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ABSTRACT
In recent years, the impact of Neural Language Models has changed every field of Natural Language
Processing. In this scenario, coreference resolution has been among the least considered task, especially
in language other than English. This work proposes a coreference resolution system for Italian, based on a
neural end-to-end architecture integrating ELECTRA language model and trained on OntoCorefIT, a novel
Italian dataset built starting from OntoNotes. Even if some approaches for Italian have been proposed in the
last decade, to the best of our knowledge, this is the first neural coreference resolver aimed specifically
to Italian. The performance of the system is evaluated with respect to three different metrics and also
assessed by replacing ELECTRA with the widely-used BERT language model, since its usage has proven
to be effective in the coreference resolution task in English. A qualitative analysis has also been conducted,
showing how different grammatical categories affect performance in an inflectional and morphological-rich
language like Italian. The overall results have shown the effectiveness of the proposed solution, providing a
baseline for future developments of this line of research in Italian.

INDEX TERMS
Coreference resolution, ELECTRA, Italian dataset, Deep learning, Natural Language Processing

I. INTRODUCTION
Coreference resolution is one of the tasks that has always
fascinated scholars of Natural Language Processing (NLP).
Nevertheless, it has a troubled history in the field and it still
cannot be considered as a solved task [1]–[4]. Many aspects
concerning the nature itself of the coreference are still de-
bated both in Computational [5] and Theoretical Linguistics
[6].

A large number of proposed approaches have followed
one another over the years, from early rule-based and sta-
tistical [7] to machine and deep learning ones [5]. Recent
years with the rise of neural language models (NLM) have
led to a change. Approaches based on the latest language
models like ELMo (Embeddings from Language Models)
[8], [9] and BERT (Bidirectional Encoder Representations
from Transformers) [10]–[12] have been proposed and they
have brought significant performance gains over all previous
approaches [13].

This has opened the way to interesting research perspec-

tives, but this new line of research has so far been almost
exclusively the domain of the English language. The rapid
growth of approaches available for English does not have
an equivalent in other languages. This is partly due to the
scarcity of existing resources. English, indeed, can rely on a
large number of resources of various domains and sizes, the
same cannot be said for the other languages.

Trying to address this shortcoming, this paper proposes
a NLM-based system addressing the coreference resolution
task in the Italian language, using a novel dataset built
starting from OntoNotes [14].

The system end-to-end architecture is derived from [8],
but, differently, it exploits a novel language model named
ELECTRA (Efficiently Learning an Encoder that Classifies
Token Replacements Accurately) [15]. ELECTRA has shown
a better ability to capture contextual word representations,
substantially outperforming, in its downstream performance,
other models, like BERT, given the same model size, data,
and compute [16]. Moreover, for ELECTRA, a pre-trained
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model also exists for the Italian language, that is trained on
a standard-Italian written corpora and, thus, results adequate
for the coreference purposes.

Concering the coreference dataset used in this work, the
obligatory choice has fallen on OntoCorefIT 1, a novel corpus
collecting almost 55k utterances in Italian created with a
cross-lingual approach starting from OntoNotes. This corpus
ensures a good coverage due to its size and domain-inde-
pendence, in addition collected utterances are compliant with
Italian grammar being subjected to linguistic refinement step
and to quantitative and qualitative evaluation.

Very few coreference resources have been developed for
Italian, the majority of which are outdated and small in size.
This is one of the main causes of very slow progress in the
field in recent years. Moreover, currently, there are no studies
that make a comprehensive analysis of different models to
evaluate performances in specific NLP tasks, like corefer-
ence resolution, in Italian language. As far as known, this
is the first neural coreference resolution system specifically
focused on Italian.

Summarizing, this work focuses on these main objec-
tives: i) exploiting a very promising NLM, i.e. ELECTRA,
and a novel Italian corpus to make a robust and efficient
coreference resolution system for the Italian language, ii)
replacing ELECTRA with BERT in order to compare their
performance and assess the validity of the proposed system,
iii) providing a baseline for future developments of this line
of research.

The contribution is structured as follows. Section 2 reviews
the state-of-the art of approaches for coreference resolution
starting from early rule-based approaches to modern deep
learning ones. In Sections 3 and 4 the experimental assess-
ment is outlined, including the details of the neural language
model and the dataset used. The Section 5 focuses on the
presentation and the discussion of the obtained results, from
both a quantitative and qualitative point of view. Finally,
Section 6 reports conclusion and future works.

II. BACKGROUND AND RELATED WORK
A. RULE-BASED APPROACHES
Reference resolution task in NLP has been widely considered
as a task which inevitably depends on some hand-crafted
rules. These rules are based on syntactic and semantic fea-
tures of the text under consideration. First algorithms [17],
[18] were based on syntax or discourse structure, they used
rule-based approaches and a manual evaluation. Another
similar work [19] added to previous ones the use of knowl-
edge resources and morpho-semantic information. The main
limitation of these early approaches was the total lack of a
standard for the evaluation phase [20], especially with the
advent of shared evaluation campaigns starting from MUC
[21], ACE [22] and CoNLL [23], [24].

1OntoCorefIT is made available upon request at:
https://nlpit.na.icar.cnr.it/nlp4it/#/datasets/coref

A rule-based approach with a more robust evaluation was
proposed by [25]. This simple modular approach relied only
on syntax and was evaluated on multiple standard datasets.
Further improved modified versions were created from this
work [26], [27].

