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Summary

The use of wind speed probability density functions is a standard practice to

represent different wind regimes. Generally, these regimes are distinguished

by the following three characteristics: the shape of the distribution in the cen-

tral wind speeds, amount of the calm wind speeds (CWS), and extreme wind

speeds (EWS). An in‐depth review has highlighted that none of the parametric

distributions available is suitable to represent the three main characteristics at

the same time.

To overcome this gap, the use of the corrected mixture of two truncated normal

distributions (CMTTND) and corrected single truncated normal distribution

(CTND) are proposed to represent, respectively, bimodal and unimodal wind

speed distribution shapes. The CMTTND and CTND are obtained by introduc-

ing a correction, respectively, to the mixture of two truncated normal distribu-

tions (MTTND) and to the single truncated normal distribution (TND). The

MTTND and TND permit an accurate representation of distributions with high

levels of CWS. The CMTTND and CTND employ a new parameter, to accu-

rately quantifying also the relative frequencies associated with EWS. The per-

formance of the CMTTND and CTND was assessed using a goodness‐of‐fit

(GOF) test and statistical measures of error in the evaluation of the character-

istic mean wind speeds. The analytical expressions of these mean wind speeds

are obtained and validated by a numerical integration method for the first time

in this work. The accuracy of these distributions is compared with that of other

conventional probability distribution models, of which three are unimodal and

six bimodal, in four Italian locations and three American locations. The analy-

sis of the results showed that the CTND and CMTTND allow obtaining high

GOF of the experimental distributions with R2 and RMSE higher and lower

than, respectively, 0.977 and 0.054. Moreover, the CTND results in the most

accurate distribution in the estimation of the characteristic mean wind speeds

in the case of localities with unimodal experimental distributions and the

CMTTND in the case of localities with bimodal experimental distributions.

Contrary to other distribution, CTND and CMTTND accuracies grow by

increasing the grade of the characteristic mean wind speed by reaching also

estimation values lower than 2% of the real ones. This is a great advantage in
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the wind energy source determination in a location since the available energy

depends on the mean cubic wind speed.
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Calm wind speeds, Distribution correction, Extreme wind speeds, Normal Distribution, Mixture
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1 | INTRODUCTION

The growth of the world population and the rapid
increase in the use of fossil fuels, considered to be
among the main causes of environmental pollution,
have encouraged the development of clean energy
sources, mainly solar and wind energy. In particular,
the rapid spread of wind energy technologies has made
wind energy a viable alternative to conventional energy
in recent years.1 The use of the wind resource in a loca-
tion requires a detailed study of wind characteristics,
and in the first phase, it is very useful to have predictive
analytical models of statistical distributions able to
approximate the real wind speed distributions and their
main properties. Generally, three main distribution
characteristics can be distinguished: the shape of the
distribution in the central wind speeds, amount of the
calm wind speeds (CWS), and extreme wind speeds
(EWS).
1.1 | Literature review

In the following subsections, a literature overview is pre-
sented to highlight the main researches developed to
describe unimodal and bimodal distributions in the cen-
tral wind speeds, the main disadvantages of these distri-
butions to models CWS and EWS, and the most
important distributions proposed to overcome these
issues.
1.1.1 | Single and mixture distributions

Among the mathematical models originally used, the
one‐parameter Rayleigh distribution and the two‐
parameter Weibull distributions have become the most
widespread and accepted probability distributions given
their simplicity.2-7 Other distributions largely employed
worldwide are the lognormal, truncated normal, gamma,
inverse normal, beta, and generalized gamma distribu-
tions.8 For example, the effectiveness of the popular
Weibull and Rayleigh distributions was assessed in North
Dakota (USA) by considering also other distributions
such as gamma, lognormal, and inverse normal derived
probability density functions (PDFs).9 In another study,
three PDFs, ie, Weibull, logistic, and lognormal, were
compared to select the best one to model wind speed dis-
tribution in Inner Mongolia, China.10

Recently, Alavi et al studied the performance of
Nakagami distribution against some previously used
PDFs including exponential, Weibull, gamma, lognormal,
loglogistic, inverse normal, and generalized extreme
value in Iran.11 Instead, in another study, the extended
generalized Lindley distribution was proposed and evalu-
ated to show its capability in estimating wind speed data
in different regions of Turkey compared with the Weibull,
Rayleigh, lognormal, and gamma distributions.12 Simi-
larly, Weibull, gamma, inverse normal, lognormal,
Gumbel, generalized extreme value, Nakagami, and gen-
eralized logistic distribution were directly compared in
Algeria.13 Masseran proposed an integrated rank
approach in determining the best model selection for
wind speed data. To show the effectiveness of this
method, the lognormal, Weibull, Rayleigh, exponential,
Burr, gamma, inverse Gaussian, and inverse gamma dis-
tributions were considered and applied to model the wind
speed regimes in Malaysia.14

A further variant of the Weibull distribution is the
upper‐truncate Weibull distribution,15 which can be
applied in situations in which the range of the random
variable is bounded from above by an unknown cutoff
point, called a truncation point. Other distributions used
to represent wind speed data are those with three param-
eters of Weibull and Frechét16 and the multiparameter
distributions of Johnson, Kappa, and Wakeby.17

To describe the wind regimes that present bimodal
trends with a double peak, several authors have proposed
the use of mixtures of two distributions. In these cases,
the mixture distributions are indispensable since gave rise
to a better fitting of the data compared with the unimodal
distributions.

Mixtures of two two‐parameter Weibull distributions,
of two truncated normal distributions, of a two‐parameter
Weibull, and a truncated normal distribution are among
those mainly used. For example, Chang compared the
mixture distributions gamma‐Weibull and truncated
normal–truncated normal, and other common distribu-
tion mixtures, such as the Weibull‐Weibull and truncated
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normal–Weibull, with the conventional Weibull
distribution.18

Ouarda et al considered eleven unimodal distributions
with two, three, and four parameters, and Weibull‐
Weibull and gamma‐gamma homogeneous mixture dis-
tributions in nine stations in the United Arab Emirates
(UAE) to identify the best one in terms of goodness‐of‐
fit (GOF).19 Subsequently, some of the previous authors
represented wind speed data of Nordic regions of Canada,
in addition to the two‐component homogeneous distribu-
tions, also through heterogeneous (the two components
are represented by two different distributions) two‐
component distributions.20

Generally, the main assumption of the different mix-
ture distributions is that every single component is
unimodal. Hu et al21 proposed a more general model,
called the hierarchical mixture of multiple distributions,
in which it is assumed that each component distribution
is itself a mixture. The experimental results obtained
indicate that the proposed model is more accurate both
for single distribution models and mixtures of single dis-
tributions. Kappa and Wakeby unimodal distributions
and Burr–generalized extreme value mixture distribution
were proposed by Jung et al as a single system able to
reproduce a large majority of existing wind regimes
around the world with very high accuracy.22 In addition,
some of these authors used the previous single and mix-
ture distributions to evaluate the robustness of a wind
speed distribution system compared with the typical
deficiencies of the wind speed data, such as errors of
measurement, missing data, and low temporal resolu-
tion.23 To assess the suitability to model wind speed data
in the UAE, gamma, Weibull, extreme value type I, and
normal distributions were used to construct mixture dis-
tributions, while the Weibull and Kappa distributions
were considered as conventional unimodal distribu-
tions.24 Analogously to the procedure proposed by
Masseran14 that was applied only for unimodal distribu-
tion, Miao et al introduced a score‐radar map to deter-
mine graphically the suitability of parametric
distribution.25 Specifically, an integrated score using dif-
ferent weight coefficients and typical fitting performance
indices were used to test the suitability of nine well‐
known unimodal distributions and seven common
bimodal distributions to represent wind speed data from
North Dakota region.

Comprehensive reviews were carried out to analyse
the flexibility and usefulness of the most common
unimodal and bimodal PDFs in the description of differ-
ent wind regimes (high frequencies of calm and extreme
wind speeds, unimodal, bimodal, bitangential regimes,
etc).8,26 A global comparison of 24 one‐component PDFs
and 21 mixture PDFs in modelling onshore and offshore
wind speed regimes worldwide was developed in Jung
and Schindler .27
1.1.2 | Calm and extreme wind speeds

The statistical models described are not able to represent
all the wind regimes that can occur, such as wind speed
data characterized, for example, by long calm wind
speeds (CWS) or high frequencies at sustained speeds
(EWS). Such distributions provide a nil or undefined fre-
quency in correspondence to a nil wind speed, whereas
the trend tends asymptotically to zero for high wind
speed values. Takle and Brown28 have proposed the use
of a hybrid PDF that removes the CWS and fits the
non‐zero wind speeds through the Weibull distribution.
The CWS are then reintroduced to ensure correct values
of mean and variance and to renormalize the distribution.
The inverse normal distribution was suggested by
Bardsley29 as an alternative use of the three‐parameter
Weibull distribution, with a positive position parameter
μ, for the description of the reduced wind speeds. How-
ever, it is not defined for v = 0 and, consequently, it can-
not identify the CWS. Instead, the truncated normal
distribution was used by Carta et al30 to describe wind
speed regimes with a high frequency of CWS. Also, the
mixture probability distributions were used to represent
wind speed data characterized by a large number of
CWS. In particular, in an analysis related to the applica-
tion of Weibull distribution models, Qin et al31 proposed
the use of mixtures obtained by linearly combining two
two‐parameter Weibull distributions, one two‐parameter
Weibull distribution and one three‐parameter Weibull
distribution and two three‐parameter Weibull distribu-
tions. On the other hand, Carta and Ramìrez32 proposed
the use of a heterogeneous mixture consisting of the trun-
cated normal distribution and the two‐parameter Weibull
distribution, showing that this distribution, unlike the
mixture of Weibull distributions, takes into account the
frequencies of the CWS.

