e.g. singular vectors (Hartmann et al.,32

1995), bred vectors (Toth and Kalnay, 1997)). Although this way of proceeding is an efficient manner to detect the range33

of possible futures, one cannot consider that the M perturbed ICs are random samples, and consequently cannot interpret34

the resulting ensemble as a sample of the distribution characterising the future state of the system. Besides, one of the core35

assumptions of Leith (1974) is that model error is negligible w.r.t. the error resulting from the propagation of the uncertainty36

on the ICs. In practice, the assumption of such near-perfect models is not always true and after a few hours, the convex hull of37

the ensemble trajectories is not guaranteed to contain the observed trajectory, traducing structural bias (Toth and Kalnay, 1997;38

Orrell, 2005).39

The above conceptual issues impede a probabilistic interpretation of ensembles prediction systems (EPSs) in practice: de-40

spite the introduction of stochastic parameterisation schemes to account for model error (Buizza et al., 1999), the operational41

ensembles remain overconfident, i.e. with a spread that is generally too small (Wilks and Hamill, 1995; Buizza, 2018). In42

particular, the predictive probabilities derived from ensemble forecasts are not reliable. On average, the probability derived for43

a given event does not equal the frequency of verification (Bröcker and Smith, 2007; Hamill and Scheuerer, 2018). Although44

such probabilistic predictions have higher forecast skill than the climatology, most often they cannot be used as actionable45

probabilities. By design (limited EPS size, targeted sampling of ICs) and by context (flow-dependent regime error, strongly46

nonlinear system) they do not represent the true probabilities of the system at hand (Legg and Mylne, 2004; Bröcker and Smith,47

2008). This verification is all the more true for extreme events, that result from nonlinear interactions at every and between48
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scales. Such interactions cannot be reproduced in number in a limited-size ensemble prediction system (Legg and Mylne,49

2004), which implies that extreme events generally cannot be associated to a high density of ensemble members.50

Biases and dispersion errors in ensemble forecasts consequently call for statistical postprocessing to improve the information51

content and calibration of probabilistic predictions (Gneiting and Katzfuss, 2014; Buizza, 2018). A range of methods have been52

developed to address the above-mentioned limitations. The most classical ones fit an optimised parametric distribution either:53

a) onto each ensemble member, and aggregate them all to provide a global probability density function (PDF) (e.g. Bayesian54

model averaging, introduced by Raftery et al. (2005)); or b) onto the whole ensemble, with parameters derived from linear55

combinations of the ensemble’s characteristics (non-homogeneous regression, developed by Gneiting et al. (2005)). More56

specific approaches target for instance the improvement of reliability, e.g. rank histogram recalibration (Hamill and Colucci,57

1997) which makes use of the information content of the rank histogram to issue ensemble-based predictions that show better58

probabilistic calibration. More recently, calibration by means of the probability integral transform was suggested by Graziani59

et al. (2019), while Smith (2016) developed a user-oriented framework based on the actual probability of success for a given60

probabilistic threshold, and Hamill and Scheuerer (2018) developed a framework based on quantile mapping and rank-weighted61

best-member dressing over single or multimodel EPSs.62

Although generic postprocessing strategies do improve the predictive skill for common events, they tend to deteriorate the63

results for extreme events (Mylne et al., 2002), which consequently need separate and tailored treatment. Friederichs et al.64

(2018) shows that when the tail of the climatology is short, a flexible skewed distribution (e.g. a generalised extreme value65

distribution as suggested by Scheuerer (2014)) for the complete sample space is a good solution for predicting extremes as66

well. However, a separate description of the tail distribution by means of quantile regression (Friederichs and Hense, 2007) or67

nonstationary Poisson process (Friederichs et al., 2018) may be necessary in the case of heavy climatology tails.68

Possibility theory and EPSs69

In view of all this, and especially considering the need to resort to (possibly multiple) calibration steps to provide meaningful70

probabilistic outputs, we echo Bröcker and Smith (2008) who question the choice of probability distributions as the best71

representation of the valuable information contained in an EPS. Rather, we wonder whether possibility theory, “a weaker72

theory than probability [. . . ] also relevant in non-probabilistic settings where additivity no longer makes sense” (Dubois et al.,73

2004), provides an interesting alternative, in a context where conceptual and practical limitations restrict the applicability of a74

density-based (i.e. additive) interpretation of EPSs.75
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This is what we investigate in this work. We have shown in a previous study (Le Carrer and Green, 2020), that using a76

possibilistic ensemble dressing to calibrate the predictive probabilities instead of its probabilistic counterpart incurred two77

important limitations: 1) its parametric form introduced trade-off in performances as well as the impossibility to propagate78

the formal guarantees that possibility theory provides, and 2) the local dynamics of the system was not explicitly taken into79

account. In this article, we go further and address these two main limitations.80

Regarding point 2), just like a global probabilistic interpretation of EPSs misses the introduction of state-dependent refine-81

ment that allows parameters to adapt to different regimes of model error (Orrell, 2005; Allen et al., 2019), a purely ensemble-82

based framework may be too conservative due to a lack of information about the dynamics of the system (noted S hereafter)83

at the time of interest. We consequently combine our possibilistic interpretation of EPSs to a method providing dynamical84

analogs, in our case the empirical dynamic modeling of S. The underlying assumption of resorting to analogs is the existence85

of a deterministic structure governing the co-evolution of the coupled variables of S. The underlying structure of such a system86

is revealed by the state dependent dynamics occurring on a strange attractor manifold A. Takens’ delay embedding theorem87

(Takens, 1981) and its generalisation by Deyle and Sugihara (2011), describe how lagged variables of a single time series,88

or combinations of several coupled time series, can be used to reconstruct a shadow attractor A′ of A, that is a smooth and89

smoothly invertible 1:1 mapping withA. Making predictions from the shadow attractor consists in finding the closest neighbors90

of the ICs of interest in the attractor, following their trajectories up to the desired lead time, and retrieving the corresponding91

so-called analog predictions. These are then used to construct, e.g. a probabilistic prediction for the target day. In practice,92

finding true analogs in a time series for high-dimensional systems such as the atmosphere-ocean is a difficult task (Lorenz,93

1969; Van den Dool, 1994). Similarity-based methods (also coined as analog methods) were developed, applying the same94

philosophy yet on a reduced number of variables characterising the system, that is without taking into account its full dimen-95

sionality. Thus statistical downscaling, based on the hypothesis that two close synoptic situations may produce close local96

effects (Lorenz, 1956, 1969), is used for operational precipitation forecasting (Hamill and Whitaker, 2006; Daoud et al., 2016).97

Common analog forecasting operators are presented in Platzer et al. (2021) and their respective properties and performances98

are analysed from a theoretical point of view, connecting analog forecasting error to local approximations of the system’s dy-99

namics. Empirical dynamical modelling, locating analogs in the shadow attractor space or in one of its sub-spaces, is still used100

to perform model-free predictions (Ma et al., 2017) or to give insight on predictability (Trevisan, 1995; Ramesh and Cane,101

2019).102

Generally speaking, making predictions from analogs performs all the more as the record of one or more variable(s) de-103

scribing S is long, and as S is of small dimension. Still, we posit that using possibility theory to interpret analogs allows us104
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to extract more dynamical information from the incomplete shadow attractor reconstruction than a PDF or a weighted mean105

of analogs. Besides, such a choice allows us to combine this additional source of information to the EPS information in a106

consistent language of reference, particularly well suited to the fusion of information.107

Summary of contributions and outline108

In this work, we investigate the benefits of: (i) using a framework based on possibility theory for extracting the information109

contained in an EPS; and (ii) combining it with the insight about the local dynamics of the system gained from the analog110

method. Our investigation is particularly driven by the following three questions:111

– Can we draw an interpretation framework of EPS that would directly make sense and provide outputs that are meaningful112

without having to resort to additional layers of calibration?113

– Can we simultaneously maintain or improve the prediction skills compared to those of standard probabilistic interpreta-114

tions?115

– Can we operationally use the possibilistic outputs at their full potential, that is more than simply deriving associated116

probabilities?117

We support our study with numerical experiments on a commonly used surrogate model of atmospheric dynamics, namely118

the L96 system (Lorenz, 1996) that we present in Section 4. Section 2 introduces the basics of possibility theory, that we then119

use in Section 3 to develop our novel possibilistic framework for the interpretation of EPSs. Therein, we also explains how120

to extract and combine the dynamical information gained via the analog method. We present the modalities of assessment in121

Section 4. Our novel methodology is tested in the context of extreme event prediction on an imperfect version of the L96 and122

results are discussed in Section 5. A conclusion follows.123

2 Possibility theory124

2.1 Basic principles125

Possibility theory is an uncertainty theory developed from fuzzy set theory by Zadeh (1978), and Dubois and Prade (2012). It is126

designed to handle incomplete information and represent ignorance. Considering a system whose state is described by a variable127

x ∈ X , the possibility distribution π is a function π : X → [0,1] that represents the state of knowledge about the current state128
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Figure 1. N −Π diagram, depicting the dual measures of possibility theory. A is the event of interest and Ā its complement. The hatched
area represents the area of inconsistent combinations for N and Π.

of the system. Given an event A⊆X , the possibility and necessity measures are defined respectively as: Π(A) = supx∈Aπ(x)129

and N(A) = 1−Π(Ā) where Ā represents the complementary event of A. Π and N satisfy the following axioms:130