B. MACHINE-LEARNING APPROACHES
The increased availability of annotated corpora like MUC or
ACE led to the development of machine learning approaches
to coreference resolution.

The most fruitful family of machine-learning approaches
dealt with coreference as a set of pairwise connections. It
used a classifier to decide if two proper nouns (NP) were
co-referent. First, these models created training instances to
reduce the imbalance between co-referent and non-coreferent
entities in the training samples. Types of classifiers proposed
ranged from statistical learners [28] to random forests [29].
Finally, a NP partition was generated, in order to test the
trained model on a test set to obtain the coreference chains.
To handle this task, several clustering techniques were de-
veloped, i.e. best-first clustering [30], closest-first clustering
[31], correlational clustering [32], Bell Tree beam search
[33] and graph partitioning algorithms [34]. Other studies
proposed to combine the classifier with effective partitioning
using Integer Linear Programming [35] or to completely
eliminate the classification phase [36].

Other types of proposed approaches were represented by
entity-mention model, that focused on a single underlying
entity of each referent in discourse [37], and by mention-pair
model, which used a binary classifier to decide whether an
antecedent was coreferent with the mention [38], [39].

C. DEEP LEARNING APPROACHES
As happened in all fields of NLP, the advent of Deep Learning
rapidly subverted existing approaches. The possibility of
representing words using vectors that embed their semantic
relationships and the lowest number of required features dras-
tically reduced the need to rely on manually-created features.
These approaches captured dependencies between mentions
using Recurrent Neural Networks (RNN) or Long short-term
memory (LSTM). Limitations of deep learning approaches
lie in their poor adaptability to the domain. They frequently
need domain-specific adjustment before being used with
satisfying results.

The first neural model proposed [1] focused on two critical
aspects of coreference resolution: the identification of non-
anaphoric references in texts and the ability to distinguish
mentions from non-mentions. The model, trained on features
extracted from BASIC [40], performed better than all existing
approaches. Later developed models [2], [3] incorporated
entity-level information produced by a RNN in order to
exploit a global features about entity clusters. These models
relied on including features defined on mention-pair clusters.

Another approach [41] used the neural mention ranking
model [3] in order to replace the heuristic loss functions
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with reinforced-learning based policy gradient algorithm.
Currently, the state-of-the-art approach [42], is based on end-
to-end neural model with the construction of high-dimen-
sional word embeddings to represent words of annotated
documents. Although difficult to maintain because of its
high-dimensionality, this system, based on LSTM, has as its
strengths the ability to capture long term dependencies.

More recent approaches use BERT model to word rep-
resentation [8], [11] or its modified version SpanBERT to
create span representations and increase BERT’s maximum
segment limitations [12].

D. MULTILINGUAL APPROACHES
Even if the vast majority of coreference resolution ap-
proaches was focused on English language - as in many
other NLP research areas - individual language-specific ap-
proaches was also developed.

Dedicated approaches for major European languages were
proposed: German [43]–[45], Spanish [46], Portuguese [47]
Czech [48], French [49] and many others. Concerning Italian,
very few systems for coreference resolution were proposed so
far [50], [51]

Evaluation campaigns like Semeval 2010 [52] and Conll
2012 [24] and the development of multilingual resources
like Ontonotes [53] or ParCor [54] shifted the focus to
systems that can be language-independent or able to be
adapted to several languages simultaneously. However, cur-
rent language-independent systems were based only on shal-
low approaches exploiting universal part-of-speech tagset
[55] and universal dependencies [56]. Many issues are still
unsolved and no system is yet able to handle language-
specific features [57].

A recent approach that looks promising, in particular in
case of low-resource languages, uses cross-lingual method-
ologies exploiting existing resources developed in other lan-
guages. In particular, for low-resource languages, projection-
based techniques have been proposed [58], [59]. Projection
is a technique consisting in automatically transferring an-
notations from a resource-rich language to a low-resource
language across parallel corpora. In particular, these ap-
proaches have used English as source language, and they
have been tested for Spanish and Italian [58], Portuguese and
Spanish [60], German and Russian [61]. Other studies have
tested a direct transfer learning between languages by using
multilingual word embeddings, using a model trained on a
language for other languages that share a common semantic
space [62]: experiments have been carried out on Chinese,
Spanish, Portuguese and English [47], [63] .

III. MATERIAL AND METHODS
Figure 1 shows the working process behind the proposed
coreference resolution system. First, documents composing
the OntoCorefIT dataset are given as input. Secondly, the
end-to-end c2f-coref architecture proposed by [8], [42] and
powered by the usage of ELECTRA to represent input to-

kens, is leveraged to calculate the coreference predictions. A
detailed description of the coreference data set realized for
the Italian language and the system architecture is provided
below.

FIGURE 1. Working process of the proposed system.

A. DATASET
The dataset used here is OntoCorefIT, currently the largest
dataset for coreference in the Italian language built from
OntoNotes.

Even though other corpora exist for coreference in Italian,
none of them is suitable for the purpose of this work. The first
reason is given by the size. Corpora currently available for
the Italian language are quite small (see Table 1), therefore
they should not particularly suitable to be used as training set
for a neural language model. On the contrary, OntoCorefIT
consists of almost 55k sentences for a total of 704k tokens. A
second reason relies in the domain-independence. OntoCor-
efIT corpus is based on the English version of OntoNotes,
so it collects data from a set of heterogeneous domains. By
contrast, other Italian existing resources are focused on spe-
cific domains: VENEX data come from financial newspapers
[64] and spoken task-oriented dialogues [65]; I-CAB and
LiveMemories are limited to a restricted material related to
the Italian region of Trentino-Alto Adige/Südtirol.