Even more important than the correct fitting of the
wind speed distributions characterized by long CWS is
the correct representation of the EWS, owing to problems
related to the structural safety of turbines.33 When the
wind speed is higher than the cutoff value of the turbine,
the electrical generator has to be stopped to preserve the
correct operation of the turbine, and the electrical energy
produced is zero. Usually, this cutoff value of the turbine
is close to the EWS range. In addition, the energy avail-
able in a location depends on the mean cubic wind speed,
calculable as a function of the product of the relative fre-
quencies and relative cubic wind speeds. Although if the
relative frequencies of EWS are generally low, the
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product of these frequencies and the extreme cubic wind
speeds have relatively high values. Many of the studies
relating to the theory of EWS assume that wind speed
observations are independent and identically distributed
variables, characterized by a common PDF: Among the
most used are the Fréchet distribution, Gumbel distribu-
tion, and inverse Weibull distribution.34 The inverse
Weibull distribution is similar to the Weibull distribution,
very flexible for those distributions characterized by a
long asymmetric tail on the right, ie, by high frequencies
at extreme wind speeds (EWS).35 In the early 1970s, two
competitive models were widely used to capture EWS
data: extreme value type II distribution or Fréchet distri-
bution and extreme value type I distribution or Gumbel
distribution. In some works,36-39 the inverse Weibull dis-
tribution was considered the best for modelling EWS
when compared with the Gumbel distribution. Instead,
Perrin et al40 have shown that the inverse Weibull gener-
ates an incorrect estimate of the wind speed distribution
tails and distribution of the annual wind speed maxima.
According to the results obtained in these works,36-40 nei-
ther Gumbel nor inverse Weibull distributions can be
considered the best or completely adequate to model
EWS. Lee et al.41 applied the Gumbel and inverse Weibull
distributions for estimating EWS in the region of Korea,
demonstrating that the Gumbel distribution is much
more reliable than inverse Weibull distribution. Few
analyses have been carried out on how to extract the
EWS reliably from a data set distributed according to
the Gumbel distribution. In fact, the extraction of EWS
through the Gumbel distribution strongly depends on
the method used. Kang et al42 took into account, from
the wind speed time series, two types of EWS: the maxi-
mum periodic wind speeds, divided into DMWS (daily
maximum wind speeds), MMWS (maximum monthly
wind speeds), and YMWS (yearly maximum wind
speeds), and wind speeds above a certain threshold value
(top 3651, top 120, and top 10). Of the six methods used,
the DMWS resulted in the best; moreover, the maximum
periodic wind speeds have been better fitted by the
Gumbel distribution compared with the wind speeds
above a given threshold. An effective distribution, alter-
native to the best‐known models for EWS, is the inverse
Burr distribution, proposed by Chiodo and De Falco.33

Morgan et al,43 using the wind speed time series collected
at 178 offshore stations, showed that the three‐parameter
Weibull, Kappa, and Wakeby distributions are the most
accurate among the 11 distributions considered. In partic-
ular, the Kappa and Wakeby distributions fit better the
right distribution tail, namely, the EWS, although they
could drastically overestimate the relative frequencies of
the lower wind speeds. For this reason, different models
of mixture distributions have been proposed. The mixture
distributions used for EWS estimation are two Gumbel
distributions,44 two generalized extreme value distribu-
tions,45 two inverse Weibull distributions,46 Gumbel–
inverse Weibull mixture distributions,47 Gumbel–
generalized extreme value mixture distributions,47 and
two‐component extreme value distributions.48 A more
complex model was proposed by de Waal et al,49 which
provides for the use of the multivariate generalized
Burr‐gamma distribution for wind speed data containing
EWS. In this model, a multivariate approach is adopted,
and wind speeds and directions, measured in several
Dutch stations, were used to estimate the quantiles of
EWS.
1.2 | Motivation and objectives of the
research

Table 1 highlights the capability and limitations of the
most widespread distributions used to represent wind
speed with the indication of those able to represent
CWS, EWS, and bimodal behaviours. Although if less fre-
quent, three modal behaviours or above, namely, with
more than two peaks, cannot be predicted very accurately
by any of the distributions selected.

As regards the mixture distributions, the following cri-
terion was adopted for the identification of the capability
and the limitations in representation of CWS and EWS:
The mixture distribution is able to represent EWS when
both component distributions are suitable for EWS; the
mixture distribution is able to represent CWS when at
least one component distribution is suitable for CWS
and the other one must be at least defined.

From the analysis of all the distributions reported in
Table 1, it is evident the lack of a flexible distribution of
general use able to represent all wind speed regimes.

This paper proposes the use of the corrected mixture of
two truncated normal distributions (CMTTND) with six
parameters, of which five are independent, to statistically
represent the measured wind speed data. The truncation
of the normal distributions is necessary to eliminate the
negative wind speeds while the correction made allows
improving the representation of the EWS. This model is
capable to represent unimodal and bimodal distributions,
characterized by CWS and EWS.

The single‐corrected truncated normal distribution
(CTND), with one dependent and two independent
parameters, provides a correction to the truncated normal
distribution (TND), already used by several researchers
for the representation of wind speed data.18,50-52

From the scientific literature, the TND can be obtained
from the ND with two different approaches.



TABLE 1 Literature survey of the statistical distribution for the representation of the CWS and EWS and bimodal behaviour

Distributions
Number of
Parameters

Calm Wind
Speeds

Extreme Wind
Speeds

Bimodal
Shape

Unimodal distributions

Rayleigh 1 No No No

Exponential 1 Yes No No

Two‐parameter Weibull (extreme value type III) 2 No No No

Generalized Rayleigh 2 No No No

Two‐parameter lognormal 2 No No No

Normal 2 Yes No No

Gamma 2 No No No

Beta 2 No Yes No

Logistic 2 Yes No No

Loglogistic 2 No No No

Truncated normal 2 Yes No No

Upper‐truncate Weibull 2 No Yes No

Nakagami 2 No No No

Inverse normal 2 No No No

Gumbel (extreme value type I) 2 No Yes No

Frechet or inverse Weibull (extreme value type II) 2 No Yes No

Three‐parameter lognormal 3 Yes No No

Burr 3 No No No

Three‐parameter Weibull 3 Yes No No

Log Pearson type III 3 No Yes No

Generalized logistic 3 Yes No No

Generalized gamma (Pearson type III) 3 No No No

Generalized extreme value 3 No Yes No

Dagum (inverse Burr) 3 No Yes No

Extended generalized Lindley 3 Yes No No

Kappa 4 Yes Yes No

Johnson 4 No No Yes

Wakeby 5 Yes Yes No

Homogeneous bimodal distributions

Mixture of two normal 5 Yes No Yes

Mixture of two‐parameter Weibull 5 No No Yes

Mixture of two Gumbel 5 No Yes Yes

Mixture of two inverse Weibull 5 No Yes Yes

Mixture of two gamma 5 No No Yes

Mixture of two three‐parameter Weibull 7 Yes No Yes

Mixture of two generalized extreme value 7 No Yes Yes

Heterogeneous bimodal distributions

Mixture of a two‐parameter Weibull and a truncated normal 5 Yes No Yes

Mixture of a Gumbel and an inverse Weibull 5 No Yes Yes

(Continues)
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TABLE 1 (Continued)

Distributions
Number of
Parameters

Calm Wind
Speeds

Extreme Wind
Speeds

Bimodal
Shape

Mixture of a gamma and a Weibull 5 No No Yes

Mixture of a gamma and a Gumbel 5 No No Yes

Mixture of a Weibull and a Gumbel 5 No No Yes

Mixture of a normal and a Weibull 5 Yes No Yes

Mixture of a normal and a Gumbel 5 Yes No Yes

Mixture of a normal and a Gamma 5 No No Yes

Mixture of two truncated normal 5 Yes No Yes

Mixture of a two‐parameter Weibull and a three‐parameter Weibull 6 Yes No Yes

Mixture of a Gumbel and a generalized extreme value 6 No Yes Yes

Multivariate generalized Burr‐gamma 6 No Yes Yes

Mixture of a Weibull and a Burr 6 No No Yes

Mixture of a truncated normal and a Burr 6 Yes No Yes

Mixture of a Burr and a generalized extreme value 7 No No Yes

Mixture of two Burr 7 No No Yes

Corrected truncated normal 3 Yes Yes No

Corrected mixture of two truncated normal 6 Yes Yes Yes

The Corrected truncated normal and Corrected mixture of two truncated normal are the two Distributions proposed in this work.
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The most used approach foresees to annul the ND for v
< 0 and to divide it by the area subtended by the ND for v
> 0. This means that the truncated area for v < 0 is spread
in a relatively uniform manner in the domain 0 ≤ v < +∞
without using a physical criterion18,50,51; see Equation (1).
In this way, the area truncated is recovered, and a unitary
value of area subtended by the TND is obtained.

f TND vð Þ ¼

0 v < 0
1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ
σ

� �2� �
1
2

1þ erf
μffiffiffi
2

p
σ

� �� � v ≥ 0

8>>>><
>>>>:

1
CCCCA (1)

Instead, in other researches,52 a piecewise function
was used, Equation (2), in which the truncated area for
v < 0 was not spread in the domain 0 ≤ v < +∞ as in
Equation (1).

f TND vð Þ ¼
0 v < 0

1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ
σ

� �2� �
v ≥ 0

8<
:

1
A (2)

This approach presents the advantage of making the
determination procedure of the distribution parameters
simpler and computationally less expensive. However,
despite this approach leads to a correct representation of
the wind speeds that are zero or near zero, it does not
respect the constraint of the unitary value of the area
subtended to the distribution. Definitively, this approach
is very accurate only when the area subtended for v < 0
is small.

Summarizing, on the one hand, the truncation leads to
a correct representation of the statistical distribution
characterized by high frequencies at reduced wind
speeds, but on the other hand,

• When the approach of Equation (1) is used, namely,
the area subtended for v < 0 is spread in the entire
domain 0 ≤ v < +∞, all relative frequencies indis-
criminately increases;

• When the approach of Equation (2) is used, namely,
the area subtended for v < 0 is not spread in the entire
domain 0 ≤ v < +∞, the relative frequencies corre-
sponding to the high wind speeds, namely, the EWS,
are usually underestimated.52

An incorrect interpolation of the relative frequencies
of the EWS gives rise to an underestimation of the mean,
mean square, and mean cubic wind speeds. Specifically,
the calculation of the characteristic mean wind speeds,
respectively, is determined by the products, between v
and f (v), v2, and f (v), and v3 and f (v). Therefore, the
underestimation of the relative frequencies of the EWS
determines a more accentuated error by increasing the



MAZZEO ET AL. 7
grade of the mean wind speed. This is important since the
available average power and energy are directly propor-
tional to the mean cubic wind speed, while some important
wind properties, such as the standard deviation and Fisher
asymmetry, are dependent on the mean and mean square
wind speeds, as described in the successive section.