1. Π(X ) = 1 and Π(∅) = 0 , where ∅ represents the empty set;131

2. Π(A∪B) = max
(
Π(A),Π(B)

)
(similar to N(A∩B) = min

(
N(A),N(B)

)
), where B ⊆X .132

The measures can be interpreted in the following way (Dubois and Prade, 2015):133

a. N(A) = 1⇔Π(Ā) = 0 indicates that A is necessary so it has to happen and Ā is impossible;134

b. 0<N(A)< 1 is a tentative acceptance of A to a degree N(A), since min
(
N(A),N(Ā)

)
= 0 from axiom 2 (Ā is not135

necessary at all);136

c.
(
Π(A) = Π(Ā) = 1

)
⇔
(
N(A) =N(Ā) = 0

)
represents total ignorance as the evidence doesn’t allow us to conclude137

whether A is true or false.138

The N −Π diagram summarises the knowledge about an event A based on the pair of measures
(
N(A),Π(A)

)
, as shown in139

Figure 1. Points are only allowed on the axes N = 0 (tentative acceptance of Ā) and Π = 1 (tentative acceptance of A), and140

other areas correspond to inconsistent possibility distributions (that is functions π(x) defined in a manner that does not respect141

the axioms 1 and 2 or their consequences). Three points are particularly of interest: the moreN(A)→ 1, the more certain event142

A is; the more Π(A)→ 0, the more certain Ā is; and the closer to (N = 0,Π = 1), the more uncertain we are. We call the latter143

the ignorance point.144
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Possibility and probability have often been characterised as complementary theories that address different issues, but Dubois145

and Prade (2012) suggest that possibility measures can be viewed as bounds on imprecise probability measures. There can be146

multiple definitions of consistency (Delgado and Moral, 1987), but we follow Dubois et al. (2004) who held that a probability147

measure P and possibility measure Π are consistent if the probability of all events A satisfies P (A)≤Π(A). The definition of148

necessity implies that the probability P (A) is likewise bounded from below by the necessity measure:149

N(A)≤ P (A)≤Π(A). (Equation 1)150

Finally, we say that a possibility distribution π is at least as specific as another π′ when π(s)≤ π′(s) ∀s ∈ X , in which case π′151

is more conservative (or less informative) than π. Generally speaking, possibility theory is driven by the principle of minimal152

specificity, which states that we cannot rule out an hypothesis not known to be impossible (Dubois and Prade, 2012).153

2.2 From data to possibility distribution154

Let us consider a stochastic variable x ∈ X for which we try to make a prediction. The available evidence about x is a set155

S = {x1, . . . ,xNs} of Ns samples of x. To turn this information into a possibility distribution describing the knowledge on the156

actual value of x, we use the technique described by Masson and Denœux (2006). Their methodology is specifically designed157

to derive a possibility distribution from scarce raw data, and assumes that the data in S have been randomly generated from an158

unknown probability distribution P . The idea is, after binning the x-axis into n bins, to recover the simultaneous confidence159

intervals at level 1−β on the true probability P (x ∈ bi) for each bin bi. From these confidence intervals and considerations160

about Equation 1, the procedure allows us to compute a possibility distribution π(x) that dominates with confidence β the true161

probability distribution (i.e. Π(A)≥ P (A) ∀A in 100β% of the cases). The simultaneous confidence intervals for multinomial162

proportions are computed by means of the formulation of Goodman (1965) (presented in Appendix B). Other formulations such163

as the imprecise Dirichlet model of Walley (1996) exist. However both models do not provide the same guarantees: Goodman’s164

formulation provides multinomial confidence intervals at level β for the physical ’true’ multinomial probabilities {pi, i=165

1, . . . ,n}—according to the classification of probabilities by Good (1966). The imprecise Dirichlet model, characterised by166

a parameter s, provides intuitive, logical probabilities (Walley, 1996) instead: namely, the upper and lower bounds on the167

probability of a given event A represent rational beliefs and rational betting rates that are justified by the evidence at hand. In168

this work, we only consider the Goodman’s formulation. Appendix A presents Masson & Denoeux’s technique step by step.169

The above stage is essential for our application, especially in the case of a system with a limited sample set S. Indeed, the170

classical approach for the probability-possibility transformation proposed by Dubois et al. (1993) directly uses the vector of171
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frequencies {ni/Ns, i= 1, . . . ,n} as the true vector of probabilities {pi, i= 1, . . . ,n}. The uncertainty on the pi that is due to172

the limited size of S is therefore not taken into account. For our application, seeking guarantees on the possibility of observing173

an event of interest, it is necessary to account for such uncertainty.174

One could observe that the above computations of possibility distributions mostly rely on probabilities. So why should we175

withdraw from the qualifying term ’probabilistic’? Since the principle according to which what is probable must first be pos-176

sible was stated by Zadeh (1978), quantitative interpretations of possibility distributions have been connected to probability177

theory and transformations from one to the other have been developed. Thus, possibility distributions, as fuzzy member-178

ship functions, can be seen as encoding a family of nested confidence intervals (Dubois and Prade, 1982). More generally,179

De Cooman and Aeyels (1999) have shown that possibility measures encode families of probability distributions. As shown by180

Equation 1, a possibility distribution can be seen as a complete and consistent framework to deal with imprecise probabilities.181

It contains more information than a purely probabilistic distribution in the situation of incompleteness (typically implied by a182

small dataset S). Indeed, the interval on the true probability allows incompleteness of data to be accounted for, while a point183

probability hides the fact that the said probability cannot be fully trusted. Although possibility distributions are connected to184

probabilities, they consequently provide a very different representation of the knowledge at hand, that belongs to the field of185

imprecise probabilities.186

2.3 From possibility distribution to prediction187

In this study, we focus on the binary interpretation of π, while the continuous interpretation is developed in Le Carrer (n.d.).188

We are consequently interested in the prediction of an event A of interest.189

According to Section 2.1, we can extract from π the possibility Π(A) and necessity N(A). Such measures provides coordi-190

nates to locate the corresponding point P in the N −Π diagram sketched in Figure 1. Recall that the closer P is to the point191

(1,1), the more necessary A becomes. The closer P is to the point (0,0), the less possible it becomes. When P is around192

(0,1), the user is in situation of ignorance: the information at hand does not justify a conclusion about A. One way of mak-193

ing predictions is consequently to use a threshold on either Π, N , or a function of both. However, using Π or N only would194

loose information. The credibility C(A) = N+Π
2 was introduced by Liu (2006) to address this issue. Thresholds pt ∈ [0,1] can195

thus be used to make predictions: C(A)≥ pt⇒A predicted. Similarly to the probabilistic approach, such thresholds can be196

selected by means of a Relative Operating Characteristic or a Precision-Recall Curve, in order to fit the constraints provided by197

the user (e.g. relative level of false alarms). More generally, any functional Pα = αN + (1−α)Π, α ∈ [0,1] allows to reduce198

the interval on P (A) (cf. Equation 1) into a point-prediction Pα(A). Although information is lost, this may be more convenient199
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for decision-making. α is then chosen so as to optimise a performance metric designed for probabilistic predictions, over a test200

set.201

Finally, we propose another interpretation, following directly the axioms of possibility theory and their consequences (cf.202

Section 2.1). Since N(A)> 0 means tentative acceptance of A with confidence N(A) (lower bound on P (A), bounded on top203

by Π(A)), and conversely Π(A)< 1 means tentative acceptance of Ā with confidence 1−Π(A), we can develop the following204

logic:205

– N(A)> 0 implies A is predicted, with associated probability N(A) (risk prone and risk neutral) or Π(A) (risk averse) ;206

– Π(A)< 1 implies Ā is predicted, with associated probabilityN(Ā) = 1−Π(A) (risk averse and risk neutral) or Π(Ā) =207

1−N(A) (risk prone) ;208

–
(
N(A) = 0,Π(A) = 1

)
implies that either A (risk averse) or Ā (risk prone) is predicted with associated probability209

PIGN (resp. 1−PIGN ). In practice, PIGN = 0.5 (typically in the situation of no prior information) or PIGN is defined210

with the observed frequency of A among points falling in the ignorance area.211

In the so-called risk neutral case, the lower bound on P (A) (resp. P (Ā), that is the confidence level on observing A (resp.212

Ā), is used as associated probability. More generally, the risk-prone and risk-averse predictions outside of ignorance can be213

encoded as such:214

– N(A)> 0 implies A is predicted, with associated probability Pα(A) ;215

– Π(A)< 1 implies Ā is predicted, with associated probability Pα(Ā) = 1−Pα(A),216

where α→ 0 (risk averse), α→ 1 (risk prone).217

Thereafter, we name pred-CRED the credibility approach, pred-ALPHA-α the Pα approach (note that pred-CRED is in prac-218

tice equals to pred-ALPHA-0.5) and pred-TENT-AV (resp. pred-TENT-PR and pred-TENT-NEU) for the risk-averse tentative219

approach (resp. risk-prone and risk-neutral tentative approaches).220

3 Framework221

3.1 Notations and information at hand222

We are interested in the prediction of the state variable xt0+t of a dynamical system S at lead time t, starting from the IC xt0 .223

x ∈ R refers to the component of interest of S (if directly accessible), or to a function of the inaccessible component of interest,224

measured in the model space. We call verification the actual value of xt0+t.225
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Figure 2. Step by step illustration of our framework.
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In the EPS context, given a numerical prediction modelM, the elements of information at hand are:226

