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Probing the Debye spectrum in glasses using small system sizes
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We investigate the low-frequency spectrum in a three-dimensional model of structural glass focusing on small
system sizes, and using different observables, i.e., the density of states D(ω), the cumulative of the density
of states F (ω), and the dynamical structure factor S(q, ω) in the harmonic approximation. When the glass is
obtained by an instantaneous quench from high temperatures, we show that extended “phonon-like” modes
always populate the low-energy spectrum. Looking at the properties of the dynamical structure factor S(q, ω),
we observe that in agreement with early studies of Lennard-Jones glasses [V. Mazzacurati, G. Ruocco, and
M. Sampoli, Europhys. Lett. 34, 681 (1996)], there are still extended modes below the lowest resonant peak.
These modes give rise to a plateau in the S(q, ω) for ω → 0. This result indicates that the low-energy spectrum
of extended modes in glasses can be probed using small system sizes and performing instantaneous quench
from high parental temperatures. As we recently observed [M. Paoluzzi, L. Angelani, G. Parisi, and G. Ruocco,
Phys. Rev. Lett. 123, 155502 (2019)], the situation changes when the glassy configuration is obtained by an
instantaneous quench from lower temperatures. The former protocol suppresses extended modes below the
lowest resonant peak emphasizing the localized modes with D(ω) ∼ ω4.
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I. INTRODUCTION

The low-frequency portion of the vibrational density
of states (DOS) D(ω) in topologically disordered sys-
tems is dominated by Goldstone modes (spatially extended
quasiphonon modes) whose DOS is proportional to ωd−1,
where d is the spatial dimension. Overwhelmed by these
phonon modes, other elusive excitations are expected to ex-
ist. Besides the two-level systems, present only in quantum
systems and showing their existence only at very low tempera-
ture [1], localized excitations with a ω4 DOS in any dimension
are supposed to exist as a consequence of the marginal stabil-
ity at the spectrum edge of the dynamical matrix [2,3].

Recently different methods have been proposed to high-
light the localized modes [4–9]. In Ref. [5], the authors
proposed to simulate systems with small enough size L in
order to keep “room” at frequencies below the lowest res-
onant mode [at frequency ω0 = vT (2π/L), where vT is the
transverse sound velocity], thus assuming that below ω0 all the
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modes were localized [5]. With these methods, they claimed
to always observe an ω4 density of states below ω0.

An alternative approach has been used by us [7,9]. In a
first work [7], we pinned some of the particles during the
search of the inherent structures [10–14], in such a way to
kill the extended modes, i.e., collective excitations that are
phonon-like, leaving almost unperturbed the localized ones
that were able to vibrate in between the pinned particles.
In our three-dimensional system, we observed a progressive
transition of the DOS from ω2 (no pinning) toward ω4 (high
pinning fraction) [7]. In a second work [9], building on the
heterogenous elasticity theory [15–18] and on the existence
of larger and larger correlation length on decreasing the tem-
perature toward the dynamical transition temperature Td in
supercooled liquids [19–26], we use the parental temperature
instead of the pinning fraction as a control parameter. The
parental temperature is the temperature at which the liquid
is equilibrated before to start the zero-temperature instanta-
neous quenching procedure. We have observed a continuous
transition of the DOS from ω2 (high parental temperature,
no heterogeneity) toward ω4 (low parental temperature, large
heterogeneity).

In all these studies we used “small systems,” i.e., up to
N = 203, where—as we found—many excitations have fre-
quencies below the lowest resonant mode. Nonetheless, we
observed both ω4 (associated with the localized modes) and
ω2 (associated with the d = 3 extended modes) well below
the lowest resonant mode. In this work, focusing our attention
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on small system sizes, we show that, in agreement with our
previous results [9], annealing protocols rather than the choice
of small system sizes are the ingredient for observing the
D(ω) ∼ ω4 power law.