In a very similar way, the problems related to the trun-
cation of the ND can be extended to the mixture of two
truncated normal distributions (MTTND). This distribu-
tion, in addition to allowing the problem of the correct
representation of the CWS to be overcome, allows repro-
ducing bimodal trends. However, also, this distribution is
usually not able to describe distributions characterized by
frequent EWS.52

The main objective of this paper is to propose a
correction to the two‐parameter TND and five‐parameter
MTTND for a more accurate representation of unimodal
or bimodal shapes at the centre wind speeds, CWS, and
EWS simultaneously. Starting from the approach of Equa-
tion (2), the CTND and CMTTND proposed permit to
recovery with a physical criterion the area lost in the trun-
cation process for v < 0 to improve the overall accuracy.
This criterion consists of spreading the truncated area only
in proximity to the EWS values. In particular, a corrective
function dependent on a new parameter characterizing
the EWS was introduced. For the first time, analytical
expressions of the characteristic mean wind speeds of
these distributions were obtained and validated using the
numerical integration method.

The CTND and CMTTND accuracies were compared
with that of the most common unimodal and bimodal
distributions by using different GOF test and by calculat-
ing the box plots of errors in the determination of the
characteristic mean wind speeds in some Italian and
American meteorological stations.53,54
2 | METHODOLOGY

2.1 | Characterization of the wind speed
data

The availability of the wind resource is modelled by
means of analytical functions able to approximate the sta-
tistical distributions of real wind speed intensity data over
a long period and some relevant properties (mean wind
speed, extreme wind speeds, irregularities, and so on).
Having a sample of mean wind speed data calculated con-
sidering a time interval Δt, for example, of 10 minutes,
concerning an observation period T equal to one or more
years, it is possible to calculate the mean wind speed,
mean square wind speed, and mean cubic wind speed,
characteristics of the entire observation period,
Equations (3a), (3b), and (3c):

Vm1 ¼ 1
N
∑
N

i¼1
Vi (3a)

Vm2 ¼ 1
N
∑
N

i¼1
V2
i

� �1=2

(3b)

Vm3 ¼ 1
N
∑
N

i¼1
V3
i

� �1=3

(3c)

where
Vi is the ith experimental mean wind speed related to

the time interval Δt = T/N, with N the number of wind
speed observations;

Vm1, Vm2, and Vm3 are the characteristic mean wind
speeds in the entire observation period T.
The characteristic mean wind speeds are very useful to

evaluate important wind properties of a locality.
The mean cubic wind speed allows calculation of the

available mean power Pa, Equation (4), and the available
energy Ea, Equation (5):

Pa ¼ 1
2
ρA0V3

m3; (4)

Ea ¼ PaT ¼ 1
2
ρA0V

3
m3T; (5)

where
ρ is the air density and
A0 is the swept area of blades.

The mean and mean square wind speeds are used to
quantify the standard deviation σ, namely, the dispersion
of the wind speed values compared to the mean value:

σ ¼
∑
N

i¼1
Vi−Vm1½ �2

N

2
6664

3
7775
1=2

¼ V2
m2−V

2
m1

	 
1=2
: (6)

The discrete PDF f (Vi) is used to statistically represent
a sufficiently large sample of wind speed. The asymmetry
of this distribution is quantifiable by the Fisher coeffi-
cient γ, Equation (7), the ratio of the central moment of
the third order, and the cube of the standard deviation.
This coefficient can be easily calculable starting from
the use of all the characteristic mean wind speeds:

γ ¼

∑
N

i¼1
Vi−Vm1ð Þ3

N
σ3

¼ V3
m3 − 3V2

m2Vm1 þ 2V2
m1

σ3
: (7)

The discrete PDF can be described analytically by the
continuous PDF f (v), which has the fundamental prop-
erty of the unitary subtended area. Starting from f (v), it
is possible to calculate the relative frequency of all the
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wind speeds that are lower than a given value v, to obtain
in this way, the cumulative density function (CDF) F (v),
expressed by Equation (8):

F vð Þ ¼ ∫
v

0f ξð Þdξ: (8)

The general analytical expressions for the calculation
of the characteristic mean wind speeds as a function of
f (v) are expressed by Equations (9a), (9b), and (9c).

Vm1 ¼ ∫
þ∞
0 v f vð Þdv
∫
þ∞
0 f vð Þdv

(9a)

Vm2 ¼ ∫
þ∞
0 v2f vð Þdv
∫
þ∞
0 f vð Þdv

 !1=2

(9b)

Vm3 ¼ ∫
þ∞
0 v3f vð Þdv
∫
þ∞
0 f vð Þdv

 !1=3

(9c)

For some continuous distributions, it is possible to
solve analytically the integrals of the Equations (9a),
(9b), and (9c). In other cases, when f (v) has a complex
analytical structure, numerical integration is used.
2.2 | Correction of the unimodal and
bimodal truncated normal distributions

2.2.1 | Corrected truncated normal distri-
bution (CTND)

PDF and CDF
The PDF of the CTND, f CTND(v), was defined starting from
the TND, f TND(v), in turn obtained from an ND by elimi-
nating all relative frequencies for v < 0. In particular, to
restore the unit value of the area subtended by the distribu-
tion, the truncated area was used to increase the relative
frequencies of only the EWS. The PDF of the CTND is a
piecewise function defined by Equation (10):
FCTND vð Þ ¼

0
1
2

1þ erf
v − μffiffiffi
2

p
σ

� �� �
1
2

1þ erf
v − μffiffiffi
2

p
σ

� �� �
− KI exp −

v
KI

� �
KI −ð

8>>>>><
>>>>>:
f CTND vð Þ ¼

0 v < 0
1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ
σ

� �2� �
0 ≤ v < μþ σ

1

σ
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ
σ

� �2� �
þ g vð Þ v ≥ μþ σ

8>>>>><
>>>>>:

1
CCCCCA

(10)

where μ is the position parameter of the TND, ie, themean,
σ is the shape parameter of the TND, ie, the standard devi-
ation, and g(v) is a corrective function of the EWS.

The subdomain of EWS was identified starting from
the second inflexion of the TND, ie, from the wind speed
v = μ + σ, in which the tangent to the TND reaches the
minimum value and the concavity is inverted. The func-
tion g(v) must respect the following constraints:

1) g(v) has a positive domain (v ≥ 0), since the wind
speed can only assume values greater than or zero,
and positive codomain (g(v) ≥ 0), since the function
g(v) has the task to increase the relative frequencies
starting from the inflexion point v = μ + σ;

2) to make the area subtended by the CTND unitary,
the area between the function f TND(v)+g(v) and the
function f TND(v), for v > μ + σ, must be equal to
the area removed as a result of the truncation;

3) the continuity condition requires a value of the func-
tion g(μ + σ) = 0 in the point v = μ + σ;

4) the function g(v) must tend to zero for v tending to
+∞ and, taking into account condition 3), the func-
tion g(v) must have a maximum.

The function g(v) that satisfies conditions 1), 3), and 4)
can be placed in the following form:

g vð Þ ¼ v − μþ σð Þ½ � exp −
v
KI

� �
: (11)

The new parameter KI, characteristic of the CTND, is
the extreme wind speed parameter, index of the entity
of the relative frequencies of the EWS.

Replacing Equation (10) into Equation (8) and by
solving the integral, the CDF equation is obtained,
Equation (12).
v < 0

0 ≤ v < μþ σ

μ − σ þ vÞ þ K2
I exp −

μþ σ
KI

� �
v ≥ μþ σ

1
CCCCCA (12)
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The analytical expression of the parameter KI is obtained
from condition 2) of the PDF and CDF section:

∫
þ∞
μþσg vð Þdv ¼ 1 − AIð Þ; (13)

where AI is the area subtended by the TND, complement
to one of the CDF F CTND(v) for v = 0.

1 − AIð Þ ¼ FCTND 0ð Þ ¼ 1
2

1 − erf
μffiffiffi
2

p
σ

� �� �
(14)

The resolution of the integral in Equation (13) leads to
the equality K2

I exp − μþ σð Þ=K I½ � ¼ 1 − AIð Þ. This equa-
tion has two solution roots, of which only the positive
one allows respecting constraint 4), Equation (15).

K I ¼ μþ σð Þ=2
lambertw 0;

μþ σð Þ
2

· 1
2 1− erf μffiffi

2
p

σ

� �h in o−1=2
� �;

(15)

where lambertw(0,x) is the principal branch of the Lam-
bert W function. The Lambert W function W(x) is a set
of solutions of the equation x = W(x)eW(x).

The parameter KI is determined by the two parameters
μ and σ of the TND. Consequently, the correction made
by means of the function g(v) does not increase the com-
putational burden of the calculation compared with that
of the TND, since KI is a dependent parameter that can
be calculated explicitly once the TND parameters are
known.

Characteristic mean wind speeds of the CTND
The piecewise function that defines the CTND, Equa-
tion (10), was used to determine the mathematical
expressions of the characteristic mean wind speeds, tak-
ing into account that the area subtended by the CTND

is unitary, ∫
þ∞
0 f CTND vð Þdv ¼ 1.

• Mean wind speed

The mean wind speed of the CTND Vm1,CTND can be
calculated as a function of the mean wind speed of the
TND Vm1,TND,

52 as demonstrated by Equations (16)
and (17).

Vm1;CTND ¼ ∫
þ∞
0 v f CTND vð Þdv
∫
þ∞
0 f CTND vð Þdv

¼ ∫
þ∞
0 v f CTND vð Þdv

¼ ∫
þ∞
0 v f TND vð Þdvþ ∫

þ∞
μþσv g vð Þdv; (16)
Vm1;CTND ¼ ∫
þ∞
0 v f TND vð Þdv
∫
þ∞
0 f TND vð Þdv

∫
þ∞
0 f TND vð Þdv

þ ∫
þ∞
μþσv g vð Þdv ¼ Vm;TND AI

þ ∫
þ∞
μþσv g vð Þdv ¼ Vm1;TND AI

þ ΔVm1;CTND; (17)

where Vm1,TND is expressed by the equation reported in
the Appendix, AI is the area subtended by the TND, and
ΔVm1,CTND is the mean wind speed correction that is
expressed by Equation (18).