1. An ensemble ofM predictions at lead time t, the ensemble members or EPS, obtained by means ofM applied to slightly227

perturbed ICs around t0: x̃t0+t = {x̃1
t0+t, . . . , x̃

M
t0+t}.228

2. An archive It containing the pairs
(
x̃tk+t,xtk+t

)
for the lead time t of interest and NI different starting time tk , k =229

1, . . . ,NI . These instances are chosen so that the initial points xtk and xtk+1
of two successive trajectories are statistically230

independent from each other (namely, in our model example, they are spaced of 3 time units, that is about 15 days, well231

above ≈ 1 day, the first minimum of the mutual information between xt and xt+τ ).232

3. A time series of (preferably continuous)NIA past observations of x, that we denote IA, containing the IC xt0 of interest.233

3.2 Deriving possibility distributions from EPSs234

The objective of our possibilistic interpretation of EPSs is to derive from an EPS x̃t0+t and the archive It a possibility235

distribution π(xt0+t|x̃t0+t,It), that would encode the knowledge derived from the EPS about the verification xt0+t at a given236

lead time t. For readibility, we omit to indicate It in the upcoming equations, however the possibility distributions are derived237

from this source of information combined with the EPS at hand. The procedure described in this section is summarised and238

illustrated in the steps 1—5 of Figure 2.239

Both system and model being (to a certain extent) deterministic and stationary or close to stationary, the past behaviour of240

the couple {system, model} is representative of its future behaviour. Consequently, if we are able to enumerate the possible241

values (already seen in It or not) for the verification xt0+t associated with a small range Sx of the values taken by ensemble242

members, then a future verification xt0+t should belong to that set of possible values when an ensemble member x̃mt0+t falls243

within Sx. Beyond that, we would like to know which one of these values are more possible than others for xt0+t. In other244

words, we would like to estimate the possibility distribution π(xt0+t|x̃mt0+t ∈ Sx). Because there is no notion of ’density’ of245

the evidence in the possibilistic perspective (at least in our rationale for choosing this framework), the number of ensemble246

members falling in Sx will not affect the resulting possibility distribution for xt0+t.247

To make use of the full set of ensemble members, we first partition the x-axis into n bins bi, take the subset B of bins248

occupied by at least one ensemble member of the EPS, and compute the |B| possibility distributions π(xt0+t|x̃mt0+t ∈ bj)249

where bj ∈B. Namely, following the methodology presented in Section 2.2, for each bin bj ∈B occupied by at least one250

ensemble member x̃mt0+t ∈ x̃t0+t, we retrieve all the ensemble members from the archive It with index k such that x̃mtk+t ∈ bj ,251

and build an histogram of the set of corresponding verifications xtk+t (called analogs) over the same partitioning of the x-axis,252

{bi, i= 1, . . . ,n}.253
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The procedure above computes |B| possibility distributions π(xt0+t|x̃mt0+t ∈ bj), each dominating with a confidence 1−β254

the true probability distribution P (xt0+t|x̃mt0+t ∈ bj) (i.e. verifying Equation 1 with confidence β). Each possibility distribution255

provides the possibilities for the verification xt0+t given the presence of one or more ensemble members in bin bj . Each one256

is thus a partial view on the state xt0+t. Since there is only one truth for xt0+t (the system’s actual state), we can merge them257

through a union operator (OR). Fuzzy set theory offers several definitions for computing the distribution resulting of the union258

of two fuzzy distributions. We adopt here the standard definition for its intuitive rationale: πA∪B(x) = max
(
πA(x),πB(x)

)
.259

We construct the resulting possibility distribution as:260

πEPS (xt0+t ∈ bi|x̃t0+t) =
⋃

j|bj∈B

π(xt0+t ∈ bi|x̃mt0+t ∈ bj)

= sup
j|bj∈B

π(xt0+t ∈ bi|x̃mt0+t ∈ bj), i= 1, . . . ,n. (Equation 2)261

Observe that at this stage, we have not yet taken the ICs xt0 into consideration in the selection of the analogs. In other words,262

πEPS is too conservative due to a lack of information about the dynamics of S at the time of interest. To alleviate this issue,263

we consequently combine our framework to the empirical dynamic modelling of S, that is to the reconstruction of its shadow264

attractor. More generally, any method providing dynamical analogs can be used.265

3.3 Taking dynamical information into account266

3.3.1 Attractor reconstruction267

The procedure of attractor reconstruction consists for a dynamical system characterised by a variable xt in finding the time268

delay τ and embedding dimension m such that the time delay vectors xt =
(
xt,xt−τ , . . . ,xt−(m−1)τ

)
allow to reconstruct the269

fully unfolded shadow attractor A′ in the embedding space (that is such that no two distinct trajectories cross). We use the270

simplex projection method (Sugihara and May, 1990; Deyle and Sugihara, 2011; Sugihara et al., 2012), specifically designed271

when the attractor is used for prediction purposes. The idea is to find the couple (m,τ) that maximises the correlation between272

verification and prediction, where the prediction of the future state of the system is given by a weighted mean of nA analog273

trajectories. In other words, given the IC of interest xt0 in the phase space, we find the nA closest neighbors (in the sense of274

the Euclidean L2 norm), and follow their trajectories up to lead time t. This provides us with the desired nA analogs.275

Again, any similarity-based method providing dynamical analogs (that is taking into account information on the ICs, where276

IC is understood as the point IC xt0 or as a longer vector containing dynamical information) can be used to provided the nA277

analogs.278
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Figure 3. EPS- and attractor-based possibility distributions and their combination at lead times t= {1,3,5,7} days (left to right).

3.3.2 Converting dynamical analogs into a predictive possibility distribution279

Depending on the archive IA at hand and the embedding dimension selected for the reconstruction, the attractor can be more280

or less dense, especially in the areas of rare events. We consequently avoid analog-based point predictions, and again resort to281

possibility distributions to extract the information given by the analogs. This allows us to account for sparse analog datasets282

and ensure that non-homogeneous density in the phase space does not blur results. Thus, we follow the procedure described in283

Section 2.2 to draw the possibility distribution πDYN (xt0+t) = π(xt0+t|xt0 ,IA) for the verification xt0+t associated with the284

IC xt0 in the phase space.285

3.3.3 Combining EPS and dynamical information286

πEPS and πDYN are two views on the actual system state xt0+t that are both supposed to be complete, although possibly287

too conservative, due to their limited and imperfect source of information about the state of the system. We consequently288

combine them in an AND manner: π(xt0+t|x̃t0+t,xt0) = πEPS ∩πDYN , which we posit should alleviate their respective289

over-conservatism. The intersection of two possibility distributions is classically given by Zadeh’s extension principle (Zadeh,290

1978; Hose and Hanss, 2019):291

πA∩B(x) = inf
(
πA(x),πB(x)

)
. (Equation 3)292

The final (a.k.a. combined) possibility distribution is consequently:293

294

πCOMB (xt0+t ∈ bi|x̃t0+t,xt0) = inf
(
πEPS (xt0+t ∈ bi),πDYN (xt0+t ∈ bi)

)
, i= 1, . . . ,n. (Equation 4)295
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The resulting distribution is finally normalised to one, to verify axiom 1 from Section 2.1. This consists in using the following296

transformation, for a generic possibility distribution π(x):297

π(x)←


π(x)

maxx (π(x)) if maxx (π(x))> 0

1 ∀x, otherwise
. (Equation 5)298

In practice, if the min-envelope defined by Equation 4 is null everywhere (typically when both EPS- and IC-based dis-299

tributions are peaked with non-overlapping support), we turn it into a uniform distribution. The philosophy behind is that300

independent sources of information are contradictory so we are in a situation of ignorance (everything is possible). Otherwise,301

we divide the min-envelope by its maximum, to get a distribution satisfying the axioms of possibility theory (see axioms 1 and302

2, namely: something must be possible within the universe of the variable of interest). The philosophy behind is that the max-303

imum of the min-envelop corresponds to area(s) with the highest joint support of EPS- and IC-based sources of information.304

Since at least something must be possible (cf. above-mentioned axioms of definition), these areas are associated to a possibility305

measure of 1 and other events scaled accordingly. An illustrative example is provided Figure 3.306

3.3.4 Guarantees307

We conclude this section with a focus on the formal guarantees that our methodology provides. By construction, the possibility308

distributions πEPS and πDYN dominate with a given confidence level β (in the case of Goodman’s formulation) the true prob-309

ability distribution of the future xt. Their joint aggregation is designed to make the resulting possibility distribution more spe-310

cific. Although such a step cannot in general maintain the same level of confidence regarding the property P (A)≤Π(A) ∀A 1,311

πCOMB still provides guarantees when it comes to the lower bound of Π(A). Indeed, from axiom a. of Section 2.1, if xt = x∗312

is actually observed, we have: πEPS (x∗)> 0 and πDYN (x∗)> 0. Consequently, by definition of the combined possibility313

distribution (Equation 4), πCOMB (x∗)> 0 as well. Thus, the guarantee Π(A)> 0 when x∗ ∈A is maintained. This allows314

risk-averse decision-makers to get a guarantee about the possibility of observing A: all observations of A are associated to a315

non-null Π(A). However, taking precautionary action whenever Π(A)> 0 is not always feasible for economical reasons. In316

such a case, the AND-fusion of πEPS and πDYN allows to reduce the basis level γ such as πCOMB (x)≥ γ, ∀x, and conse-317

quently to increase the upper bound on the necessity, N(A)≤ 1− γ, ∀A, that is the minimal confidence level in favor of A.318