All these observations lead to the conclusion that unless
one introduces an annealing protocol [27], it is useless to
analyze small systems if one aims to emphasize the localized
modes. The latter show up only in strongly heterogeneous
systems.

Considering small system sizes, in the present paper, we
show that different observables such as the DOS D(ω), the
cumulative F (ω), and the dynamical structure factor S(q, ω)
suggest that the spectrum below the lowest resonant mode
still follows Debye’s law in homogenous glasses, i.e., glassy
configurations obtained after an instantaneous quench from
T = ∞. We thus connect the spectral shape of the dynamical
structure factor S(q, ω) at low frequency with the behavior of
D(ω).

These findings make a connection with the glass stability
issue. Indeed, strong heterogeneity could be the consequence
of ill thermalization (unstable glass). Also, this study points
out that on the contrary, it is very useful to consider small
system sizes with respect to large ones if one aims to study
the Debye law at low frequencies. This is because of the cost
of diagonalizing a matrix of size N scales with N3. Through
the diagonalization of the dynamical matrix one computes 3N
eigenvalues; the same information can be obtained consider-
ing n smaller systems each one of size M = N/n with a time
cost that scales as N3/n2 < N3.

Moreover, our results show that when the parental config-
uration is disordered but homogeneous, i.e., it is taken deep in
the liquid phase, extended modes populate the low-frequency
spectrum below the lowest transverse mode. Configurations
taken at parental temperatures close to the dynamic transition,
i.e., where dynamical heterogeneities proliferate, maintain
almost untouched the resonant mode. However, they lose
extended modes at lower frequencies and thus the only low-
energy excitations below ω0, i.e., the lowest resonant modes,
are soft-localized modes.

II. MODEL AND METHODS

The microscopic model consists of a 50 : 50 binary mix-
ture composed of small and large particles labeled with A
and B, respectively. The system is confined in a cubic box
of side L with periodic boundary conditions. Two particles
interact through a pure repulsive pairwise potential [28,29].
The total number of particles reads N = NA + NB and the
corresponding density ρ = N/L3 is fixed to ρ = 1; i.e., the
side of the box is L=N1/3. The radii are σA and σB with
σA/σB =1.2 and σA+σB ≡σ =1 [29]. Indicating with ri the
position of the particle i, with i = 1, . . . , N , two particles i, j
interact via the potential

φ(ri j ) = ε[(σi + σ j )/ri j]
12 + k0 + k2r2

i j, (1)

where ri j ≡|ri − r j |. We impose a cutoff to the potential at
rc =√

3σ in a way that φ(r) = 0 for r > rc. The coefficients
k0 and k2 guarantee continuity to φ(r) up to the first derivative
at r = rc. Details about numerical simulations of the model
can be found in Refs. [7,9].

A. Generating equilibrium configurations

Equilibrium configurations have been obtained perform-
ing Brownian dynamics at temperature T . As temperature
decreases toward Td , we have introduced swap Monte Carlo
moves for improving the thermalization [29]. Details about
the dynamics can be found in Ref. [9]. We thus consider
the pure relaxation dynamics of the system coupled to a
thermal bath at temperature T in the overdamped regime.
Every 2 × 103 time steps, we propose an update of the system
through standard swap moves [9]. In this work we focus
our attention on system sizes N = 123 and Ns ∈ [200, 719]
number of independent samples. In the following, we report
all quantities in reduced units considering σ = ε = μ = 1,
with μ the particle mobility. The number density is ρ = 1 and
Td � 0.185.

B. Inherent structures and the density of states

After thermalization, we compute the corresponding inher-
ent structures through the limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithm [30]. Let r be a configuration of
the system, i.e., r ≡ (r1, . . . , rN ). The mechanical energy of
the configuration r is

E [r] =
∑
i< j

φ(ri j ). (2)

We indicate with r0 ≡ (r0
1, . . . , r0

N ) configurations that corre-
spond to one of the many local minima of E [r].