Corpus Size (words) Annotation Scheme
OntoCorefIT 708k CoNLL
Venex (2004) 40k MATE/MMAX
i-Cab (2006) 250k ACE
LiveMemories (2010) 250k ARRAU

TABLE 1. Size comparison of Italian coreference datasets

OntoCorefIT has been automatically generated from
OntoNotes dataset by using a cross-lingual approach, i.e.
English utterances are automatically translated and refined
in order to obtain utterances respecting Italian grammar
and contextually, preserving original coreference and men-
tions. OntoCorefIT shares the same CoNLL-like annotation
schema of original English Ontonotes, ensuring robustness in
the evaluation being the de facto standard since CoNLL2012
to most recent state-of-the-art systems [42].

In more detail, starting from OntoNotes dataset, firstly,
a multi-level translation has been performed to translate
utterances from English to Italian, trying to preserve original
mentions without losing in the translation the tokens compos-
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ing the mentions, their positions, and the verbal agreements
involving them.

Secondly, the translated utterances are linguistically re-
fined in order to improve their readability and, thus, produce
an output text as close as possible to the Italian gram-
mar. In particular, language-specific rules derived from the
Theoretical linguistics have been introduced, covering most
frequent phenomena in Italian sentences, i.e. gender and
number agreement, subject pronoun deletion or inflection
phenomena.

In particular, due the pro-drop nature of the Italian lan-
guage, the explicit subject pronoun can always be removed.
Thus, in case of a pronoun subject tagged as a mention, the
tag has been shifted to the verb referred by the pronoun,
otherwise it has been simply removed from the utterance.

In line with Ontonotes, all utterances have been succes-
sively annotated with Part-of-Speech (POS) tags in order
to obtain a CoNLL-like format. Morphosyntactic analysis
with POS-tagging has been automatically performed for the
utterances in Italian. Thus, the lack of any supervision may
have introduced some errors in tag assignment, in particular
concerning cases presenting greater ambiguity in certain
categories (e.g. pronouns and determiners). Italian, due to
its specific features, is considered a more complex language
than English [66]–[68] and, therefore, it exhibits greater
criticalities in performing pos-tagging and parsing tasks [69],
[70].

Table 2 reports an overview of the OntoCorefIT dataset,
showing the total number of utterances (utts), coreferences
(coarefs) and tokens for the three partitions into which the
dataset is divided, namely Train, Test and Dev.

The subsets Train, Test and Dev are arranged into sets of
documents each of which is composed of an ordered list of
non-overlapping partitions of ordered utterances.

Train Test Dev
utts 44073 5415 5363
corefs 40648 5039 4372
tokens 568641 71293 68796

TABLE 2. Overview of the OntoCorefIT dataset

B. SYSTEM ARCHITECTURE
The neural architecture of the proposed system is inspired
by the end-to-end c2f-coref system proposed by [8], [42].
That end-to-end neural model has been very successful in the
literature and it is the current state of the art for the English
OntoNotes dataset [24].

In accordance with [8], [42], the task of coreference resolu-
tion is defined as a set of antecedent assignments yi for each
span i, with 1 ≤ i ≤ N , belonging to a given document D
that contains T tokens and N = T (T+1)

2 possible text spans.
In particular, all spans are considered as potential mentions

and, for each span i, the set of antecedent assignments yi, i.e.
mentions preceding the span under examination and referring

FIGURE 2. Span representation using ELECTRA and attention-based head
words

to the same entity, is calculated. The set of of possible
assignments for each yi is Y (i) = {ε, 1, ..., i − 1}, which
includes the dummy antecedent ε and all preceding spans.
The dummy antecedent is used to cover the case when a
span is not an entity mention, as well as the case when a
span is an entity mention but is not coreferent with other
spans. Grouping all spans connected by a set of antecedent
predictions allows to define a final clustering.

To realize this task, the model proposed in [8], [42]
learns a conditional probability distribution P (y1, ..., yn|D)
whose most likely configuration corresponds to the correct
clustering. This distribution is calculated as the product of
multinomials for each span:

P (y1, ..., yN |D) =
N∏
i=1

P (y1|D)

=

N∏
i=1

exp(s(i, yj))∑
y′∈Y (i) exp(s(i, y

′))

(1)

where s(i, j) is a pairwise score for a coreference link
between span i and span j in document D. This coreference
score is computed as follows:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j 6= ε
(2)

It is equal to 0 in case of dummy antecedent, otherwise it
is the sum of three terms, namely sm(i) and sm(j) are the
scores indicating that the spans i and j are mentions, and
sa(i, j) is the score indicating that the span j is an antecedent
for the span i.

The model predicts the best antecedent score if all non-
dummy scores are positive, otherwise it vanishes.

Differently from [8], [42], each span i is given an em-
bedding representation hi by using ELECTRA as shown in
Figure 2 and described in the next subsection.