1Hose and Hanss (2019) discusses this point and shows how using the so-called general aggregation ensures that the consistency between probability and
possibility measures is maintained, whatever the level of interaction, or dependence, between the variables at hand.
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The decision maker can then use it to judge whether the possible event A is actually more or less probable. The evaluation of319

the formal guarantees associated to our framework is developed in Le Carrer (n.d.).320

4 Experimental setting321

4.1 Test bed: the imperfect L96 system322

We reproduce the experiment designed by Williams et al. (2014), who used an imperfect L96 model to investigate the perfor-323

mances of ensemble postprocessing methods for the prediction of extreme events. The system dynamics is governed by the324

following system of coupled equations, where theX variables represent slow-moving, large-scale processes, while Y variables325

represent small-scale, possibly unresolved, physical processes:326

dXj

dt
=Xj−1(Xj+1−Xj−2)−Xj +F − hc

b

K∑
k=1

Yj,k (Equation 6)327

dYj,k
dt

= cbYj,k+1(Yj,k−1−Yj,k+2)− cYj,k +
hc

b
Xj (Equation 7)328

where j = 1, . . .J and k = 1, . . .K. The parameters are set to: J = 8, K = 32, h= 1, b= 10, c= 10 and F = 20. This perfect329

model is randomly initialised and then integrated forward in time by means of a Runge-Kutta 4th-order method with time330

step dt= 0.002 (model time units) until enough trajectories of duration 1.4, starting every 1.5 time units, are recorded for our331

analysis. An imperfect version of the L96 system is implemented to generate predictions for the variables Xj . In Equation 6,332

−hcb
∑K
k=1Yj,k is replaced with a quartic polynomial in Xj :333

0.262− 1.262Xj + 0.004608X2
j + 0.007496X3

j − 0.0003226X4
j (Equation 8)334

To reproduce the perturbation of the ICs, each perturbed variable X̃j is randomly and independently drawn fromN (Xj ,0.1
2).335

M members are thus sampled independently around the true value of Xj . The ensemble predictions are initialised each time a336

new trajectory record starts, and integrated forward in time up to the lead time 1.4 by means of a Runge-Kutta 4th-order method337

with lower time resolution (d̃t= 0.02 model time units). The size of the ensemble is set to M = 24, a value comparable to338

operational weather forecasting schemes (e.g. M = 17 for the Met Office Global and Regional Ensemble Prediction System).339

A lead time of 0.2 model time units after initialisation is noted t= 1 and can be associated with approximately 1 day in the340

real world (Lorenz, 1996).341
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In the following, we adopt a monovariate perspective, that is we consider each dimension of the model space independently.342

More specifically, we illustrate our methodology with predictions of the variable X1.343

4.2 Reference models: Gaussian ensemble dressing and raw EPS distribution344

In many cases, the statistical postprocessing of EPSs generates forecasts in the form of predictive probability distributions345

p(xt0+t|x̃t0+t,θ), where x̃t0+t = {x̃1
t0+t, . . . , x̃

m
t0+t} is the ensemble, θ a vector of parameters and p a (sum of) parametric346

distribution(s). Bayesian model averaging distributions (BMA; Raftery et al. (2005)) are weighted sums of M parametric347

probability distributions, each one centered around a linearly corrected ensemble member. In this work, the members are348

exchangeable, so the mixture coefficients and parametric distributions do not vary between members and the BMA boils down349

to an ensemble dressing procedure. We compare our method (referred to as EPS, DYN−m or COMB−m whether we use350

πEPS , πDYN or πCOMB , with −m specifying the number of dimensions taken into account for the IC) against a Gaussian351

ensemble dressing, whose predictive probability distribution reads (Roulston and Smith, 2003):352

p(xt0+t|x̃t0+t)θ =
1

M

M∑
i=1

N (ax̃it0+t +ω,σ2) (Equation 9)353

whereN (µ,v) is the normal distribution of mean µ and variance v. We infer the parameters θ = {a,ω,σ} through the optimisa-354

tion of a performance metric, here the ignorance score (Roulston and Smith, 2002), or negative log-likelihood, a strictly proper355

and local logarithmic score. To that end, we use the nonlinear programming solver provided by the software MATLAB R© and356

apply the guidance developed in Bröcker and Smith (2008) to initialise the optimisation algorithm and provide robust solu-357

tions. Our training set contains NI pairs {EPS,verification} for each lead time of interest t= {1,3,5,7} days, that is the same358

information as the archive I used in our framework. To account for the variability of results from one testing set to the other,359

in the same line as Williams et al. (2014), we repeat the optimisation procedure 20 times on different samples. We then use the360

resulting 20 sets of parameters to compute the performance metrics relative to the probabilistic approach. Finally, we take the361

average of these 20 scores, that we report on the graphs as representative of the performances of the probabilistic approach.362

In addition to the performances of the Gaussian ensemble dressing (hereafter GEB), we report the performance of probability363

distribution directly derived from the raw EPS (namely, an histogram normalised into a probability distribution). We refer to it364

as the RAW method.365
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4.3 Evaluation of performances366

In this work, we have developed the binary interpretation of a predictive possibility distribution π(x). Further work on the367

continuous interpretation and guarantees is presented in (Le Carrer, n.d.) by the authors. We consequently assess the predictive368

performance of our framework in the case of an extreme event: A= {x≤ q5}, where q5 is the quantile of order 5% of the369

climatic distribution of x. Such a choice allows us to target the issues of probabilistic interpretation of EPSs raised in introduc-370

tion. To that end, we use two indicators commonly chosen for evaluating binary probabilistic predictions: the ignorance score371

and the precision-recall curves. We finally discuss reliability by means of reliability diagrams. These modalities of evaluation372

are presented below, along with the concept of U-uncertainty.373

4.3.1 U-uncertainty374

The U-uncertainty, also known as the generalized Hartley measure for graded possibilities (Klir, 2006), allows to measure the375

nonspecificity of the possibility distribution π(x) at hand. In a continuous setting, it reads:376

U(π) =

1∫
0

log2 |Cαπ |dα (Equation 10)377

where |Cαπ | is the L1 norm of the α-cut Cαπ = {x ∈ X |π(x)≥ α}. Another way to compute it in a discretised setting is to order378

the possibility profile π in such a way that 1 = π1 ≥ π2 ≥ . . .≥ πn with πn+1 = 0 by definition. The following relationship379

then applies (Klir, 2006):380

U(π) =

n∑
i=2

πi log2

i

i− 1
(Equation 11)381

0≤ U(π)≤ | log2X| defines the upper and lower bounds for a profile π over domain X , obtained respectively for a Dirac-like382

profile and a uniform profile. Given two possibility profiles π and π′, U(π)≤ U(π′) is equivalent to say that π is more specific383

(i.e. more informative) than π′.384

This is not an indicator of prediction performance per se, however we will use it to discuss the information content of πEPS ,385

πDYN and πCOMB .386
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4.3.2 Ignorance score387

The ignorance score is designed to measure the skill of probabilistic predictions. It can be interpreted from an information-388

theory point of view in terms of the difference in expected returns that one would get by placing bets proportional to their389

probabilistic forecasts compared to bets that someone with perfect knowledge of the future would place. The empirical as-390

sessment of the ignorance score is the average over a test set of size N of the ignorance of each probabilistic prediction:391

392

SN (G) =
1

N

N∑
i=1

− log2G(Oi) (Equation 12)393

where Oi is the event actually observed for sample i and G(Oi) its predictive probability. In the probabilistic framework, SN394

takes positive values only and each unit indicates an additional bit of ignorance on the forecaster’s side.395

The possibilistic framework does not provide a single probability G(Oi) but a couple
(
N(Oi),Π(Oi)

)
such that N(Oi)≤396

P (0i)≤Π(Oi) where P (Oi) is the actual probability of event O for sample i. As described in Section 2.1, N(A)> 0 implies397

Π(A) = 1 and similarly N(A) = 0 (that is Π(Ā) = 1) implies Π(A)≤ 1. In other words, whatever the verification O, a good398

possibility distribution π must derive into:399

(A) Π(O) = 1400

(B) N(O)≥ 0, with N(O)→ 1 preferred since it means that O is all the more necessary which makes the prediction less401

uncertain402

An interesting way to extend the ignorance score to our possibilistic framework is to extract the credibility of the actual403

outcome from the couple possibility/necessity and use it as probability:404

SNπ (π) =
1

N

N∑
i=1

− log2(
N(Oi) + Π(Oi)

2
) (Equation 13)405

The score takes only positive values. Condition (A) is satisfied in average when SNπ ≤ 1 with condition (B) satisfied when406

SNπ → 0.407

Both N(O) and Π(O) can be interpreted as predictive probabilities of the event O. One is (generally) an under-estimation408

and the second (generally) an over-estimation. The quantity N(Oi)+Π(Oi)
2 is consequently homogeneous to a probability and the409

score SNπ has the same interpretation in terms of information theory as the classical ignorance score applied to the predictive410

probability N+Π
2 . The choice of such a functional can be discussed, as there exist many other possible transformations to411
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reduce the couple
(
N,Π