The spectrum of the harmonic oscillations around r0 is then
obtained considering a perturbed configuration r = r0 + δr.
The mechanical energy now reads

E [r] = E [r0] + �E (3)

with

�E ≡ 1

2

∑
i, j

∑
μν

δrμ
i Mμν

i j δrν
j , (4)

where Mμν
i j indicates the elements of the Hessian ma-

trix. Latin indices i, j = 1, . . . , N indicate the particles and
Greek symbols ν, μ = 1, . . . , 3 the Cartesian coordinates. We
have computed all the 3N eigenvalues λκ = ω2

κ , with κ =
1, . . . , 3N , using the GNU Scientific Library (GSL) for sizes
up to N = 123.

The density of states is defined as

D(ω) = N−1
∑

κ

δ(ω − ωκ ) (5)

with N the number of nonzero modes, that is, 3N − 3 for
translationally invariant systems. Another useful observable
for studying the low-frequency spectrum is the cumulative
distribution F (ω) that is defined as

F (ω) =
∫ ω

0
dω′ D(ω′). (6)

The main advantage of using F (ω) instead of D(ω) is that
F (ω) does not require any binning procedure for the estima-
tion of the properties of the DOS from numerical eigenvalues;
i.e., one does not have to compute any histogram for determin-
ing F (ω), because, after performing the integration of delta
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functions δ(ω − ωκ ), we immediately realize that the only
information one needs is the list of eigenvalues sorted from the
smallest to the largest. In the present work, we will compare
the results obtained from the direct computation of (5) with
those provided by F (ω). In particular, we will show that while
D(ω) can lead to misleading results, F (ω) turns out to be a
more suitable observable.

Finally, the measure of how the mode of frequency ω is
extended or localized can be estimated through the inverse of
the participation ratio R [31], that is,

R =
∑

i |ei(ω)|4
[
∑

i |ei(ω)|2]2
, (7)

with ei(ω) indicating the eigenvectors of the Hessian matrix.
In particular, we will investigate through the probability dis-
tribution function P (R) the localization properties of modes
populating the low-frequency sector of the vibrational spec-
trum. P (R) is computed considering modes below or around
a threshold frequency ωth.

C. Computation of the dynamical structure factor S(q, ω)

The knowledge of normal modes allows us to compute the
dynamic structure factor S(q, ω) in the harmonic approxima-
tion [32]. In this approximation the actual interactions have
been replaced by harmonic interactions characterized by the
set of 3N eigenfrequencies ω2

λ and the corresponding eigen-
vectors ei(λ), i.e., the eigenvector of the mode labeled by λ.
The structure factor S(q, ω) in the harmonic approximation
reads

ST,L(q, ω) = kBT

N
q2

∑
λ

|fT,L(q, λ)|2 δ
(
ω2 − ω2

λ

)
ω

, (8)

where the longitudinal and transversal components, SL and ST ,
respectively, are given by the following expressions:

fL(q, λ) ≡
∑

i

q
q

· ei(λ)eiq·ri ,

fT (q, λ) ≡
∑

i

q
q

× ei(λ)eiq·ri . (9)

The wave vectors q = (qx, qy, qz ) of modulus q = |q| satisfy
the periodic boundary condition imposed to the system. We
thus have a minimum wave vector of modulus q = 2π

L and a
generic q results in being written as q = qmin(nx, ny, nz ) with
nx,y,z three independent integer numbers.

III. DENSITY OF STATES

In this section we discuss the properties of the density of
states D(ω) defined through Eq. (5). We will show that ex-
tended modes populate the low-frequency spectrum no matter
how small the system size is. D(ω) results in being bounded
at low frequencies by two power laws, i.e., ω4 � D(ω) � ω2.
This bound is undetectable in linear scale, where D(ω) ap-
pears to be ∼ω2 within the statistical uncertainties. We will
show that the situation changes at low parental temperature;
in particular Debye’s spectrum disappears for T → Td , with
Td the dynamical temperature.