Given these span representations, the scoring functions sm
and sa are calculated, as shown in Figure 3, via feed-forward
neural networks FFNNm and FFNNa as follows:

sm(i) = wm · FFNNm(hi) (3)

sa(i, j) = wa · FFNNa([hi, hj , hi ◦ hj , φ(i, j)]) (4)

where · is the dot product; ◦ is element-wise multiplica-
tion; FFNN is a feed forward neural network calculating
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a non-linear mapping from input to output; sa(i, j) includes
explicit element-wise similarity of each span ei and a feature
vector φ(i, j) containing information about speaker, genre
and other syntactic metadata.

FIGURE 3. Calculation of mention and antecedent scoring functions

For the training, the marginal log-likelihood of all correct
antecedents implied by the gold clustering is optimized:

log
N∏
i=1

∑
ŷ∈Y (i)∩GOLD(i)

P (ŷ) (5)

where GOLD(i) is the set of spans in the gold cluster
containing the span i.

C. ELECTRA
Unlike previous work based on LSTM or BERT [4], [8], [11],
the proposed system lies on a new NLM ispired by GAN
networks [71], ELECTRA [15]. ELECTRA, has shown to
be more compute-efficient than BERT, allowing to achieve
better performance keeping the dimensions of the model
unchanged.

In more detail, the pre-training step in ELECTRA is per-
formed exploiting the masked language model (MLM) in
a more efficient way than BERT. It uses two Transformer
models, that share the same word embedding, namely a
generatorG and a discriminatorD, and it is based on training
D to to distinguish "fake" or replaced input tokens produced
by G in the sequence. This approach, called replaced token
detection (RTD), allows to use a minor number of examples
without losing in performance.

In particular, for a given input sequence, where some
tokens are randomly replaced with a [MASK] token, G is
trained to predict the original tokens for all masked ones. On
the other hand, G is given input sequences built by replacing
[MASK] tokens with “fake” ones produced by G and it is
trained to predict whether they are original or “fake”.

More formally, given an input sentence s of raw text χ,
composed by a sequence of tokens s = w1, w2, . . . , wn
where wt (1 ≤ t ≤ n) represents the generic token (e.g.
word, subword or character), both G and D firstly encode

FIGURE 4. ELECTRA overview with replaced token detection. The generator
G is usually a MLM trained with the discriminator D but it may virtually be any
model producing an output distribution over tokens.

s into a sequence of contextualised vector representations
h(s) = h1, h2, . . . , hn.

Then, for a given position t so that the correspondingwt =
[MASK], the generator outputs the probability to generate a
particular token wt, with a softmax layer:

pG(wt|s) =
e(wt)

ThG(s)t∑
w′ exp(e(w′)ThG(s)t)

(6)

where e(·) represents the embedding function.
On the other hand, the discriminator predicts whether wt

is the original or "fake", using a sigmoid layer:

D(s, t) = sigmoid(e(wt)
ThD(s)t) (7)

During the pre-training, G employs the following loss
function:

LGen = LMLM = E(
∑
i∈m
− log pG(wi|smasked)) (8)

where m = m1,m2, . . . ,mk are k random selected words
and smasked is the sentence with the masked words.

On the other hand, D uses the following loss function:

LDis = E(
n∑
t=1

−I(wcorruptt = xt) logD(scorrupt, t)+

−I(wcorruptt 6= xt) logD(scorrupt, t))

(9)

where wcorruptt is the corrupted word within the corrupted
sentence scorrupt.

Finally, the following combined loss is minimised:

min
θG,θD

∑
s∈χ
LGen(s, θG) + λLDis(s, θD) (10)

At the end of the pre-training, G is discarded and only the
discriminator model D is used.

The main reason that improve ELECTRA efficiency re-
spect to MLM BERT-like models is that predictions are
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calculated not only over masked tokens, but also for each
token and the discriminator loss can be calculated over all
input tokens.

In the proposed system, ELECTRA is used to represent
each span by considering the embeddings for its boundary
tokens as well as for a head token calculated over all its
words. In more detail, for each span i, its representation hi
obtained by using ELECTRA is given by:

hi = [x∗START (i), x
∗
END(i), x̂i, φ(i)] (11)

where x∗START (i) and x∗END(i) are the embedding repre-
sentations of the boundary tokens, x̂i represents a soft head
word calculated over all the span tokens and φ(i) is a vector
feature which encodes the span size.

The soft head word x̂i is calculated by using an attention
mechanism on the words of each span [72], as follows:

αt = wα · FFNNα(xt) (12)

ai,t =
exp(αt)∑END(i)

k=START (i) exp(αk)
(13)

x̂i =

END(i)∑
t=START (i)

ai,t · xt (14)

where x̂i is is the weighted sum of the word vectors xt
belonging to the span i, and ai,t are automatically learned
weights.

IV. EXPERIMENTAL SETUP AND METRICS
Hereafter the experimental setup and the evaluation metrics
are described in Section IV-A and IV-B respectively.

A. EXPERIMENTAL SETUP
To realize the proposed system, the implementation 2 of
the coreference model proposed by [42] has been used, by
exploiting ELECTRA embeddings to calculate span repre-
sentations. ELECTRA model in its base (cased) version 3

has been tested, which is made available by Hugging Face
Transformers 4 framework. This framework provides state-
of-the-art Transformer-based architectures with thousands of
pre-trained models in over a hundred languages for NLP
tasks. In particular, this specific ELECTRA model has been
pretrained on a corpus of 81GB, made of a recent Wikipedia
dump, various texts from the OPUS [73] corpora collections
and the Italian part of the OSCAR corpus [74].