ΔVm1;CTND ¼ ∫
þ∞
μþσv g vð Þdv

¼ K2
I μþ σ þ 2KIð Þ exp −

μþ σð Þ
K I

� �
: (18)

• Mean square wind speed

The mean square wind speed of the CTND Vm2,CTND

can be calculated as a function of the mean square wind
speed of the TND Vm2,CTND,

52 as demonstrated by Equa-
tions (19) and (20).

V 2
m2;CTND ¼ ∫

þ∞
0 v2 f CTND vð Þdv
∫
þ∞
0 f CTND vð Þdv

¼ ∫
þ∞
0 v2f TND vð Þdvþ ∫

þ∞
μþσv

2 g vð Þdv; (19)

V2
m2;CTND ¼ ∫

þ∞
0 v2 f TND vð Þdv
∫
þ∞
0 f TND vð Þdv

∫
þ∞
0 f TND vð Þdv

þ ∫
þ∞
μþσv

2 g vð Þdv
¼ V2

m2;TND AI þ ∫
þ∞
μþσv

2 g vð Þdv
¼ V2

m2;TND AI þΔV2
m2;CTND; (20)

where V2
m2;TND is expressed by the equation reported in

the Appendix and ΔV2
m2;CTND is the mean square wind

speed correction that is expressed by Equation (21).

ΔV2
m2;CTND ¼ K2

I μþ σð Þ2 þ 4K I μþ σð Þ þ 6K2
I

� �
exp −

μþ σð Þ
KI

� �
:

(21)

• Mean cubic wind speed

The mean cubic wind speed of the CTND Vm3,CTND

can be calculated as a function of the mean cubic wind
speed of the TND Vm3,CTND,

52 as demonstrated by Equa-
tions (22) and (23).
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V3
m3;CTND ¼ ∫

þ∞
0 v3 f CTND vð Þdv
∫
þ∞
0 f CTND vð Þdv

¼ ∫
þ∞
0 v3f TND vð Þdvþ ∫

þ∞
μþσv

3 g vð Þdv; (22)

V3
m3;CTND ¼ ∫

þ∞
0 v3 f TND vð Þdv
∫
þ∞
0 f TND vð Þdv

∫
þ∞
0 f TND vð Þdv

þ ∫
þ∞
μþσv

3 g vð Þdv
¼ V3

m3;TND AI þ ∫
þ∞
μþσv

3 g vð Þdv
¼ V3

m3;TND AI þ ΔV3
m3;CTND; (23)

where V3
m3;TND is expressed by the equation reported in

the Appendix and ΔV3
m3;CTND is the mean cubic wind

speed correction that is expressed by Equation (24).

ΔV 3
m3;CTND ¼ K2

I ½ μþ σð Þ3 þ 6K I μþ σð Þ2
þ 18K2

I μþ σð Þ þ 24K3
I �

� exp −
μþ σð Þ
K I

� �
:

(24)

Equations (17), (20), and (23) show that a given char-
acteristic mean wind speed of CTND depends on the cor-
responding characteristic mean wind speed of the TND,
area subtended by the TND, and on the relative mean
wind speed correction, in turn dependent on the parame-
ter K

I
. All these quantities are only determined by the

mean μ and standard deviation σ of the TND.
f CMTTND vð Þ ¼

0

w1
1

σ1
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ1
σ1

� �2
" #

þ w2
1

σ2
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ
σ2

�"

w1
1

σ1
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ1
σ1

� �2
" #

þ w2
1

σ2
ffiffiffiffiffiffi
2π

p exp −
1
2

v−μ
σ2

�"

8>>>>>>><
>>>>>>>:

FCMTTND vð Þ ¼

0

1
2
w1 1þ erf

v − μ1ffiffiffi
2

p
σ1

� �� �
þ 1
2
w2 1þ erf

v − μ2ffiffiffi
2

p
σ2

� �� �
−
1
2
w1 1

�

1
2
w1 1þ erf

v − μ1ffiffiffi
2

p
σ1

� �� �
þ 1
2
w2 1þ erf

v − μ2ffiffiffi
2

p
σ2

� �� �
−
1
2
w1 1

�

−KII exp −
v
KII


 �
KII − μ2 − σ2 þ vf Þ þ K2

II exp −
μ2 þ σ2

K II




8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
2.2.2 | Corrected mixture of two truncated
normal distributions (CMTTND)

PDF and CDF
The PDF of the proposed CMTTND in this work was
defined starting from the PDF of the MTTND,52 a mixture
of two TNDs, respectively, with mean μ1 and μ2, variance
σ1 and σ2, and weight w1 and w2. The condition of the
unitary area subtended by the distribution in the domain
(−∞, +∞) for the MTTND leads to the equation
w1+w2 = 1.

The correction to be made to the MTTND to take into
account the truncated area is similar to that already
described in Section 2.2.1. Unlike the CTND,whose correc-
tion has been made starting from the inflexion point v = μ
+ σ of the TND, in the mixture distribution, it is necessary
to establish on which of the two TNDs to make the correc-
tion. Based on the results of the study presented in Mazzeo
et al,52 it is possible to attribute the underestimation of rel-
ative frequencies related to the high wind speeds to the
TND with μ2 greater than μ1, ie, the TND closest to the
EWS. Therefore, a function h(v) was defined to be added
to the MTTND starting from the inflexion point v= μ2+σ2.

The selected function h(v) must respect the same con-
straints and has the same characteristics as the function
g(v) used to define the CTND in the PDF and CDF
section. The analytical expression of the three‐parameter
function h(v) is obtained by substituting μ2 and σ2 to μ
and σ in Equation (11). The third parameter KII is the
extreme wind speed parameter of the CMTTND.

The PDF of the CMTTND is a piecewise function
represented by Equation (25):
v < 0

2
�2
#

0 ≤ v < μ2 þ σ2

2
�2
#
þ v − μ2 − σ2ð Þ exp −

v
KII

� �
v ≥ μ2 þ σ2

1
CCCCCCCA

(25)
The CDF of the CMTTND is
v < 0

þ erf
μ1ffiffiffi
2

p
σ1

� ��
−
1
2
w2 1þ erf

μ2ffiffiffi
2

p
σ2

� �� �
0 ≤ v < μ2 þ σ2

þ erf
μ1ffiffiffi
2

p
σ1

� ��
−
1
2
w2 1þ erf

μ2ffiffiffi
2

p
σ2

� �� �
�

v ≥ μ2 þ σ2

1
CCCCCCCCCCCCCA

(26)
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Similarly to the procedure used for the parameter KI of the
CTND, the analytical expression for the evaluation of the
parameter KII was obtained by imposing the condition that
the area between the function fMTTND(v)+h(v) and the
function fMTTND(v) is equal to the truncated area for v < 0.

∫
þ∞
μ2þσ2h vð Þdv ¼ 1 − AIIð Þ; (27)

where AII is the area subtended by the MTTND, comple-
ment to one of the CDF FMTTND(v) for v = 0.

1 − AIIð Þ ¼ FMTTND 0ð Þ
¼ w1FTND;1 0ð Þ þ w2FTND;2 0ð Þ
¼ 1

2
w1 1 − erf

μ1ffiffiffi
2

p
σ1

� �� �
þ 1
2
w2 1 − erf

μ2ffiffiffi
2

p
σ2

� �� �
 �
(28)

The resolution of the integral in Equation (27) leads to
the equation K2

II exp − μ2 þ σ2ð Þ=K II½ � ¼ 1 − AIIð Þ. In an
analogous manner to the CTND, this equation has two
solution roots, of which only the positive one satisfies
the constraint 4), Equation (29).
K II ¼ μ2 þ σ2ð Þ=2
lambertw 0;

μ2 þ σ2ð Þ
2

· 1
2w1 1− erf μ1ffiffi

2
p

σ1

� �h i
þ 1

2w2 1− erf μ2ffiffi
2

p
σ2

� �h in o−1=2
� �: (29)
The parameter KII depends on the weight w1, means
μ1 and μ2, and variances σ1 and σ2 of the two TNDs.
Consequently, also in this case, the correction by means
of the function h(v) does not increase the computational
burden of the calculation compared to that of the
MTTND.

Characteristic mean wind speeds of the CMTTND
Also for the CMTTND, the analytical expressions for the
calculation of the mean, mean square, and mean cubic
wind speeds Vm1,CMTTND, Vm2,CMTTND, and Vm3,CMTTND

were determined. The expressions obtained are analogous
to Equations (17), (20), and (23) with

• the area subtended by the MTTND AII to be replaced
to AI;

• the characteristic mean wind speeds of the MTTND
Vm1,MTTND, Vm2,MTTND, and Vm3,MTTND to be replaced
to those related to the TND;

• the mean wind speed corrections ΔVm1,CMTTND,
ΔVm2,CMTTND, and ΔVm3,CMTTND calculable with
Equations (18), (21), and (24) in which KII, μ2, and
σ2 are to be replaced to KI, μ, and σ.
2.2.3 | Examples of CTNDs and CMTTNDs
by varying the characteristic parameters

In this section, a systematic parametric investigation was
carried out as a function of main characteristic parame-
ters of CTND and CMTTND to show their capabilities in
the statistical representation of different wind speed
regimes. In particular, starting from some TNDs
obtained for different values of the two parameters μ
and σ, the relative CTNDs were assessed by calculating
the relative values of KI. In a similar way, starting from
the same TNDs, different MTTNDs were obtained for
different values of w2, μ2, and σ2, and the relative values
of KII were evaluated to build the corresponding
CMTTNDs. Table 2 lists the set of characteristic param-
eters employed for this parametric analysis, with the
obtained values of AI and KI for the CTND and AII

and KII for the CMTTND.
In particular, four different groups of CMTTNDs
were considered. Each group, composed of five
CMTTNDs, is related to a constant value of the param-
eters w1, μ1, σ1, and w2 = (1 − w1) and to different
values of μ2 and σ2. More in detail, the variation of μ2
and σ2 was set in such a way that the sum (μ2 + σ2)
remains constant while the ratio (μ2/σ2) changes.
Starting from the group 1 of CMTTNDs, group 2 was
obtained by exchanging only weights w1 and w2, group
3 was obtained by modifying only the ratio (μ1/σ1),
and group 4 was obtained starting from group 3 by
changing only (μ2 + σ2) and (μ2/σ2).