FIG. 1. (a) Density of states D(ω). The system is composed of
N = 123 particles, and the inherent structures have been obtained by
quenching after the equilibration of systems at high parental tem-
peratures, i.e., T/Td = 2.38. Different colors are different samples.
Here we show 600 samples. Panels (b), (c), and (d): Sample-to-
sample fluctuations of D(ω) at three representative frequencies, i.e.,
ω = 0.05, 0.3, 0.6, from left to right. Symbols are the distribution of
values of D(ω) measured at a given value of frequency ω. The dashed
line is the fit with a Gaussian distribution.

A. Debye spectrum at high parental temperature T � Td

We first consider configurations thermalized at high
parental temperature, i.e., well above the dynamical tran-
sition temperature of the model Td . Figure 1 shows the
corresponding density of states D(ω). Lower panels highlight
sample-to-sample fluctuations at three representative frequen-
cies, i.e., ω = 0.05, 0.3, 0.6. Dashed curves are fits to a
Gaussian distribution that turns out to capture the distribution
P(D) around its mean value. In Fig. 2, we focus our atten-
tion at low frequencies. Our data analysis is consistent with
Debye’s law below the lowest resonant peak at ω0 ∼ 0.035.
Moreover, above ω0, i.e., ω � 0.04, data seem to collapse
again on Debye’s law.

Now, to gain insight into low-energy excitations, we will
look at the low-frequency spectrum in more detail. The results
are provided in the inset of Fig. 2, where D(ω) is shown in
both linear (main panel) and double logarithmic scale (inset).
Different colors refer to linear (red circles) and logarithmic
(blue diamonds) data binning. Dashed and dotted lines are the
two scalings, D(ω) ∼ ω2 and D(ω) ∼ ω4, respectively.
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FIG. 2. Density of states D(ω) at high parental temperature at
low frequencies for system size N = 123. Red circles, linear data
binning; blue diamonds, logarithmic data binning. The dashed line
is the Debye scaling D(ω) ∼ ω2. The dotted curve is the ω4 scaling.
Both have been obtained by fitting the data below ω = 0.025. Inset:
D(ω) in double logarithmic scale, �ω = 0.007 (red circles) and
�ω

ω
= 0.066 (blue diamonds).

B. Deviations from Debye spectrum at low parental
temperatures T → Td

Here we consider the density of states D(ω) of inher-
ent structures obtained from configurations thermalized at
a parental temperature T close to the dynamical transition
temperature of the considered model from above. In Ref. [9]
we showed that the slope of the cumulative function F (ω)
continuously changes from Debye to non-Debye, i.e., from 3
to 5, as the temperature decreases toward Td .

This finding is confirmed in Fig. 3 where we show D(ω)
in linear scale and log scale (inset). As one can see, although
D(ω) develops a fat tail below ω0 (inset), the Debye spectrum
results in being suppressed in favor of an ω4 power law at
low frequencies. This finding confirms what we have observed
in Ref. [9]. It is worth noting that the annealing procedure
removes any ω2 contribution below the resonant peak that
remains at ω = 0.04.

C. The cumulative density of states F(ω)

In the previous section, we showed that a genuine ω4

scaling in the low-frequency regime in D(ω) can be observed
at low parental temperatures. Moreover, for high parental
temperatures, D(ω) shows a clear Debye scaling at low fre-
quencies, even below the resonant peak at ω0, no matter how
small the size of the system is.