In order to assess the effectiveness of the coreference
resolution model integrating ELECTRA, further experiments
have been arranged, where ELECTRA is replaced by BERT

2https://github.com/lxucs/coref-hoi
3https://huggingface.co/dbmdz/electra-base-italian-xxl-cased-

discriminator
4https://github.com/huggingface/transformers

Hyperparameter Value

Epochs 24
Dropout 0.3
Learning rate from 0.1 up to 0.00001
Loss marginalized
Feature Embedding size 20
Max Span Width 30
Max training Sentences 6
Max segment Length 256
Dimensions Hidden State 256
Number of Attention Heads 12
Number of Hidden Layers 12
Hidden size 768
Number of Hidden Layers 12
Parameters 110M
Vocabulary Size 32102

TABLE 3. Hyper-parameters

also considering its base (cased) version 5. To the best of our
knowledge, no other available implementations exist for the
particular coreference resolution task in Italian. The choice
of using BERT-base in the coreference resolution model as a
valid option for comparison is justified also by the fact that it
has proven to be effective in the coreference resolution task
in English, as shown in [11]–[13].

In detail, the architectures of ELECTRA and BERT are
characterised by 12 encoder layers, known as Transform-
ers Blocks, and 12 attention heads (or Self-Attention as
introduced in [75]), hence feed forward networks with a
hidden size of 768. Each training session has been fixed of
24 epochs, with a learning rate of 0.1 . More architectural
details and training hyper-parameters are reported in Table 3.
All experiments have been performed performed on a deep
learning workstation, with 40 Intel(R) Xeon(R) CPUs E5-
2630 v4 @ 2.20GHz, 256 GB of RAM and 4 GPUs GeForce
GTX 1080 Ti. The operating system is Ubuntu Linux 16.04.7
LTS.

Using the division of OntoCorefIT in the training, vali-
dation and testing datasets shown in the table 2, the results
have been derived by averaging the performance of the
coreference system integrating ELECTRA or BERT over five
repetitions and finally reporting the arithmetic mean of the
results, rounded to the second decimal place.

B. EVALUATION METRICS
Concerning evaluation metrics, there are still open issues
in the literature and several metrics have been proposed,
each of which tries to address biases of the earlier ones.
For the purpose of this work, official metrics provided by
the Conll 2012 shared task have been taken into account. In
particular, the MELA metric has been adopted [76], which
combines three different metrics addressing different dimen-
sions: MUC [77], B − CUBED [78] and CEAFe [79].
These metrics consider the true set of entities K (named key
or key partition) obtained through manual annotation of the

5https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
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Model run Identification of Mentions Coreference
MUC B-CUBE CEAFe avg F1R P F1 R P F1 R P F1 R P F1

ELECTRA cased-xxl AVG 83,21 89,48 86,23 77,34 80,57 78,72 68,08 71,45 69,71 62,60 73,91 67,78 72,13
BERT cased-xxl AVG 80,00 89,33 84,39 73,44 79,56 76,38 64,19 70,83 67,34 59,25 72,24 65,10 69,60

TABLE 4. Comparative results achieved with the coreference resolution system using ELECTRA and BERT models

entities, and the predicted (or response) set of entities R, i.e.
answer partition produced by the system. In particular, they
are defined as follows:

• MUC is a link-based metric. It compares the entities
defined by the links in the key and the response. MUC
considers a cluster of references as linked references,
each reference is linked to one or more references.
MUC metric primarily measures the number of link
modifications required to make the result entity set R
identical to the key entity set R. Precision is calculated
as follows:

MUCPrecision =

∑
rj∈R

|rj|−|P (rj)|
|rj|∑

rj∈R
(|rj| − 1)

(15)

while recall is equal to:

MUCRecall =

∑
ki∈K

|ki|−|P (ki)|
|ki|∑

ki∈K
(|ki| − 1)

(16)

• B − CUBED (B3) is a mention-based metric. It first
computes precision and recall for each mention, and
then calculates the weighted average of these individual
precision and recall scores to obtain global precision and
recall. In particular, for each mentionm ofK, the Recall
is computed by considering the fraction of the correct
mentions included in the predicted entity that contains
m. On the other hand, the precision is computed by
exchanging the gold entities with the predicted ones.
If K is the key entity containing mention m, and R is
the response entity containing mentionm, precision and
recall for the mention m are calculated as:

B3Precision =

∑
ki∈K

∑
rj∈R

|ki∩rj|
|ki|∑

rj∈R
|rj|

(17)

B3Recall =

∑
ki∈K

∑
rj∈R

|ki∩rj|
|ki|∑

ki∈K
|ki|

(18)

• CEAFe is an entity-based metric. It is a particular
instance of CEAF, a metric based on the assumption that
each entity of K is mapped to a single entity of R, and
vice versa. It uses a similarity measure to find the best
one-to-one mapping between entities in K and entities
in R. The best mapping is the one that maximizes

the overall similarity of the entities, φ. In the case of
CEAFe, φ is given by the following equation:

φ(ki, ri) =
2|ki ∩ rj|
|ki|+ |ri|

(19)

Recall is equal to the total similarity divided by the
number of mentions in K:

CEAFRecall =

∑
ki∈K* φ(ki, g

*(ki))∑
ki∈K

φ(ki, ki)
(20)

where g* is a function that associates to every entity of
K an entity of R, whereas K* is the set of key entities
included in the optimal mapping.
Precision is the total similarity divided by the number of
mentions in R:

CEAFPrecision =

∑
ki∈K* φ(ki, g

*(ki))∑
ri∈R

φ(ri, ri)
(21)

According to [24], [80], the combination of these three
metrics allows for a good compromise, balancing the limits
of the various measures. It is worth noting that an evaluation
metric must possess two properties, interpretability, which in-
dicates the goodness of the detected entities and coreference,
and discriminability, which allows to distinguish between
good and not good decisions. B − CUBED and CEAFe
provide the property of discriminability, but not interpretabil-
ity. On the other hand MUC benefits from interpretability,
but it is the least discriminating among the three metrics.
Since none of the three is reliable if taken individually, it is
common practice to use the average of the three as the overall
metric.

V. RESULTS AND DISCUSSION
This section presents and discusses the results achieved from
both a quantitative and qualitative perspective.

A. QUANTITATIVE ANALYSIS
Table 4 reports results obtained using ELECTRA and BERT
coupled with the coreference resolution system with respect
to the three metrics described above. In particular, results
are detailed with respect to two sub-tasks: Identification of
mentions and Coreference, according to the criteria proposed
in Conll 2012 shared task.

The first sub-task calculates the correctness of the men-
tions that are produced, without considering the coreference
link structure, in other words, it is not verified that mentions
refer to the right entity; the second one performs this check,
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evaluating the correctness of the expected coreference links
between the key and answer mentions.

Concerning Identification of mentions task, the impact of
ELECTRA can be seen in the average improvement of about
2 percentage points. Results of Coreference task according to
three different metrics (columns MUC, B-CUBE and CEAFe
of the table) show a slight drop in performance with respect
to the first task in both models. This result is not surprising
since the higher complexity of the coreference task justifies
lower results.

With respect to the metrics used, MUC, being link-based,
achieves better performance on precision and recall, respec-
tively; while Ceafe has the lowest scores, especially with
regard to recall, which does not even reach 63% using the
system with ELECTRA and and is even lower than 60%
when BERT is used in place of ELECTRA. B-CUBE average
scores are quite similar to those obtained with Ceafe, even if
there is a change in behaviour: the recall is higher than Ceafe,
to the detriment of precision which achieves the values of
71,45% and 70,83% when the system uses ELECTRA and
BERT respectively.

Even there is still no agreement in the literature on the
reliability of coreference resolution metrics, the best result
obtained with MUC is consistent with other work on the
English language [11]. One possible explanation for this
result is that MUC has been proven to be robust despite being
the least discriminating metric [81]. A further reason is that
MUC is particularly suitable on data with many links per
mention, as in the case of OntoCorefIT.

B. ERROR ANALYSIS
A further error analysis is reported, which assesses the per-
formance of the coreference resolution system integrating
ELECTRA model with respect to the different Parts-Of-
Speech (POS) each mention belongs to.

Table 5 reports the frequency of occurrence of single-token
coreferences occurring in the OntoCorefIT dataset, grouped
in relation to their POS ordered in a decreasing manner.

Numbers in the table confirm findings in other studies [82],
[83] that indicate pronouns as the primary POS used to co-
refer to an entity.

Part-of-Speech Tag Percentage
Pronouns PRON 33, 6%
Proper Nouns PROPN 10, 6%
Verbs VERB 8, 6%
Determiners DET 6, 8%
Nouns NOUN 1, 08%
Adverbs ADV 1, 04%

TABLE 5. Distribution of most frequent single-token coreferences grouped
with respect to their POS in the OntoCorefIT dataset

Table 6 outlines the numbers of single-token mentions
that are predicted (p) or not predicted (np) correctly by the
system using ELECTRA or BERT, grouped with reference to

ELECTRA BERT
POS tot p np p np

PRON 1053 991 (94,1%) 62 (5,8%) 983 (93,3%) 70 (6,6%)
personal 553 531 (96%) 22 (3,9%) 523 (94,5%) 30 (5,4%)

possessive 362 354 (97,7%) 8 (2,2%) 352 (97,2%) 10 (2,7%)
demonstrative 138 106 (76,8%) 32 (23,1%) 108 (78,2%) 30 (21,7%)

PROPN 639 605 (94,6%) 34 (5,3%) 597 (93,4%) 42 (6,5%)
VERB 525 392 (74,6%) 133 (25,3%) 372 (70,8%) 153 (29,1%)

TABLE 6. Predicted (p) and not-predicted (np) mentions for each POS.

the three most frequent POSs associated, namely pronouns
(PRON), proper nouns (PROPN) and verbs (VERB).

Table 6 shows discrepancies in the effectiveness of pre-
dictions in relation to different part-of-speech categories for
the coreference resolution system using ELECTRA or BERT
models. Concerning most frequent categories, namely pro-
nouns and proper nouns, the system integrating ELECTRA
model reaches a percentage of wrong predictions that is
lower than 5,8% and 5,3% respectively. On the other hand,
the system integrating BERT model obtains scores that are
slightly lower, with 6,6% of not predicted pronouns and 6,5%
of not predicted proper nouns. Concerning verbs, the system
has an error rate of more than 25% when using both the
models, but the impact on the overall results is low due
to the fact that verbs account for only 8,6% of the total
POS categories occurring in the dataset (see Table 5). This
result can be explained also considering the criteria used
to construct the OntoCorefIt dataset. Indeed, mentions have
been frequently shifted to verbs - following the approach
already proposed in [84], [85] - when the subject could be
omitted, as in the case of personal pronouns with subject role
(pronoun-dropping), adding a higher ambiguity with respect
to final identification of mentions belonging to the verb POS.