)
to a probability G. Beyond the classical G(O) = αN(O) + (1−α)Π(O) = Pα(O), where α can be412

optimised based on a performance metric, we do not discuss it in this work. We solely use this transformation with α= 0.5 in413

order to get an ignorance score allowing to check easily whether properties (A) and (B) are verified in average, in addition to414

assess the information content of the derived predictive probability.415

4.3.3 Precision recall curves416

Traditionally, relative operating characteristics (ROCs) are used to estimate the ability of a predictive model to discriminate417

between event and non-event. Given a binary prediction (yes/no w.r.t. event A), the ROC plots the hit rate (fraction of correctly418

predicted A over all A observed) versus the false alarm rate (fraction of wrongly predicted A over all Ā observed).419

However, when the dataset used to plot such characteristic is significantly imbalanced (the frequency of verification of A is420

significantly smaller than the frequency of verification of Ā), the false alarm rate is biased towards lower values. Recent works,421

e.g. Saito and Rehmsmeier (2015), suggest to use instead precision-recall curves (PRCs). The precision (rate of correctly422

predicted A over all A predicted) is plotted as a function of the hit rate (a.k.a. recall, the terminology used in the machine423

learning research community). In other words, the false alarm rate is replaced with the precision. This removes any reference424

to the class that is not of interest (Ā), which, when being the majority in an imbalanced dataset, biases the false alarm rate and425

consequently the conclusions that one could draw about prediction performances. Conversely, PRCs provide a more reliable426

prediction of the future classifier’s performances. Our focus being on rare events, in this study characterised by a climatological427

frequency c(A) = 0.05, we consequently use PRCs to assess the predictive skills of our framework.428

In both probabilistic and possibilistic cases, we use increasing thresholds pt ∈ [0,1] for making the decision (A predicted if429

P (A)≥ pt (resp. C(A)≥ pt) in the probabilistic (resp. possibilistic) framework) and report the associated precision and recall430

in the graph, forming a PRC. This allows us to compare the discrimination skill of both approaches.431

4.3.4 Reliability diagram432

This presentation of reliability diagrams draws on our previous work (Le Carrer and Green, 2020), where we first introduced433

our fuzzy and 3-dimensional versions of the metric. Reliability diagrams plot the observed conditional frequencies against434

the corresponding forecast probabilities for a given lead time. They illustrate how well the predicted probabilities of an event435

correspond to its observed conditional frequencies. The predictive model is all the more reliable (i.e. actionable) when the436

associated curve is close to the diagonal, which represents perfect reliability. The distance to the diagonal indicates underfore-437

casting (curves above) or overforecasting (curves below). Distance above the horizontal climatology line (frequency of A over438
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the whole archive I) indicates the resolution of the system, i.e. how well it discriminates between events and non-events. The439

cones defined by the no-skill line (half-way between the climatology and perfect reliability) and the vertical climatology line440

allow us to define areas where the forecast system is skilled.441

This metric is obviously designed for probabilistic predictions. However, the possibility-probability equivalence (Equation 1)442

allows us to use it as well for possibilistic outputs and compare their actionability with purely probabilistic prediction schemes.443

To draw a standard reliability diagram from possibilistic predictions, we use the functional Pα(A), where α is discretized on444

[0,1]. For a given set of Ns predictions (N(A),Π(A)), for each αi ∈ [0,1], the Ns Pαi(A) are computed and a traditional445

reliability plot is drawn. Each αi-plot indicates how using Pαi(A) as a probability for A is reliable and actionable on the446

long term. Seen as a whole, this bounded set of reliability plots allows to characterise the reliability of the probabilities given447

through N(A)≤ P (A)≤Π(A).448

.449

5 Results & Discussion450

We now characterise the predictive performances of our possibilistic framework and discuss them in comparison with the451

skill of the probabilistic reference approach. If not mentioned otherwise, all results presented in this Section use n= 30 bins to452

partition the x−axis 2, an archive of EPS/verification containingNI = 1560 independent trajectories of length t= 7 days, and a453

continuous time series of x of lengthNIA = 2.106 sampled at the same frequency as the EPS trajectories. These are operational454

figures: an EPS-archive of such sizeNI corresponds to 30 years of data, which corresponds to the standard length of a historical455

re-forecast dataset (Hamill et al., 2004; Hagedorn et al., 2008). The time series of length NIA above-mentioned roughly equals456

55 years of system record, which for geophysical variables is reasonable. We will conclude by discussing the effect of NIA457

on performances. The calibration set (for parameter nA) and test sets each consist in N = 40.103 independent trajectories of458

length t= 7 days and the corresponding EPS predictions. All EPSs have beforehand been preprocessed to remove the constant459

bias.460

Finally, when it comes to the parameter β of the Goodman formulation, Masson and Denœux (2006) show empirically that461

their data-to-possibility transformation is rather conservative and provides a possibility distribution that actually dominates the462

true probability distribution with a rate much higher than the guaranteed β. Even for small sample sizes, the choice of β is not463

critical and quasi perfect coverage rate is obtained: β ≥ 0.8, ensures that P
(
P (A)≤Π(A)

)
→ 1 ∀A. We consequently use464

2This choice is based on the range covered by the climatology of x and the fact that x can be associated to a physical quantity of the atmosphere, e.g.
temperature, which leads to bins of width ≈ 2 degrees. For other systems and applications, the bins can be for instance partitioned so that the distribution of
the climatology is homogeneous over the bins.
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Figure 4. Results of the simplex method applied to the L96 system. The Pearson correlation coefficient between verification at lead time
t= 1 day and the prediction computed by means of a weighted mean of the m+ 1 closest analogues in the reconstructed phase space of
embedding dimension m and time-delay τ . Each dashed curve corresponds to a different m, varying on [4,15]. Larger m are darker. We top
the plots with the solid red curve corresponding to the optimal or close to optimal m overall τ : m= 9.

β = 0.9 which, without impairing guarantees, tends to provide less conservative distributions as shown for the same case study465

in Le Carrer (n.d.).466

5.1 Attractor reconstruction467

The simplex method introduced in Section 3.3 is applied to the lead time t= 1 day from the continuous archive xt1 , . . . ,xtNIA468

of length NIA = 2.106 and time step similar to the EPS’s time resolution. A clear optimum is found for the couple (m=469

9, τ = 37) (cf. Figure 4). Herafter, when m is not explicitly mentioned for methodologies COMB-m or DYN-m, the reader470

will understand that m= 9.471

5.2 Setting the number of analogs nA472

As illustrated in Figure 5, the parameter nA plays an important part in the shape of πDYN and a careful calibration is con-473

sequently recommended. Figure 5 shows the effect of increasing the number of analogs nA ∈ {10,50,100,500,1000} on474

πDYN . We observe that increasing nA produces a more and more specific distribution by increasing the minimum confidence475

level N(A) = 1−maxx/∈Aπ(x) about an event A in the peak area. Globally, nA = 100 already provides interesting predic-476

tive information, however nA = 500 may provide a better decision tool due to higher confidence levels in the peaks. We can477

wonder whether this higher confidence, artificially induced by a larger analog set, will prevent the detection of small tenden-478
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Figure 5. Effect of varying the number of analogs nA ∈ {10,50,100,500,1000} (darker lines for larger nA) for lead times t ∈ {1,5} days
(from left to right) on πDYN . The distribution is highlighted with dots and color for nA = 1000. The smaller nA, the more conservative the
distribution. Associated EPS members are marked as blue dots and the verification as a red star.

Figure 6. Effect of varying the number of analogs nA = {10,50,100,250,500,1000} on the precision-recall curves at lead times 1 and 5
days. The darker the line, the higher nA.

cies (typical of rare events). In particular, we consider the nA closest neighbours around the IC xt0 , which does not imply479

that they are actually close, if the attractor is not dense in the area of interest. Figure 6 shows the effect of varying nA over480

{10,50,100,250,500,1000} on the PRC, for lead times t= {1,5} days.481

We observe that the performances in terms of PRC improve with growing nA, yet they quickly converge to a maximum482

(nA ≥ 250). The sensitivity to nA is more pronounced when the lead time increases. Such a convergence means that even483

though we integrate more distant analogs, the possibilistic methodology does not use this additional information in terms484

of density (which would dilute the information given by the closest analogs). Instead, the possibilistic interpretation of the485
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analog set is preserved. Globally nA = 250 allows to get the best performances over the whole range of recalls, confirming the486

preliminary observations in Figure 5. We continue our experiments with this value for nA.487

5.3 Predictive performances488

5.3.1 Information content489

Figure 7 represents the empirical ignorance score for lead times varying from 1 to 7 days of the methods GEB, RAW, EPS,490

DYN-9, COMB-1 and COMB-9, broken down between its extreme event (EE) and non-extreme event (NEE) components,491

that is the average empirical ignorance for observed EE (resp. NEE) only. Note that due to the very small proportion of EE492

compared to NEE, the global empirical ignorance score is similar to the NEE’s. For explanatory purposes, we represent as well493

the effect on the COMB possibility distributions of the aggregation method. Namely, we compare COMB-Z, using Zadeh’s494

aggregation, defined in Section 3.3.3, to COMB-A, using the general aggregation defined in Hose and Hanss (2019) 3 and495

supposed to ensure the validity of the consistency principle (Equation 1) whether there is stochastic dependence or not between496

the variables to be fused. Finally, we compare the results for the possibility-based probabilities derived from the methodology497

pred-CRED, pred-TENT-NEU, and pred-TENT-AV and pred-TENT-PR with varying α. Note that the extreme versions of498

the last two (α= 0 and α= 1 respectively) cannot be directly used with the absolute ignorance score as for the risk-averse499

approach (resp. risk-prone) the NEE (resp. EE) component gets an infinite score. Indeed, if we take the risk-averse case (resp.500

risk-prone case), null probabilities are attributed to Ā (resp. A) whenever Π(A) = 1 (resp. N(A) = 0), which leads to infinite501

negative log-likelihood items. Conversely, using 0< α < 1 ensures finite log-likelihood scores.502