With reference to the CTND, Table 2 highlights that
the extreme wind speed parameter KI becomes greater
by increasing the truncated area (1 − AI), obtained with
a reduction of (μ/σ) and growth of (μ + σ).

As regards the MTTND,

• for a specific group, namely, by varying only the value
of (μ2/σ2), the parameters KII and (1 − AII) increase by
reducing (μ2/σ2);



TABLE 2 Characteristic parameters of some CTNDs and CMTTNDs

TND CTND μ σ μ + σ μ/σ AI KI

1 1 1.00 1.00 2.00 1.00 0.84 1.041

2 2 1.00 1.00 2.00 1.00 0.84 1.041

3 3 1.00 1.50 2.50 0.67 0.75 1.307

4 4 1.00 1.50 2.50 0.67 0.75 1.307

TND CMTTND w1 μ1 σ1 μ1/σ1 w2 μ2 σ2 μ2 + σ2 μ2/σ2 AII KII

1 1 0.70 1.00 1.00 1.00 0.30 1.25 1.50 2.75 0.83 0.828 1.248
2 0.70 1.00 1.00 1.00 0.30 1.50 1.25 2.75 1.20 0.854 1.200
3 0.70 1.00 1.00 1.00 0.30 1.75 1.00 2.75 1.75 0.877 1.154
4 0.70 1.00 1.00 1.00 0.30 2.00 0.75 2.75 2.67 0.888 1.131
5 0.70 1.00 1.00 1.00 0.30 2.25 0.50 2.75 4.50 0.889 1.128

2 6 0.30 1.00 1.00 1.00 0.70 1.25 1.50 2.75 0.83 0.811 1.277
7 0.30 1.00 1.00 1.00 0.70 1.50 1.25 2.75 1.20 0.872 1.165
8 0.30 1.00 1.00 1.00 0.70 1.75 1.00 2.75 1.75 0.924 1.036
9 0.30 1.00 1.00 1.00 0.70 2.00 0.75 2.75 2.67 0.950 0.951
10 0.30 1.00 1.00 1.00 0.70 2.25 0.50 2.75 4.50 0.952 0.941

3 11 0.70 1.00 1.50 0.67 0.30 1.25 1.50 2.75 0.83 0.763 1.350
12 0.70 1.00 1.50 0.67 0.30 1.50 1.25 2.75 1.20 0.789 1.312
13 0.70 1.00 1.50 0.67 0.30 1.75 1.00 2.75 1.75 0.811 1.276
14 0.70 1.00 1.50 0.67 0.30 2.00 0.75 2.75 2.67 0.822 1.258
15 0.70 1.00 1.50 0.67 0.30 2.25 0.50 2.75 4.50 0.823 1.256

4 16 0.70 1.00 1.50 0.67 0.30 4.50 1.75 6.25 2.57 0.822 2.006
17 0.70 1.00 1.50 0.67 0.30 4.75 1.50 6.25 3.17 0.823 2.003
18 0.70 1.00 1.50 0.67 0.30 5.00 1.25 6.25 4.00 0.823 2.002
19 0.70 1.00 1.50 0.67 0.30 5.25 1.00 6.25 5.25 0.823 2.002
20 0.70 1.00 1.50 0.67 0.30 5.50 0.75 6.25 7.33 0.823 2.002
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• by comparing group 2 with group 1, namely, by reduc-
ing the weight w1, the parameters KII and (1 − AII)
increase for (μ2/σ2) < 1 and reduce for (μ2/σ2) > 1;

• by comparing group 3 with group 1, namely, by reduc-
ing the ratio (μ1/σ1), the parameters KII and (1 − AII)
increase for any value of (μ2/σ2);

• by comparing group 3 with group 4, namely, by
increasing the sum (μ2 + σ2) and the ratio (μ2/σ2)
simultaneously, the truncated area (1 − AII) is
reduced while KII is increased. In addition, for group
4, namely, for a high value of (μ2 + σ2), the variation
of (1 − AII) and KII by varying (μ2/σ2) is very
contained.

In this way, a width representative sample of wind
speed regimes with different unimodal and bimodal
behaviours and different CWS and EWS values were
obtained. Figure 1 reports the functions g(v) and h(v)
employed to correct the relative TNDs and MTTNDs on
the left, the TND and the relative CTND at the centre,
and the five MTTNDs and the relative CMTTNDs on
the right. The different considered groups are reported
in the figure from the top towards the bottom.
Definitively, the extreme wind speed parameters KI

and KII quantify the extreme wind speed values and the
relative frequencies at the EWS.
2.3 | Unimodal and bimodal conventional
distributions

Nine conventional PDFs were considered to be compared
in terms of accuracy with the CTND and the CMTTND.
Three of these conventional PDFs are unimodal and six
bimodal, which are obtained starting from the same
unimodal distributions:

• unimodal distributions
• two‐parameter Weibull distribution (W2D)
• two‐parameter truncated normal distribution (TND)
• three‐parameter Burr distribution (B3D)
• bimodal distributions
• mixture Weibull‐Weibull distribution (W2W2D)
• mixture Weibull–truncated normal distribution

(W2TND)
• mixture Weibull‐Burr distribution (W2B3D)



FIGURE 1 For different values of the parameters: on the left, functions g(v) and h(v); at the centre, TND and CTND; on the right,

MTTNDs and CMTTNDs [Colour figure can be viewed at wileyonlinelibrary.com]
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• mixture truncated normal–Burr distribution (TNB3D)
• mixture Burr‐Burr distribution (B3B3D)
• mixture truncated normal–truncated normal distribu-

tion (MTTND)

The distributions considered, the characteristic param-
eters, the expressions of the PDFs and CDFs, and the
domain of the random variable v are shown in Table 3.

The analytical expressions of the characteristic mean
wind speeds of the different distributions are shown in
Table 4.

2.4 | Estimation of the distribution
parameters

As well established in the most relevant research
papers,8,15,20 the most used methods for the estimation
of the distribution parameters are the moment method,
maximum likelihood method, and least squares (LS)
method. Among these ones, for all the PDFs considered
in this article, the non‐linear regression LS method,
valid for both a single distribution and mixture distribu-
tions, was used. This permit to develop a uniform
comparison among the distributions and localities
considered.

The method consists in minimizing the residuals,
namely, the sum of the squares of the difference between
the data observed and data estimated by the analytical
function. More details can be found in Mazzeo et al.52

This method permits to overcome all problems deriving
from the application of the maximum likelihood method
that leads to strongly non‐linear equations, which in the
case of mixture distributions contain the sum of loga-
rithms. In these cases, the unknown parameters are not

http://wileyonlinelibrary.com
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analytically calculable and a numerical and iterative
approach is required.

To implement the non‐linear LS method, the curve
fitting toolbox of MATLAB55 was used, which employs
the iterative trust‐region algorithm to determine the opti-
mal distribution parameters after a number iterations
starting from initial values set.

The tool requires as input the vector containing the
values of the experimental discrete PDF for each wind
speed class and the analytical PDF equation. In addi-
tion, permits to set some constraints on the parameters
and a convergence criterion. As output, it provides the
PDF parameters that lead to the minimization of the
residuals.
2.5 | Goodness‐of‐fit and accuracy in the
estimation of the characteristic mean wind
speeds

Generally, the accuracy of distribution is quantified with
correlation indices. This criterion makes it possible to
evaluate the dispersion between the experimental relative
frequencies and the estimated ones regardless of the wind
speed value at the different classes. To evaluate the GOF
of distributions considered, the statistical indices R2 and
RMSE, calculated for both the PDF and CDF, were used
in this work. The R2 measures the strength of the correla-
tion between predicted and experimental distributions.
Instead, RMSE quantifies the square root of the mean
square of the differences between predicted and experi-
mental distributions.

An excellent correlation between the analytical and
experimental distribution does not ensure high accuracy
in the calculation of the characteristic mean wind speeds.
In fact, these mean wind speeds are dependent, in addi-
tion to the relative frequencies associated with the differ-
ent wind speed classes, also on the corresponding values
of wind speeds as evidenced by Equations (9a), (9b),
and (9c). For this reason, in addition to the indices of
GOF, the accuracy of the different distributions was eval-
uated by comparing the experimental and analytically
calculated mean wind speeds.

The comparison was made by evaluating the relative
percentage error, obtained through the following
equation:

ε ¼ 100
Vmr − Vmr; exp

Vmr; exp
; (30)

where Vmr indicates the mean wind speed of rth degree
and Vmr,exp represents the corresponding value evaluated
from the experimental data.
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To identify the accuracy of distribution in the estima-
tion of the characteristic mean wind speeds in different
locations, it is necessary to use synthetic statistical indices
of the relative error. For this reason, a box plot represen-
tation of the relative error was used. The fundamental
parameters of a box plot are the mean value, the median
value, and the interquartile range IQR13, between the first
and third quartiles. The distance between the first and the
second quartile IQR12 and that between the second and
the third quartile IQR23 allow the identification if the
error distribution is symmetric. If these distances are dif-
ferent, for example, with IQR12 < IQR23, any value of
error lower than the median value is more frequent than
any value of error greater than the median value. Vice
versa for IQR23 < IQR12. Consequently, if the median
error is positive, an error less than the median error,
closer to zero, is more probable when IQR12 < IQR23,
while if the median error is negative, an error greater
than the median, closer to zero, is more probable when
IQR23 < IQR12.