A more detailed analysis of pronouns shows a different
trend between correctly predicted mentions and not. Indeed,
the pronouns category is the most representative (33,6% of
single-token coreferences) and it includes various types of
pronouns with different functions and syntactic structures,
ranging from subject and object pronouns to possessives and
demonstratives.

Substantial differences can be noted between the predicted
and erroneous pronoun types (as shown in Table 6). More
than 80% of correctly predicted pronouns belongs to posses-
sives and personal pronouns: respectively 535 and 362 out of
a total of 1053 for the system using ELECTRA while 983
and 523 for the system adopting BERT. In particular, when
ELECTRA is used instead of BERT, the system predicts both
types of pronouns with a greater accuracy, with an increase
of two percentage points in the case of personal pronouns.

Mention predictions are much more inaccurate in case of
demonstratives; the system using both the models achieves
even 80% of correct predictions. This is also the only case
where the system using BERT performs better than when
ELECTRA is adopted, achieving 108 of the 138 correctly
predicted mentions (78,2%), while stopping with ELECTRA
at 106 (76,8%). This is probably explained by the complexity
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PoS ELECTRA BERT

PRON
Uno dei suoi compiti come presidente... Pensi che lei lo sta salvando per il libro?
(One of her tasks as president... You think she is saving him for the book?)

Questi hanno scritto oggi... Lei non ha condiviso le note con loro
(They wrote today... She did not share the notes with them)

Non ha previsto il risultato di lui. Ma ha rifiutato ciò
(He did not anticipate his findings. But he refused it)

Ho pensato a lungo a questo... Molti criticano ciò
(I thought about this for a long time... Many people criticise this)

PROPN Credo che la Cina sia un concorrente... La nazione controlla un sacco del debito
(I believe that China it is a competitor. The country controls a lot of the debt)

L’ex avvocato di Clinton... Sono mosse accuse contro di lui
(Clinton’s former lawyer... Allegations are made against him)

Elia è venuto da noi. Ha dato un sacchetto...
(Elijah came to us. [He] gave a bag...)

Iraq ha trionfato sul male dell’Occidente ...il Paese crede questo
(Iraq triumphed over the evil of the West ... the Country believes this

VERB Abbiamo visto Leo... Pensava che potesse dividere gli Stati Uniti.
(We saw Leo... He thought it could divide the United States)

Non aveva Ken Starr a confutare... molti hanno seguito il processo
(He didn’t have Ken Starr to refute...many followed the trial)

[Lei] Non ha visto alcuna luce... [Lei] Diventerà la tutrice legale
(She saw no light... She will become the legal guardian)

Ci riferivamo a esso... è sempre difficile farlo
(We were referring to it... it is always difficult to do that)

TABLE 7. Examples of correct (bold) and incorrect (italic) predictions with respect to single-token mentions (underline) for most frequent Part-of-Speech categories.

of this pronominal category in the Italian language. Demon-
stratives present in fact several difficulties in Italian, both at
morphological and a syntactic level. They are characterized
- like possessives - by several inflected form, depending on
gender and number and on the initial letter of the word
they refer to. In addition, they are usually involved in long-
distance dependencies and subject-object clause construc-
tion, i.e. "Ed è questo che ho deciso di chiedere" (And that
is what I decided to ask in English). Finally, a particular
case within the group of demonstratives is the pronoun
"ciò" ("that" in English) that occupies 15% of the wrong
prediction. "Ciò" is invariant neuter pronoun and its lack
of inflection produces ambiguities and leads to a number of
challenges in some situation, i.e. subject-verb agreement.

C. QUALITATIVE ANALYSIS
To deepen the analysis on the typology of errors, a qualita-
tive analysis of the performance of the coreference system
comparing the results achieved by using ELECTRA and
BERT language models has been carried out with reference
to OntoCorefIT dataset.

Table 7 shows a snippet containing an example related to
most frequent POS in the dataset for each language model
used. Bold text indicates correct prediction with respect to
underlined mentions, while incorrect assignments are shown
using italic text. Square brackets indicate dropped subject
pronoun in Italian.

Concerning pronouns, the system using ELECTRA shows
a correct prediction in a interrogative sentence with a relative
clause. The singular feminine third-person personal pronoun
"lei" (her) acting as a mention, has the role of subject into the
relative clause "pensi che lei lo sta salvando" (You think she is
saving him) which refers to the noun "presidente" (president)
in the main clause. But the second sentence contains an error
"Non ha previsto il risultato di lui... Ma ha rifiutato ciò" (He
did not anticipate his findings, But he refused it), even if it
has a simple syntax with no subordinates. The sentence has a
negative construction and the mention is the neuter pronoun
"ciò" (it) in a object position. A similar behaviour can be
observed for the same POS category for the system using
BERT model (third column of the table 7). The correctly
predicted mention occurs as subject "Questi hanno scritto

oggi" (They wrote today), while the system with BERT fails
the correct assignment when the mention occurs as indirect
object introduced by a preposition "a questo" (about this).