We first describe the results for possibility-based probabilities derived by means of the pred-CRED methodology. The NEE503

ignorance is slightly lower for probabilistic methods (GEB, RAW) than it is for the possibilistic approaches (EPS, COMB-1,504

COMB-9). However, when it comes to the case of interest, namely EE, the ignorance is significantly lower for the possibilistic505

approaches than for the probabilistic ones (where GEB shows that postprocessing improves the RAW result). The differences506

grows with the lead time.507

If we analyse more in detail the possibilistic approaches, we note that in the NEE case, for lead times above 3 days, the508

aggregation of information (EPS and DYN) allows to lower the level of ignorance, all the more than the information about509

dynamics is refined (i.e. that the number of dimensions m taken into account to characterise the ICs is high). However, in the510

3For N marginal possibility distributions πXk ,k = 1, . . . ,N about the variable x ∈ X , the joint possibility distribution is defined as:

πX1,...,XN (x) = min
k=1,...,N

min
(
1,πXk (x)

)
∀x ∈ X . (Equation 14)
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Figure 7. Empirical ignorance score of the methods described in the text. The upper plots use the pred-CRED approach to derive
probabilities from possibility distributions. The middle plots use the pred-TENT-NEU and the lower plots use the pred-TENT-α with
α ∈ {0.1,0.25,0.5,0.9} from left to right. A dotted horizontal red line is plotted at 1 bit to visualise how guarantees are verified by possi-
bilistic methodologies. In both first cases (top and middle), the left-most panels use the COMB-Z aggregation method while the right-most
panels use the COMB-A approach for aggregation.
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Figure 8. Average U-uncertainty of the possibility distributions described in the text for both NEE (left) and EE (right). The upper bound
given the domain of definition of the variable at hand is log2 |X |= 5.08, which would be obtained for a uniform possibility distribution.

EE case, the aggregation of information slightly increases the ignorance, even for small lead times. This is all the more true511

than the dynamical information is partial (i.e. m low), at least for lead times below 7 days.512

Figure 8 allows to shed some light on this counter-intuitive observation. It shows that fusing the dynamical and EPS-based513

possibility distributions provides distributions that are more specific than both initial distributions at lead times above 1 day.514

Whether for NEE or for EE only, the effect is all the more marked than the lead time increases and the dynamical (and515

consequently the combined) possibility distributions are all the more specific than the information characterizing the ICs is516

complete (large m). If COMB distributions are more specific than EPS’s and yet their information content is lower (their517

ignorance score is higher), it means that, in plain words, ’they missed their target’ and led to situations such as
(
N(A) =518

0,Π(A)< 1
)

which means tentative acceptance of the complementary event Ā at level 1−Π(A). And indeed, we note that the519

condition (A) is not verified in average for lead times above 3 days, since the empirical ignorance overpass 1 bit.520

Using a different kind of aggregation, namely the general aggregation, allows to have COMB distributions more informative521

than the EPS ones in the case of EE, but not in the NEE case. This type of aggregation is indeed much more conservative as522

shown on Figure 8, which for EE is interesting but is less for more common events.523

The pred-TENT-NEU methodology leads to EE results improved at larger lead times (below or closer to the 1-bit guarantee),524

especially in the EPS and COMB cases. However, results are significantly deteriorated for NEE, especially at large lead times.525
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It shows the potential of the methodology for risk-averse users, as conditions (A) and (B) are almost perfectly satisfied for both526

EE and NEE.527

Finally, the last row of Figure 7 shows the effect of varying α in the pred-TENT-AV / pred-TENT-PR methodology. A small528

α≈ 0.1 guarantees that the conditions (A) and (B) are met for EE, with best results for the distribution COMB-A. However529

only methodology COMB-Z, less conservative, allows to verify conditions (A) and (B) for both EE and NEE. As could be530

expected, increasing α leads to predictions less risk-averse, which increase the performances for NEE yet at the expense of531

EE’s. One can however note that it exists a trade-off α where the ignorance score of such possibility-based predictions remains532

equal or better to the ignorance score of the probability-based predictions for NEE and EE simultaneously.533

5.3.2 Ability to discriminate534

Figure 9 gathers the PRCs of both predictive frameworks for lead times {1,3,5,7} days. To gain insight, we report the PRCs535

obtained from the EPS, DYN and COMB-Z-9 possibility distributions. The PRCs are computed for Pα=0 = Π, Pα=1 =N536

and Pα=0.5 = 0.5(N + Π). We observe that using N as decision tool allows only small hit rates, especially when the lead537

time grows. Conversely, using Π doesn’t allow small hit rates. Intermediate pooling such as Pα=0.5 allows to cover the whole538

range of hit rates. Overall, πEPS performs similarly to the probabilistic frameworks (points overlay) for t≥ 3 days, and even539

significantly better in the case of small recalls for t= 7 days. For smaller lead times, it performs slightly less well than the540

probabilistic approaches. In all three cases, πDYN is significantly less successful than the latter for small and medium lead541

times. It becomes as interesting as them only from t= 5 days. The combined possibility distribution is consequently slightly542

below the probabilistic approach in terms of discrimination ability for small lead times, and becomes more interesting than the543

latter for t≥ 5 days.544

We note than the performance of πCOMB is different than the performance of its best component (either πEPS or πDYN ).545

At small lead times, it remains close to πEPS performance, while at larger lead times, it goes beyond both. Combining both546

distributions in an AND manner consequently provides more predictive information than any single one of them contains.547

These results can be explained by means of Figure 3. For short lead times, πEPS is generally quite narrow (model error is low)548

and peaks around the true verification. Using it for prediction leads to results similar to the probabilistic approach (since model549

error had no time to bias EPS predictions) and significantly better than attractor-based predictions. Indeed, due to generally550

wider πDYN , the latter are often close to the ignorance point as shown by the histogram of the predictions associated with551

observed events A in Figure 10. For all lead times, the histogram associated with attractor-based predictions presents a single552

peak located on the ignorance point. On the contrary, the EPS-based predictions do not show such a behaviour before t= 5553
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Figure 9. Precision-recall curves showing the predictive skills of possibility distributions EPS, DYN and COMB-Z-9 and probability distri-
butions RAW and GEB for lead times t= {1,3,5,7} days (left to right). For the curves associated with the possibilistic approaches, we use
N(A), the credibility 0.5

(
N(A) + Π(A)

)
and Π(A) (from top to bottom) as input probabilities.
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Figure 10. 3-dimensional histograms of the possibilistic predictions associated to verification of A for lead times t= {1,3,5,7} days (left
to right). Predictions are based on πEPS (blue), πDYN (yellow) or their Z-combination (black).
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days. Till that lead time, a large part of the observed events A are associated with a point on the (Π = 1,N > 0) axis, meaning554

tentative acceptance of A. For large lead times, πEPS becomes larger due to the effect of the initial sampling and sensitivity555

of the model dynamics, both driving ensemble members away from the actual verification with enough time. Combining this556

distribution to πDYN through the AND operator allows for a narrower final distribution (the peak at the ignorance point of557

πCOMB is smaller in amplitude than the peaks of its components πEPS and πDYN ) and provides predictions that discriminate558

more betweenA and Ā. As shown through the PRC curves, they are also more powerful at large lead times than the predictions559

given by the probabilistic approach alone, for the same dynamical reasons (model drift, sensibility to ICs).560

Using the general aggregation method instead of Zadeh’s, do not change significantly the above results. The most notable561

difference, in favor of the Z-aggregation, is that using the general aggregation restricts even more towards the two extremes (0562

and 1) the range of possible recalls.563

Practically, using our possibilistic predictor at large lead times and for a given recall, increases the precision by 0.05 for564

medium recalls and up to 0.3 for small recalls. In other words, for a given hit rate, our framework emits less false alarms, a565

trend that is all the more marked for small hit rates.566

5.3.3 Operational use of the possibilistic concept of ignorance567

The information content of a probabilistic prediction G(Oi) of the actual future Oi is evaluated through the ignorance score568

Si =− log2G(Oi). The latter characterizes the level of ignorance of the user of such prediction w.r.t. the actual future outcome.569