The values of the relative errors obtained in the differ-
ent locations were used to trace the box plots for each dis-
tribution and were summarized by means of a
deterministic index, the mean value of the relative error,
and a statistical dispersion index, namely, the interquar-
tile range IQR13. An accurate distribution in the estima-
tion of characteristic mean wind speeds is characterized
by a mean value of the relative error and by an IQR value
close to zero.
2.6 | Case study

To verify the accuracy of the proposed CMTTND, as well as
of the CTND, wind speed data in seven different locations
were considered. For each location, the discrete PDFs and
CDFs, as well as the experimental statistical characteristic
quantities described in Section 2.1, were determined. Sub-
sequently, the parameters of the different distributions
were estimated using the non‐linear regression LS method
described in Section 2.4. Characteristic mean wind speeds
were evaluated both by using the analytical equations,
Equations (17), (20), and (23) for the CTND and the
CMTTND and those reported in Table 4 for the conven-
tional distributions, and the numerical integrationmethod
of Equations (9a), (9b), and (9c). The CMTTND accuracy,
in the representation of the discrete distribution of the
measured data and in the estimation of the characteristic
mean wind speeds (Vm1, Vm2, and Vm3), was compared
with that of the other PDFs through the statistical disper-
sion indices chosen in Section 2.5.

The wind speed data considered are related to four
weather stations located along the Italian coasts at the
sea level,53 Ancona, Crotone, Messina, Porto Empedocle,
and three inland American stations belonging to the
National Renewable Energy Laboratory NREL.54 One sta-
tion is located in Las Vegas (Nevada) at an altitude of 523
m a.s.l. and the other two in Golden (Colorado), namely,
the stations baseline measurement system (BMS) and
rotating shadowband radiometer (RSR), at the same lati-
tude, similar longitude and different altitudes, respec-
tively, of 1829 m a.s.l. and 1793 m a.s.l. Table 5 shows
the geographical location of the seven stations. The local-
ities considered are characterized by different wind
regimes:

• the discrete PDFs of Ancona and Messina show an
accentuated bimodal trend with two maximum values
with the first locality characterized by a greater fre-
quency of CWS than the second one;

• Crotone has a slight bimodal trend with high relative
frequencies at high wind speeds;

• Porto Empedocle has a slight bimodal trend with high
CWS and high relative frequencies at high wind
speeds;

• Nevada presents a unimodal trend with a high asym-
metry with no CWS and a reduced variation range of
wind speed;

• Colorado (BMS) presents a unimodal trend with a
high asymmetry and CWS;

• Colorado (RSR) has a unimodal trend with a reduced
variation range of wind speed and a high maximum
relative frequency.

The experimental data refer to a period of 3 years:
from 2012 to 2014 for the weather stations of Messina
and Crotone and from 2014 to 2016 for the remaining sta-
tions. The wind speed data of the Italian locations are
measured and summarized with a frequency of 10
minutes, while the data of the American stations are
measured with a frequency of one minute. To make uni-
form the samples, wind speeds data were subsequently
summarized with a frequency of 10 minutes by means
of the mean value. All measurements were made at a
height of 10 m.

For the calculation of the discrete PDF and CDF for
each location, the wind speed domain was subdivided
into classes of 0.5 m/s, with reference value the one
relative to the centre of the class. Table 5 also shows
the experimental characteristic quantities: mean wind
speed Vm1, standard deviation σ, maximum wind speed
Vmax, wind speed at the highest relative frequency
V fmax, maximum relative frequency fmax, relative fre-
quency at the CWS f (0), mean square wind speed
Vm2, mean cubic wind speed Vm3, and fisher asymmetry
coefficient γ.
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3 | RESULTS AND DISCUSSION

3.1 | Adaptation of distributions to the
experimental data

3.1.1 | Comparison between the CMTTND
and MTTND

Experimental wind speed data from the different loca-
tions were used to estimate the parameters that appear
in the CMTTND and in the MTTND by using the non‐
linear regression LS method. Table 6 shows the weight,
mean, and variance values of the TND,1 and TND,2 that
compose the MTTND and the related area subtended AII,
as well as the parameter KII that appears in the
CMTTND.

The high difference between the means μ1 and μ2 con-
firms the bimodal behaviour of the wind speed distribu-
tion in the localities Ancona, Crotone, Messina, and
Porto Empedocle. The entity of bimodality is determined
by the value of the weights and the variances. The high
values of KII for the locations Porto Empedocle, Colorado
(BMS), Crotone, and Messina are owing to the higher
value of the maximum wind speed, see Table 5, ie, the
position of the inflexion point v = (μ2 + σ2) and the trun-
cated area (1 − AII); see Table 6.

Figure 2 shows, for the different locations, a compari-
son: in terms of PDF on the left and CDF on the right,
between the CMTTND, the MTTND, and the discrete
experimental distribution. The TND,1 and TND,2, and
the h(v) function are also shown in the image.

From the qualitative point of view, the figures show
that the CMTTND adapts very well to the various PDFs
and CDFs of discrete distributions, especially in locations
with higher values of EWS and corresponding relative
frequencies. Moreover, thanks to the correction made by
the h(v) function, the CDF reaches the unit value for all
locations at high wind speeds.
3.1.2 | Comparison of the CTND and
CMTTND with the conventional
distributions

Experimental wind speed data were also used to estimate
the parameters of the distributions W2D, TND, CTND,
B3D, W2W2D, W2TND, W2B3D, TNB3D, and B3B3D,
as described in Section 2.4. The values of the parameters
obtained in the different locations are shown in Table 7.
As for the CTND, in the same table, the value of the area
subtended by the TND is also reported.

Figures 3 and 4 show a graphical comparison for the
locations considered: on the left, between the proposed



TABLE 6 Parameters of the CMTTND and MTTND in the locations considered

Parametri Ancona Crotone Messina Nevada Colorado (BMS) Colorado (RSR) Porto Empedocle

w1 0.114 0.406 0.107 0.442 0.488 0.765 0.384

μ1 0.786 1.659 1.367 0.944 2.359 2.167 1.817

σ1 0.339 0.734 0.593 0.584 1.117 0.861 0.930

w2 0.886 0.594 0.893 0.558 0.5121 0.235 0.616

μ2 3.019 4.724 4.577 2.551 3.404 3.583 4.624

σ2 1.967 2.825 2.554 1.662 2.887 1.595 3.162

AII 0.944 0.967 0.966 0.942 0.931 0.993 0.946

KII 1.404 1.691 1.632 1.269 1.692 1.040 1.868
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and conventional PDFs and the discrete experimental
PDF and, on the right, between the proposed and conven-
tional CDFs and the discrete experimental CDF. In par-
ticular, Figure 3 regards the unimodal distributions,
while Figure 4 the bimodal distributions.

The bimodal distributions are qualitatively more suit-
able to represent the different wind regimes considered.

A comparison of Tables 6 and 7 shows that the TND
has lower area values lower than those of the MTTND,
denoting that with the correct representation of the
CWS is associated a lower accuracy in the estimation
of the relative frequencies of the other wind speeds.
The correction allows recovering this area for both
distributions.
3.2 | Comparison of the CTND and
CMTTND with the conventional
distributions

3.2.1 | Goodness‐of‐fit

To estimate the accuracy of the CTND and CMTTND and
of the other distributions in the representation of the
experimental data, the statistical dispersion indices R2

and RMSE were evaluated. The results obtained for the
different locations are shown in Table 8. The indices were
determined for both PDF, R2

PDF and RMSEPDF, and for
the CDF, R2

CDF and RMSECDF.
The table shows that

• in most cases, bimodal distributions have R2 values
higher and RMSE values lower than those obtained
using unimodal distributions;

• the PDF and CDF of the CMTTND provide a very
accurate representation, regardless of the wind
regime, compared with the other distributions
considered;
• the CMTTND is very accurate with R2 values greater
than 0.977 (except for the Nevada station where R2

= 0.917) and RMSE values always lower than 0.054;
• the accuracy of the MTTND is comparable with that

of the CMTTND, with an R2 value of not less than
0.978 (except for the Nevada station where R2 =
0.914) and RMSE values no higher than 0.071;

• the distributions that use only TNDs, ie, the TND,
CTND, MTTND, and CMTTND, in the locality of
Nevada, characterized by the absence of CWS, are less
adequate than the other unimodal and bimodal distri-
butions since for v = 0 it is defined and different from
zero;

• the mixture TNB3D is the only one to have an R2

never lower than 0.990, while the W2D, W2W2D,
and W2B3D are the only ones with RMSE values
always lower than 0.042.
3.2.2 | Accuracy in the estimation of the
characteristic mean wind speeds

For the locations considered, the mean wind speed, mean
square wind speed, and mean cubic wind speed were
evaluated. These quantities were calculated both by ana-
lytical equations and by the numerical integration
method. For the numerical method, reference was made
to wind speed classes of amplitude 0.1 m/s, to reduce
the error committed, considering the wind speed at the
centre of the interval as reference wind speed.

Figure 5 shows the experimental values of Vm1, Vm2,
and Vm3 and those calculated considering the different
distributions by using the analytical equations and
numerical integration method. Each image is related to
the different distributions by varying the localities on
the horizontal axes, whose associated numbers are
reported in Table 5.