A similar behaviour can be observed for the proper nouns
POS. The system using ELECTRA is able to correctly predict
the proper noun with object function inside the relative
clause introduced by the preposition "Credo che la Cina"
(I believe that China), while proper noun "Elia" (Elijah) is
not correctly referred by verb "[Egli] Ha dato" (He gave).
Maybe the error in an elementary sentence such as this one
composed of the simple Subject-Verb-Object (SVO) order is
given by the dropping of the subject, which remains implicit
in Italian, by making the correct prediction more difficult.
The system’s behaviour with BERT for this POS category
is more ambiguous, as shown with two example utterances
presenting a similar syntax. In the first example, the proper
noun acting as subject is into a prepositional phrase "L’ex
avvocato di Clinton" (Clinton’s former lawyer) and it is
correctly predicted. The second utterance has a construction
even simpler with the mention as subject in preverbal position
at the beginning of the sentence "Iraq". Despite this, it is
not correctly predicted. However, it is important to note that
the error rate for proper nouns is the lowest of all the POSs
(5,3% and 6,6% respectively), therefore the typology of not
predicted sentences is not very representative.

The scenario is different concerning the verb POS, the
grammatical category for which there is a smaller gap be-
tween correct predictions and incorrectly predicted relation-
ships (see table 6). Even more than in the previous PoS, two
factors seem to influence whether or not the prediction is
correct: position of the mention (subject/object) and subject
expressed or omitted. For instance, in the example utterance
"Abbiamo visto Leo... Pensava che potesse dividere gli Stati
Uniti" (We saw Leo... He thought it could divide the United
States), the system with ELECTRA correctly associates the
verb mention holding the relative clause "Pensava che..."
(He thought), to the noun "Leo". This sentence may appear
more articulated, since it does not have a linear syntax and
it presents a subordinate clause. However, it should be noted
that the coreference "Leo" is in the object position, therefore
the prediction must not refer to an implicit element that has
been shifted to the adjacent verb, as in the next example. For
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the sentence "Diventerà la tutrice legale" (She will become
the legal guardian) the system with ELECTRA generates
a wrong prediction. The verb "diventerà" (will become) is
tagged as mention, since the subject pronoun [lei] (She) is not
expressed in the Italian sentence. In addition, this sentence
presents two omitted subject pronoun, both for mention and
for coreference, thus increasing the difficulty in making a
correct prediction. By contrast, the system’s behaviour with
BERT is slightly better in this category. An example of cor-
rectly predicted mention for the verbs category is represented
by a simple SVO utterance with a negative construction "Non
aveva Ken Starr..." (He didn’t have Ken Starr...). The last
utterance "Ci riferivamo a esso... è sempre difficile farlo"
(We were referring to it... it is always difficult to do that)
shows an error of the system using BERT since a particular
case of verb PoS is occurred. Indeed, the utterance contains
a dative construction with a clitic pronoun "Ci" (literally us)
preceding the mention "riferivamo" (were referring) and an
enclitic form merged with the verb in the form of suffix -lo
for the coreference "farlo" (to do that).

VI. CONCLUSION AND FUTURE WORK
In this paper a coreference resolution system for the Italian
language has been presented. The system is based on an
end-to-end architecture and it uses ELECTRA as a language
model to represent input tokens. For the training step, Onto-
CorefIT dataset has been used. It is the biggest coreference
resolution dataset for the Italian language, built using a cross-
lingual methodology starting from OntoNotes. As far as is
known, there are currently no existing works for Italian based
on neural networks for coreference, nor applications that use
ELECTRA as language model.

Therefore, the performances of the system integrating
ELECTRA have not been assessed with a direct comparison
with other existing solutions for the Italian Language, but
they have been evaluated by considering BERT in place of
ELECTRA in its base (cased) version. Experiments with the
system using ELECTRA have achieved better results than us-
ing BERT. Scores have been calculated according to de facto
standard metrics proposed in Conll2012 task, with respect
to the sub-tasks Identification of mentions and Coreference,
showing an increase of at least two percentage points with the
system with ELECTRA with respect to BERT. In detail, the
system with ELECTRA or with BERT achieves a F1 score of
72,13% and 69,60% for Identification of mentions task and
of 86,23% 84,39% for Coreference task, respectively.

According to the results, an error analysis has been carried
out aiming at evaluating which grammatical category (PoS)
is mostly error-prone for single-token coreferences. Worse
performances have been shown for the VERB category,
since in OntoCorefIT dataset, mentions have been frequently
shifted to verbs, in case the subject could be omitted, to
accommodate the syntactic constructions of Italian. Hence,
this has added a higher ambiguity in the final recognition.
A deeper analysis has been conducted with respect to men-

tions belonging to the pronouns category, showing better
performances with possessives and personal pronouns with
respect to demonstratives, due to a high variability related to
morphological and a syntactic aspects. Finally, a qualitative
analysis has been conducted to compare the behaviour of the
system when ELECTRA or BERT is used as language model,
also reporting examples of correct and incorrect predicted
mentions.

Further studies could be conducted on the possibility of
using other language models specifically for the coreference
resolution task. Furthermore, from a strictly linguistic point
of view, a deeper analysis not only limited to grammatical
categories but also to other linguistic features affecting per-
formances could be carried out as future work.
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