On their side, possibilistic frameworks provide predictions in the form of dual measures, the necessity and the possibility of570

an event, that can be used altogether to characterize the level of ignorance regarding the future outcome to predict, given571

the evidence at hand. Namely W = Π(A)−N(A) is a positive quantity that takes its minimum when Π(A) =N(A) = 0 (Ā572

is predicted, A being considered impossible) or Π(A) =N(A) = 1 (A is predicted, Ā being considered impossible) and its573

maximum when
(
Π(A) = 1,N(A) = 0

)
(both A and Ā are possible, none of them is necessary, no tentative acceptance of A574

or Ā is dictated by the information at hand).575

We can consequently wonder: is the probabilistic ignorance Si (a posteriori measured) correlated to the possibilistic level of576

ignorance Wi (a priori measured)? If so, a priori observation of the possibilistic level of ignorance could guide for a better use577

of the probabilistic predictions. Figure 11 aims at answering this question. We compare the Spearman correlation coefficient578

between the a posteriori assessed probabilistic ignorance (for each method, RAW and GEB) and the a priori measurable579

level of possibilistic ignorance (for each possibility distribution, πEPS , πDYN and πCOMB ). Besides, to highlight results, we580
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Figure 11. Spearman correlation coefficient between the a posteriori propabilistic ignorance score and the level of a priori possibilistic igno-
rance. Results are broken down for EE and NEE, observed (top left) or predicted (others). From left to right and top to bottom, methodologies
used are pred-CRED with breakdown of observed EE/NEE, pred-CRED with risk-prone breakdown EE/NEE, pred-CRED with risk-averse
breakdown EE/NEE and pred-TENT-AV with risk-averse breakdown EE/NEE.
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compare the correlation for observations that belong to the category EE, redefined as "x≤ q0.5 ∪x≥ q0.95" with the correlation581

for observations that do not belong to category EE (noted NEE).582

Figure 11 reports the correlation between Si associated with the probabilities derived from possibilistic methodologies and583

the associated Wi. It would not make sense to directly compare probabilities from GEB or RAW and the possibilistic Wi as584

the latter are issued from different methodologies.585

If we break down results between EE and NEE, we observe that possibilistic (Wi) and probabilistic (Si) ignorance (reported586

here in the pred-CRED case) are extremely correlated for NEE, at all lead times and for all possibility distributions. However,587

in the case of EE, if the correlation is strong and positive at very small lead time (1 day) for COMB-Z, COMB-A and EPS, it588

becomes strongly negative for lead times above 3 days and all methods. In other words, the level of possibilistic ignorance can589

be used as a predictor of the information content (i.e. quality) of the pred-CRED prediction only for very small lead times. For590

larger lead times, the correlation is strong in both EE and NEE case, however of opposite signs which makes it not usable in591

practice. This pitfall comes from the fact that we break down the correlation results based on the a priori unknown future state592

of the system (EE vs NEE).593

What may be more interesting is to break them down w.r.t. the a priori known possibilistic prediction, namely: tentative594

acceptance of EE/A if N(A)> 0 (including
(
N(A) = 0,Π(A) = 1

)
for the risk-averse option), and tentative acceptance of595

NEE/Ā if Π(A)< 1 (including
(
N(A) = 0,Π(A) = 1

)
for the risk-prone option).596

In the risk-prone version, for tentative acceptance of NEE, the correlation is close to 1 for all possibilistic methods and597

all lead times, although slightly decreasing with increasing lead times. In other words, when we predict that Ā happens (i.e.598

Π(A)< 1 or
(
N(A) = 0,Π(A) = 1

)
) and associate to it the probability P (Ā) = 1−Π(A)+1−N(A)

2 , we get an a posteriori599

probabilistic ignorance that is strongly correlated to the a priori possibilistic ignoranceW . The latter can consequently be used600

as predictor of the information-content of the possibility-based probability P (Ā). The same applies for EE predicted (tentative601

acceptance of A with associated probability P (A) = N(A)+Π(A)
2 , when N(A)> 0) at lead times t≤ 5 days for EPS, and lead602

times t≤ 3 days for COMB-Z and COMB-A or lead time t= 1 for DYN, all the more than the lead time is small. However,603

for larger lead times, the correlation coefficient becomes too small to suggest an operational relationship between both types604

of ignorance. In other words, the possibilistic ignorance for predicted EE is an indicator of the related probabilistic ignorance605

only for reasonably small lead times, reasonably depending on the method (EPS vs COMB) used. It is interesting to note the606

case of COMB-A, which provides a strong negative correlation at large lead times. In this case, the larger W , the better the607

information content of probabilities derived from the possibilistic pred-CRED for predicted EE. This makes sense since larger608

W generates pred-CRED probabilities that tend towards 0.5 and are consequently less risky that extreme ones.609
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Figure 12. Reliability diagram at lead times t= {1,3,5,7} days (left to right). The probabilistic results GEB and RAW are reported in
cross-red and dashed grey lines respectively, while the upper and lower bounds of the possibilistic methodologies are in solid-circled lines.
Standards elements of comparison are reported in the diagram, namely the diagonal (perfect reliability), the climatological reference (hori-
zontal dotted) and the cone of skill (inside the dashed-dotted secants).

In the risk-averse option, results do not change for NEE predicted: the correlation is still very strong and Wi can be used610

as a predictor of Si. When it comes to EE, results are slightly less interesting: beyond 3 days, no possibilistic method shows611

good positive correlation between Wi and Si. The former can consequently be used as a predictor of the former only for small612

lead times, with similar results whatever the possibilistic approach (EPS, DYN, COMB-A, COMB-Z). We observe the same613

negative correlation for the largest lead time and COMB-A, which has the same interpretation as above.614

Finally, we present the correlation observed for probabilities derived, not anymore from pred-CRED but from pred-TENT-615

AV, in the risk-averse breakdown of predicted EE and NEE. Operationally, results show that only EPS and COMB-Z-9 based616

methodologies provideWi and Si positively correlated at all lead times when NEE are predicted. For predicted EE, a correlation617

relatively strong (above 0.6) exists for EPS and COMB-A for small lead times, allowing to use to a certain extent Wi as618

predictor of the information content of Si. However beyond 3 days, the correlation is too weak to be useful operationally, apart619

from in the COMB-A case at largest lead time, where we observe again a strong negative correlation.620

These results show how and to what extent we can use the full potential of possibilistic measures operationally, that is by621

deriving equivalent probabilities and by quantifying how informative these are.622

5.3.4 Reliability623

Figure 12 represents the fuzzy reliability diagram associated with the possibilistic and probabilistic predictions, where lines624

that are closest to the diagonal show best reliability. For the possibilistic methods, upper and lower bounds of the individual625

reliability plots obtained by varying αi ∈ [0,1] in Pαi(A) are reported (cf. Section 4.3.4). Both axis are partitioned in 10 bins626

and we only report the results for bins on the ’Prediction’ axis that count at least 10 observations.627
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Figure 13. See legend of Figure 12. For possibilistic methodologies, we now extract the credibility and use it as a probability to draw the
associated reliability diagrams.

For all lead times, the envelop of the fuzzy reliability plots covers almost the whole range of probability [0,1] while the628

traditional GEB do not for medium and large lead times. The probabilistic RAW does at all lead times, however the associated629

reliability diagram falls below the cone of skill beyond lead time 3 days, indicating no resolution. Our approach is consequently630

capable of providing large probabilities, even for a rare event, without any a posteriori recalibration step. Among the different631

possibilistic approaches, bounds are tighter at small lead times for EPS, however COMB-Z-9 quickly becomes the more632

interesting methodology for larger lead times. In particular, we note that COMB-A-9 looses resolution beyond 3 days, being633

not specific enough. For all lead times, at least half of the envelope of the fuzzy reliability plots is contained in the cones of634

skill, which indicates resolution of the possibility-based probabilities. The perfect reliability line is surrounded by the bounds,635

apart for probabilities above 0.65 above 5 days.636

For a more operational perspective, we analyse the reliability of the possibility-based probabilities derived by means of637

pred-CRED, that is when we use the credibility as the probabilistic product associated to a possibility distribution. We first638

note on Figure 13 that the reliability plot is sparse for the EPS method. The latter produces probabilistic predictions focused639

on the extremes or middle probabilities. The intermediate ones correspond to points falling in the ignorance area, while the640

upper/lower correspond to peaked distributions towardsA or Ā. This is all the more visible for short lead times, and experiments641

show that increasing the archive size NI allows to reduce the discontinuities. Combining EPS to the more continuous DYN642

brings continuity in the probabilistic predictions issued from COMB-Z-9. As seen before, we again note that COMB-Z-9 is643

more informative than both EPS and DYN alone, as it is overall closer to the perfect reliability line than the latter. Finally,644

in comparison to the GEB approach, COMB-Z-9 is significantly more reliable at small lead times. For larger lead times, it645

becomes less reliable (namely, overpredictive) than GEB for probabilities below 0.5, however for the upper part of predictive646

probabilities (0.5−0.75), it is close to perfect reliability while GEB does not output this range of probability at all. COMB-A-9647

and RAW produce results similar in essence to the above description of Figure 12.648
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Figure 14. See legend of Figure 7. The method used is pred-CRED. The left two diagrams are based on a time series of length about 6
months and the right two ones on a time series of length about 55 years. Within each block of two, we increase from left to right the EPS
archive size from 3 years to 30 years.