FIGURE 2 Comparison of MTTND and CMTTND in terms of PDF (left) and CDF (right). Contribution of TND,1, TND,2, and h(v) [Colour

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Continued.
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The figure highlights that the wind speeds calculated
analytically by means of the CMTTND and CTND over-
lap perfectly those calculated numerically. For this rea-
son, the proposed analytical expressions, Equations (17),
(20), and (23), can be considered validated. Analogously,
for the analytical expressions of the other distributions,
except for unimodal and bimodal distributions containing
a Burr distribution, since a defined value is not always
provided by the analytical equation. For the Burr distri-
bution, the characteristic mean wind speeds of grade r
can be calculated only when the condition (tα) > β is
respected. When this condition is not respected, the ana-
lytical value, being undefined, was not reported in the
images. Instead, when β and t tend to infinite, the BD
coincides with the WD, and consequently, the character-
istic mean wind speeds can be calculated directly the WD



TABLE 7 Parameter values of the PDFs in the locations considered

Distributions Parameters Ancona Crotone Messina Nevada Colorado (BMS) Colorado (RSR) Porto Empedocle

W2D k 1.414 1.435 11.672 1.275 1.734 2.567 1.43
c 3.721 3.783 5.355 2.125 3.529 2.684 4.141

TND μ 2.534 2.334 4.051 1.31 2.559 2.282 2.478
σ 2.167 2.237 2.823 1.267 1.759 1.019 2.448

CTND μ 2.534 2.334 4.051 1.31 2.559 2.282 2.478
σ 2.167 2.237 2.823 1.267 1.759 1.019 2.448
KI 1.56 1.6 1.82 1.17 1.34 0.83 1.69
AI 0.879 0.852 0.924 0.849 0.927 0.987 0.844

B3D α 1.415 2.473 1.672 1.489 1.734 3.082 2.051
β 318.6 1.771 237.3 2.852 282.6 3.185 2.534
t 543.5 0.464 566.8 1.952 1998 2.017 0.7088

W2W2D w1 0.1425 0.2988 0.1323 0.2266 0.6862 0.4196 0.3234
k1 2.069 2.743 2.027 1.866 3.465 1.941 2.174
c1 0.8188 1.859 1.441 1.338 2.917 3.419 2.131
w2 0.8575 0.7012 0.8677 0.7734 0.7079 0.5804 0.6766
k2 1.95 1.58 2.18 1.18 1.32 3.21 1.6
c2 3.979 5.433 5.68 2.58 4.224 2.491 5.904

W2TND w1 0.1334 0.3025 0.7982 0.2113 0.6862 0.3429 0.3317
μ 3.885 1.606 4.966 4.375 2.802 2.953 1.694
σ 0.8431 0.6735 2.411 1.826 2.582 1.764 0.9466
w2 0.8666 0.6975 0.2018 0.7887 0.3138 0.6571 0.6683
k 1.301 1.603 1.874 1.444 3.076 3.093 1.677
c 3.455 5.404 2.001 1.627 2.711 2.473 5.771

W2B3D w1 0.8526 0.7013 0.8596 0.217 0.4329 0.4143 0.6541
k 1.956 1.57 2.205 1.882 1.048 1.926 1.593
c 3.99 5.433 5.704 1.333 3.567 3.425 6.024
w2 0.1474 0.2987 0.1404 0.783 0.5671 0.5857 0.3459
α 2.207 2.782 2.09 1.192 3.981 3.216 2.254
β 1.686 6.356 3.693 76.91 2.589 10.05 4.71
t 5.312 30.82 7.183 58.27 0.68 88.72 6.029

TNB3D w1 0.6442 0.5045 0.6641 0.1355 0.8159 0.7347 1.311
μ 3.322 5.285 5.036 4.86 2.411 2.117 1.61
σ 1.714 2.975 2.307 1.6 1.366 0.8599 0.9111
w2 0.3558 0.4955 0.3359 0.8645 0.1841 0.2653 0.689
α 2.823 2.61 2.248 1.454 9.181 3.408 1.905
β 0.5653 2.715 1.638 7.258 5.264 4.383 8.555
t 0.2465 2.372 0.5862 8.223 0.3045 1.764 2.63

B3B3D w1 0.5502 0.7007 0.6893 0.1034 0.4084 0.6225 0.4423
α1 3.346 1.584 2.768 6.079 1.076 3.425 2.893
β1 4.696 73.04 10.81 5.094 27.72 4.013 7.629
t1 1.83 61.61 5.574 0.9058 10.12 5.094 1.508
w2 0.4498 0.2993 0.3107 0.8966 0.5916 0.3775 0.5577
α2 2.28 2.765 2.158 1.448 4.004 1.86 2.063
β2 0.7753 7.315 1.668 6.459 2.555 8.691 4.859
t2 0.4214 44.54 0.8004 6.595 0.6298 6.383 4.726
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equations. To be able to consider β and t values suffi-
ciently high, the parameter β/t(1/α) of the BD must be very
close to the parameter c of the WD.

Owing to these issues, the sole method of numerical
integration was used to make a complete comparison
between the different distributions in the various
localities considered. Instead, the analytical method was
useful for the validation of the proposed expressions.

Figure 6 shows, respectively, the box plots, referring to
the various locations, of the relative errors of the mean,
mean square, and mean cubic wind speeds committed
using the various distributions.



FIGURE 3 Comparison of the unimodal distributions (CTND, TND, W2D, and B3D) in terms of PDF (left) and CDF (right) [Colour figure

can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Continued.
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Relative error of the mean wind speed
The image at the top shows that the mean wind speed is
mainly overestimated by the distributions B3D, W2W2D,
W2TND, W2B3D, TNB3D, B3B3D, and CMTTND, is
mostly underestimated by the MTTND, and is always
underestimated by the TND. W2D and CTND can lead
to an underestimation or overestimation of the mean
wind speed. The distributions with the lowest mean value
of the relative error of the mean wind speed are the W2D
with a value of −0.46%, MTTND with a value of −1.51%,
and W2TND with a value of 1.96%. With these mean
errors are also associated small interquartile ranges of
the error, of about 4% to 5%. The minimum interquartile
ranges are obtained by using the B3D and B3B3D with
values around 3.5%, to which, however, the highest mean
error values are associated, equal to about 6.5%. Conse-
quently, the probability that the error committed by using
B3D or B3B3D is equal to the mean error is greater. The



FIGURE 4 Comparison of the bimodal distributions (CMTTND, W2W2D, W2TND, W2B3D, TNB3D, and B3B3D) in terms of PDF (left)

and CDF (right) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Continued.
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B3D and W2D have the most asymmetric error distribu-
tions with IQR12 << IQR23, while the W2TND,
W2W2D, W2B3D, and TNB3D have the most asymmetric
error distributions with IQR23 << IQR12.

The error distribution of the CTND has a mean value
of 3.23%, an IQR13 of 9.11%, an asymmetry with errors
lower than the median value, with a value equal to
1.29%, more probable than errors higher than the median
(IQR12 < IQR23). The correction of the TND gives rise to a
drastic reduction of the absolute value of the mean error
of the mean wind speed (this error changes from a nega-
tive to a positive value); a substantial reduction of the
IQR13; and an inversion of the asymmetry of the error
distribution.

The error distribution of the CMTTND has a mean
value of 6.78%, an IQR13 of 7.61%, and an asymmetry
with IQR12 = 2.76%. The correction of MTTND gives rise
to an increase in the absolute value of the mean error of



TABLE 8 Statistical dispersion indices R2 and RMSE, related to the PDFs and CDFs in the locations considered

Stations Indices W2D TND CTND B3D W2W2D W2TND W2B3D TNB3D B3B3D MTTND CMTTND

Ancona R2
PDF 0.951 0.916 0.905 0.951 0.986 0.976 0.986 0.991 0.990 0.978 0.977

R2
CDF 0.995 0.996 0.989 0.995 0.998 0.998 0.998 0.999 0.998 0.997 0.996

RMSEPDF 0.015 0.020 0.022 0.015 0.009 0.011 0.009 0.007 0.007 0.010 0.011
RMSECDF 0.040 0.110 0.059 0.040 0.031 0.033 0.031 0.055 0.044 0.055 0.037

Crotone R2
PDF 0.893 0.761 0.788 0.969 0.999 0.998 0.999 0.996 0.999 0.984 0.986

R2
CDF 0.992 0.971 0.990 0.994 0.998 0.998 0.998 0.999 0.998 0.998 0.998

RMSEPDF 0.022 0.033 0.030 0.012 0.002 0.003 0.002 0.004 0.002 0.008 0.008
RMSECDF 0.029 0.112 0.034 0.072 0.023 0.022 0.023 0.026 0.023 0.032 0.024

Messina R2
PDF 0.975 0.951 0.948 0.975 0.999 0.993 0.999 0.998 0.999 0.986 0.987

R2
CDF 0.997 0.998 0.994 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.998

RMSEPDF 0.008 0.012 0.012 0.008 0.002 0.004 0.002 0.003 0.001 0.006 0.006
RMSECDF 0.029 0.069 0.040 0.029 0.018 0.020 0.018 0.028 0.021 0.032 0.023

Nevada R2
PDF 0.990 0.823 0.838 0.998 0.999 1.000 0.999 1.000 1.000 0.914 0.917

R2
CDF 0.994 0.976 0.985 0.994 0.995 0.994 0.995 0.994 0.994 0.992 0.988

RMSEPDF 0.011 0.047 0.045 0.005 0.003 0.002 0.003 0.002 0.002 0.032 0.031
RMSECDF 0.034 0.124 0.055 0.045 0.038 0.038 0.038 0.038 0.039 0.067 0.054

Colorado
(BMS)

R2
PDF 0.958 0.963 0.968 0.958 0.989 0.990 0.994 0.990 0.994 0.991 0.987

R2
CDF 0.996 0.992 0.996 0.996 0.996 0.997 0.996 0.997 0.996 0.998 0.992

RMSEPDF 0.014 0.014 0.013 0.014 0.007 0.007 0.005 0.007 0.005 0.006 0.008
RMSECDF 0.031 0.063 0.030 0.031 0.037 0.090 0.036 0.054 0.037 0.071 0.046

Colorado
(RSR)

R2
PDF 0.989 0.989 0.990 0.995 0.998 1.000 0.998 1.000 0.999 1.000 1.000

R2
CDF 0.995 0.996 0.996 0.993 0.994 0.994 0.994 0.994 0.993 0.994 0.994

RMSEPDF 0.014 0.014 0.013 0.008 0.005 0.001 0.005 0.002 0.005 0.003 0.003
RMSECDF 0.033 0.030 0.030 0.044 0.042 0.044 0.042 0.043 0.043 0.041 0.041

Porto Empedocle R2
PDF 0.928 0.843 0.858 0.975 0.986 0.989 0.986 0.990 0.986 0.978 0.979

R2
CDF 0.995 0.978 0.992 0.997 0.998 0.999 0.998 0.999 0.998 0.998 0.996

RMSEPDF 0.016 0.024 0.023 0.010 0.007 0.006 0.007 0.006 0.007 0.009 0.009
RMSECDF 0.030 0.117 0.041 0.068 0.035 0.035 0.036 0.044 0.040 0.053 0.039
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the mean wind speed (this error changes from a negative
to a positive value), an invariance of the inequality IQR12

< IQR23.