5.3.5 Effect of the archive size649

We conclude the discussion with a focus on the impact of the archive sizes NI and NIA on the predictive performances of our650

framework. An extended discussion can be found in Le Carrer (n.d.), where we present as well the impact of the size of the651

archives on the formal guarantees that can be derived. Here, we plot the ignorance score for the following combinations:652

– NI = 1560 and NIA = 2.106 (the case studied so far: an EPS archive of 30 years and a time series monitoring of the653

variable of interest of about 55 years) ;654

– NI = 1560 and NIA = 2.104, that is we lower the time series of the system to less than 6 months ;655

– NI = 156 and NIA = 2.106, that is we lower the EPS archive to 3 years instead of 30 ;656

– NI = 156 and NIA = 2.104.657

Figure 14 presents the empirical ignorance score similarly to Figure 7, for the possibilistic methodologies EPS, COMB-Z,658

COMB-A (all in the case of pred-CRED) and the probabilistic GEB and RAW. We observe that increasing the size of the archive659

IA significantly improves beyond 3 days of lead time the information content of the credibility for combined methodologies660

COMB-Z and COMB-A when it comes to EE. However, again for EE, in both cases the information content of the possibilistic661

methodologies is above the information content of the probabilistic ones apart for very small lead times for COMB-Z/A, where662

it is slightly above GEB’s. For NEE we observe the opposite effect: increasing the size of the system time series tends to663

deteriorate slightly performances. Increasing the EPS archive has the opposite effect: it improves the NEE however tends to664
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deteriorate slightly performances and guarantees for EE. In Le Carrer (n.d.), we develop this counter-intuitive observation and665

explain how this is due to the limit behaviour of the possibilistic transformation presented in Section 2.1. More points tend666

to lower the level γ such that π(x)≥ γ : ∀x, that is the minimal possibility degree for any event of interest A: Π(A)≥ γ, in667

particular the EE we are interested in. Consequently, for possibility profiles that do not show a peak in the area of definition668

of A (e.g. Π(Ā) = 1⇒N(A) = 0), the credibility C(A) = N(A)+Π(A)
2 is pulled towards lower values, which provides less669

informative credibility if A is a posteriori observed. This phenomenon plays in favor of NEE who have here a large area of670

definition. On the contrary, when the time series used for dynamical modelling is increased in size, we observe a significant671

improvement of the information content of DYN for the prediction of EE at all lead times, while the performance is slightly672

deteriorated for NEE at larger lead times. DYN possibility distributions are built from a set of analogs, nA that is fixed in size.673

Increasing the length of the time series will consequently not impact πDYN the same way it does for πEPS . It will increase674

the density of analogs among which nA are extracted. This plays in favor of the EE, which were located in scarce areas of the675

attractor (with a fixed nA, potentially less distant analogs will be associated). However when it comes to NEE, we can assume676

that the same applies against them: close to EE areas, EE analogs are taken into account as analogs and consequently lower677

N(Ā) in the associated possibility distribution. The increase (EE) or decrease (NEE) in information content observed on DYN678

when the size of the archive increases passes on COMB distributions.679

Operationally, we conclude that indeed, and as could be expected, the performance of our possibilistic framework depends680

on the size of the archives at hand. In any case, when it comes to EE prediction, possibility-based information remain globally681

much more interesting than the purely probabilistic one, especially at large lead times. The EPS archive does not need to be682

particularly large, while results significantly improve with a longer system monitoring.683

6 Conclusions684

In this paper, we have investigated the benefits of using a framework based on possibility theory for interpreting EPSs, and685

compared it to the standard probabilistic paradigm in the context of extreme event forecasting. In parallel, we have developed686

a methodology based on dynamical analogs that integrates dynamical information from a time series of the system to the EPS-687

based possibilistic framework. The possibilistic framework allows us to combine several incomplete sources of knowledge688

in a consistent manner, and thus to reduce their respective conservatism. Our framework is more direct than the probabilistic689

one: we do not try to correct misleading EPS-based probabilities. A possibilistic interpretation directly makes sense, without690

resorting to additional layers of calibration. Moreover, we are able to reproduce the probabilistic predictive skills (PRC at691

small lead times) and improve them (PRC to a small extent at large lead times, reliability), especially when it comes to EE692
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without deteriorating significantly the performances for NEE (information content). Different methodologies were introduced693

and compared (although not exhaustively for shortness of space), showing how risk-averse and risk-prone users could seize the694

potential of the dual measures to extract predictive probabilities differently from the traditional credibility. However, it turns695

out that the latter remains globally the best trade-off when it comes to the quality of predictive performances for EE and NEE696

simultaneously.697

Our framework also reveals the strengths and weaknesses of EPSs: at small lead times, the EPS-based information alone698

is enough to reproduce probabilistic performances, due to low aggregated model error. At larger lead times, however the699

latter becomes significant, and makes the EPS-based information not sufficient to provide predictions with resolution. That is700

where the synergy between EPS-based and dynamical-analog-based information allows us to go beyond standard probabilistic701

performances. However, it would be interesting to see whether the conclusions obtained on the L96 toy system apply to real-702

world weather EPS.703

We also discussed how to use the full potential of the dual possibilistic measures: to derive predictive probabilities and to704

estimate a priori the trust we can have in their informativeness.705

Let us now come back to our initial question: echoing Bröcker and Smith (2008), we wondered whether the probability706

distribution is the best representation of the valuable information contained in an EPS. Our answer would be that it can be at707

short lead times, when aggregated model error is low; however there is more predictive information and explanatory power708

to be gained when switching to an imprecise-probability framework at large lead times. Even at short lead times, our frame-709

work showed that it could improve e.g. probabilistic reliability and provide an indicator of how informative is the associated710

credibility. Among the imprecise-probability settings (e.g. credal sets) we chose possibility theory. Conceptually, especially for711

end-users and predictions, it indeed seems the most intuitive and adapted in this context.712

Appendix A: Masson and Denœux (2006)’s methodology to infer a possibility distribution from empirical data713

The methodology of Masson and Denœux (2006) to infer a possibility distribution π(x) on the stochastic variable x ∈ X for714

which we have a set S of Ns samples, can be summarized as such:715

1. First, bin the x-axis in n bins (or classes) bi centered in xi: B = {bi, i= 1, . . . ,n} and note ni their respective population716

size.717

2. Based on the former histogram, compute the simultaneous confidence intervals for multinomial proportions by means718

of the Goodman’s formulation (Goodman, 1965). The latter, reported in Appendix B, provides multinomial confidence719
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intervals at level 1−β for the physical ’true’ multinomial probabilities. The formulation being based on asymptotic720

approximations (see full proof reproduced in Appendix A of Masson and Denœux (2006)), a comparative study by May721

and Johnson (1997) showed that it requires n > 2 and minimal class populations ni > 5, i= 1, . . . ,n to be reliable. The722

same authors suggest Sison and Glaz (1995) in the contrary case. Other methodologies like the imprecise Dirichlet model723

of Walley (1996) can be used however they do not offer the same formal guarantees.724

We obtain the set of confidence intervals [p−i ,p
+
i ] associated to each true probability pi of observing the variable x in725

bin bi. In the Goodman case, this set of simultaneous confidence intervals guarantees the overall joint confidence level726

1−β.727

3. If we denote P the partial order induced by the intervals [p−i ,p
+
i ], then (bi, bj) ∈ P ⇔ p+

i < p−j . Find the set of the com-728

patible permutations {σl, l = 1, . . . ,L}, where σl is the permutation of the indices {1, . . . ,n} associated to P such that729

p+
σl(1) < p−σl(2),p

+
σl(2) < p−σl(3), . . . ,p

+
σl(n−1) < p−σl(n) or equivalently σl(i)< σl(j)⇔

(
bσ(i), bσ(j)

)
∈ P . σ is a bijection730

and the reverse transformation σ−1 gives the rank of each class bi in the list of the probabilities sorted according to the731

partial order P .732

4. For each possible permutation σl and each class bi, solve the following linear program:733

πσli = max
p1,...,pn

∑
j|σ−1

l (j)≤σ−1
l (i)

pj (A1)734

under the constraints735 

∑K
k=1 pk = 1

p−k ≤ pk ≤ p
+
k ∀k ∈ {1, . . . ,n}

pσl(1) ≤ pσl(2) ≤ . . .≤ pσl(n) .

(A2)736

5. Finally, take the distribution dominating all the distributions πσl :737

πi = max
l=1,...,L

πσli ∀i ∈ {1, . . . ,n}. (A3)738

Such a procedure allows to compute a possibility distribution π(x) that dominates with confidence 1−β the true probability739

distribution (i.e. in 100(1−β)% of the cases). We present it in its principle and brute-force implementation so that the reader740
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understands the concepts behind it. Yet, this program is limited to small values of n (n < 10), mostly due to the complexity741

of the algorithm providing the list of of permutations following a partial order (which is O(L), where L is the total number742

of permutations, with worst-case value L= n!). Masson and Denœux (2006) derive a simpler computational algorithm, whose743

solution is shown to be equivalent to the first one. We refer the interested reader to their paper for a full presentation of the744

tractable version of the algorithm, that we have implemented in this study.745

Appendix B: Goodman (1965)’s formulation746

Following the problem and notation introduced in Appendix A, if we note:747

A= χ2(1−β/n,1) +Ns , (B1)748

where χ2(1−β/n,1) is the quantile of order 1−β/n of the chi-square distribution with one degree of freedom, and Ns =749 ∑n
i=1ni the size of the sample set,750

Bi = χ2(1−β/n,1) + 2ni , (B2)751

752

Ci =B2
i − 4ACi , (B3)753

754

∆i =
n2
i

Ns
, (B4)755

then the bounds of the confidence intervals [p−i ,p
+
i ] associated to the true probabilities pi of observing the variable x in bin bi,756

i= 1, . . . ,n are given by:757

[p−i ,p
+
i ] =

[Bi−√∆i

2A
,
Bi +

√
∆i

2A

]
. (B5)758
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