Relative error of the mean square wind speed
The image at the centre shows that the mean square wind
speed is predominantly overestimated by the distributions
B3D, W2W2D, W2B3D, TNB3D, and B3B3D, is always
overestimated by the CMTTND, is predominantly
underestimated by the W2D, and is always
underestimated by the TND and MTTND. The CTND
and W2TND can lead to an underestimation or overesti-
mation of the mean square wind speed. The distributions
with the lowest mean value of the relative error of the
mean square wind speed are the CTND with a value of
−0.03% and the W2TND with a value of 0.23%. With
these, mean errors are associated interquartile ranges of
the error of 11.02% and 4.17%, respectively. The mini-
mum interquartile ranges are obtained by using the
MTTND, W2TND, and B3B3D with values around 3% to
4%. However, the MTTND and B3B3D have high mean
error values, respectively, of −4.85% and 7.59%. The
W2D, CTND, and TNB3D have the most asymmetric
error distributions with IQR12 << IQR23, while the
W2TND has the most asymmetric error distributions with
IQR23 << IQR12.

Regarding the error distribution of the CTND, IQR12 =
3.36%. The correction of the TND gives rise to a drastic
reduction of the absolute value of the mean error of the
mean square wind speed, a significant reduction in the
IQR13, and an invariance of the asymmetry of the error
distribution.

The error distribution of the CMTTND has a mean
value of 5.46%, an IQR13 of 7.36%, and is approximately
symmetric. The correction of MTTND gives rise to a
slight increase in the absolute value of the mean error
of the mean square wind speed (this error changes from
a negative to a positive value), a substantial growth in
the IQR13, and a quasi‐invariance of the symmetry of
the error distribution.

Relative error of the mean cubic wind speed
The image at the bottom shows that the mean cubic wind
speed is predominantly overestimated by the distributions



FIGURE 5 Experimental values and values calculated analytically and numerically with the different distributions of the mean wind

speed Vm1, of the mean square wind speed Vm2, of the mean cubic wind speed Vm3 in the different localities.
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B3D, W2W2D, W2B3D, and TNB3D, is always
overestimated by the B3B3D and CMTTND, is predomi-
nantly underestimated by the W2D, and is always
underestimated by the TND and MTTND. The CTND
and W2TND can lead to an underestimation or overesti-
mation of the mean cubic wind speed. The distributions
with the lowest mean value of the relative error of the
mean cubic wind speed are the CTND with a value of
−1.88% and the W2TND with a value of −0.84%. With
these, mean errors are associated interquartile ranges of
the error of 13.17% and 5.33%, respectively. The mini-
mum interquartile range is obtained by using the
MTTND with a value of 2.88%. However, the MTTND
has high mean error values of −7.44%.

The W2D and CTND have the most asymmetric error
distributions with IQR12 << IQR23, while the W2TND



FIGURE 6 Box plots of the relative error of the mean wind speed, mean square wind speed, and mean cubic wind speed for the various

distributions. [Colour figure can be viewed at wileyonlinelibrary.com]
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and MTTND have the most asymmetric error distribu-
tions with IQR23 << IQR12.

The correction of the TND gives rise to a drastic reduc-
tion of the absolute value of the mean error of the mean
cubic wind speed, a significant reduction of the IQR13,
and an invariance of the asymmetry of the error
distribution.

The error distribution of the CMTTND has a mean
value of 4.73% and an IQR13 of 7.68% and is approxi-
mately symmetric. The correction of the MTTND gives
rise to a significant reduction in the absolute value of
the mean error of the mean cubic wind speed (this error
changes from a negative to a positive value), a substantial
growth of the IQR13, and a quasi‐invariance of the sym-
metry of the error distribution.

The subsequent analysis allows verifying for which
wind regimes the correction should be carried out.
Figure 7 shows the comparison between the experimental
wind speeds and those obtained with the different distri-
butions for the different locations considered. In the anal-
ysis, a limit percentage error of 10% was used to
discriminate the different distributions.

The distributions that show a relative error in all seven
locations below 10% are for the mean wind speed, the
B3D, W2TND, and MTTND, for the mean square wind
speed, the W2TND and MTTND, while for the mean
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FIGURE 7 ε(Vm1), ε(Vm2), and ε(Vm3) for the different distribution in the various localities considered [Colour figure can be viewed at

wileyonlinelibrary.com]
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cubic wind speed no one. For the mean cubic wind speed,
the W2W2D, W2TND, and CMTTND have values lower
than 10% in six locations.

The CMTTND has the largest number of locations,
three, where the relative error of the mean square and
cubic wind speed is less than 2%. Instead, by using
CMTTND, the relative error of the mean wind speed is
less than 2% in two locations. Only the W2D has three
locations with a relative error of less than 2%.

The correction of TND leads to greater accuracy in all
locations except Ancona and Messina, while the correc-
tion of MTTND is improving in the localities of Ancona,
Crotone, and Messina. Overall, the CMTTND distribution
was the most appropriate and accurate in Ancona,
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Crotone, and Messina, the CTND in Nevada, MTTND in
Colorado (BMS), and the W2TND in Colorado (RSR)
and Porto Empedocle.
4 | CONCLUSIONS

A correction of the truncated normal distribution and the
mixture of two truncated normal distributions is pro-
posed in this paper to estimate wind availability in a
locality. The proposed distributions, in addition to taking
into account the CWS, are able to predict the relative fre-
quencies of the EWS. The proposed distributions
CMTTND and CTND, by varying the characteristic
parameters, have shown high flexibility to represent wind
regimes characterized by the presence of CWS and EWS,
as well as unimodal and bimodal trends.

The results of the comparison with the most common
unimodal and bimodal distributions, in locations charac-
terized by different wind regimes, showed the high GOF
of the PDF and CDF of the CMTTND and CTND.

In all locations, the analytical equations proposed for
the CTND and the CMTTND for the calculation of the
mean characteristic wind speeds were validated since
they provided results very close to those obtained using
a numerical procedure.

For the proposed distributions, the relative error com-
mitted in the estimation of the mean characteristic wind
speeds is reduced by increasing their degree, confirming
that a more accurate estimation of the EWS is required.
Consequently, by increasing the mean wind speed degree,
the EWS correction has even more weight even if they
present reduced relative frequencies.

In general, the use of CTND and CMTTND can lead to
a more or less accurate estimation of mean characteristic
wind speeds compared with the TND and MTTND in
relation to the considered location, ie, to the wind regime.
The analysis of the relative errors has shown that, in
order to obtain a greater accuracy than the incorrect dis-
tributions, the CTND must be used in the localities where
the statistical distribution of the wind speed has a
unimodal character, while the CMTTND must be used
in the localities in which the statistical distribution of
wind speed has a bimodal character. In these locations,
in general, the two distributions are the most accurate
even with respect to all the distributions considered in
this study.

Owing to the advantages demonstrated by the correc-
tion made in this work to unimodal and bimodal trun-
cated normal distributions, future research works will
permit to extend the distribution proposed also for
multi‐peak distributions by considering a mixture of three
or more truncated normal distributions.
NOMENCLATURE
Abbreviations
BMS
 baseline measurement system

CDF
 cumulative density function

CMTTND
 corrected mixture of two truncated normal

distributions

CWS
 calm wind speeds

CTND
 corrected truncated normal distribution

DMWS
 daily maximum wind speeds

EWS
 extreme wind speeds

GOF
 goodness‐of‐fit

MEP
 maximum entropy principle

MMWS
 maximum monthly wind speeds

MTTND
 mixture of two truncated normal

distributions

ND
 normal distribution

NREL
 national renewable energy laboratory

PDF
 probability density function

RSR
 rotating shadowband radiometer

TND
 truncated normal distribution

TND,1
 first TND of the MTTND

TND,2
 second TND of the MTTND

YMWS
 yearly maximum wind speeds
Symbols
A0
 frontal area traced by the wind turbine (m2)

AI
 area subtended by the TND

AII
 area subtended by the MTTND

Ea
 available energy (J)

f (v)
 probability density function (s/m)

f (Vi)
 discrete probability density distribution (s/m)

F (v)
 cumulative density function

g(v)
 corrective function of the CTND (s/m)

h(v)
 corrective function of the CMTTND (s/m)

IQR12
 interquartile range between the first and second

quartile (m/s)

IQR13
 interquartile range between the first and third

quartile (m/s)

IQR23
 interquartile range between the second and

third quartile (m/s)

KI
 extreme wind speed parameter of the CTND

(m/s)

KII
 extreme wind speed parameter of the CMTTND

(m/s)

l
 longitude (°)

L
 latitude (°)

N
 number of wind speed observations
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Pa
 available mean power (W)

R2
 coefficient of determination

RMSE
 root mean square error

V
 wind speed observation (m/s)

v
 wind speed aleatory variable (m/s)

Vm1
 mean wind speed (m/s)

Vm2
 mean square wind speed (m/s)

Vm3
 mean cubic wind speed (m/s)

w
 weight of a mixture distribution

T
 observation period (s)
Greek symbols
ε
 relative percentage error (%)

ΔVm1
 mean wind speed correction (m/s)

ΔVm2
 mean square wind speed correction (m/s)

ΔVm3
 mean cubic wind speed correction (m/s)

Δt
 time interval (s)

μ
 mean of a TND (m/s)

ρ
 air density (kg/m3)

σ
 standard deviation (m/s)

γ
 Fisher coefficient of skewness (‐)

ξ
 integration aleatory variable (m/s)
Subscripts
1
 referring to the TND,1

2
 referring to the TND,2

anal
 referring to the analytical procedure

CDF
 referring to the CDF

CMTTND
 referring to the CMTTND

CTND
 referring to the CTND

exp
 experimental

fmax
 referring to the maximum value of the dis-

crete probability density distribution

i
 ith wind speed observation

MTTND
 referring to the MTTND

max
 referring to the maximum value

mr
 referring to the rth degree of the mean wind

speed

num
 referring to the numerical procedure

PDF
 referring to the PDF

TND
 referring to the TND
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APPENDIX
MEAN, MEAN SQUARE, AND MEAN CUBIC WIND SPEEDS OF THE TND
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