Here we show the same behavior also in the cumulative
density of states F (ω) that is defined through Eq. (6). Since
D(ω) is a sum of delta functions, for computing F (ω) one has
just to sort the eigenfrequencies of the dynamical matrix from
the lowest to the largest. In this way, the result does not de-
pend on any particular choice made for the data binning. It is
worth noting that F (ω) ∼ ω3 corresponds to Debye’s scaling

FIG. 3. Density of states D(ω) at low frequencies (the system
size is N = 123) and parental temperature T/Td − 1 = 0.01. The
dashed line is the Debye scaling D(ω) ∼ ω2; the dotted line is the
ω4 scaling. Both curves have been obtained by fitting the data below
ω = 0.025. Red circles refer to linear data binning, blue diamonds
to logarithmic data binning. Inset: D(ω) in double logarithmic scale,
�ω = 0.007 (red circles) and �ω

ω
= 0.066 (blue diamonds).

D(ω) ∼ ω2 and F (ω) ∼ ω5 to D(ω) ∼ ω4. The behavior of
F (ω) is reported in Fig. 4. It turns out that samples prepared
at high parental temperatures [see panel (a)] follow Debye’s
scaling below the lowest transverse mode ω0 [32]. On the
other hand, as the parental temperature decreases [panel (b)],
F (ω) ∼ ω5 below ω0.

To better quantify the properties of these modes, we have
computed the probability distribution function P (R). For
computing P (R), we consider only modes that populate a
given sector of the spectrum. In this way, we can discrimi-
nate between regions where it is more likely to find extended
modes and regions that are populated by localized modes. It is
worth noting that for performing a careful study of R, one has
to look at the scaling of R as the size of the system changes.
However, the position of the transverse peak ω0 shifts at lower
frequencies as the size of the system increases. Since we
are interested in understanding the localization properties of
modes at frequencies lower than ω0, we perform our study at
small system sizes.

We focus our attention on two sectors of the low-frequency
spectrum. The first sector is below the lowest transverse mode
ω0. The second sector is around ω0. Figure 5 reports the results
of our analysis. Dashed curves refer to P (R) computed in the
second sector, the red curves refer to high parental temper-
ature, the blue curves close to the dynamical transition. The
location of the peak of the distribution slightly changes around
the frequency of the lowest transverse mode. Moreover, as
expected for phonons, the peak is located at small R values
that are compatible with completely extended modes (for ex-
tended modes R ∼ N−1 ∼ 10−3 [31]). In the low-frequency
spectrum, i.e., R computed at frequencies smaller than ω0,
the position of the peak shifts toward higher R values as tem-
perature decreases (in a completely localized mode R = 1).
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FIG. 4. The cumulative distribution function F (ω) in double logarithmic scale at high parental temperature (a) and low parental temperature
(b). F (ω) has been obtained by sorting from the smallest to the largest the Ns × (123 − 3) eigenfrequencies, with Ns the number of samples.
Dashed black line is Debye scaling ω3; dotted black line is non-Debye scaling ω5.

Moreover, at high parental temperatures (red curves), the dis-
tributions computed in the two frequency sectors, i.e., around
the resonant peak and below it, overlap each other providing
further evidence for the presence of extended nonphononic
modes in this region of the spectrum.

In the next section, we will show that the behavior of
the density of states is consistent with the behavior of the
dynamical structure factor S(q, ω) computed in the harmonic
approximation.

IV. DYNAMICAL STRUCTURE FACTOR

We start our discussion with considering both the trans-
verse and the longitudinal components ST,L(q, ω) [32–34].
In Fig. 6(a) we show ST,L(qmin, ω) as a function of ω, with

FIG. 5. Probability distribution function P (R) at high and low
parental temperatures (red and blue curves, respectively). P (R) is
computed in two representative regions of the low-frequency spec-
trum. The first region (dashed curves) is around the transverse mode.
The second region (solid curve) is for frequency ω well below the
lowest transverse mode, i.e., ω < ωth = 0.025 < ω0 ∼ 0.04.

qmin = 2π
L . ST,L(qmin, ω) are reported for different parental

temperatures. Let start with considering the case of high
parental temperatures. As one can see, and in agreement with
Refs. [32,34], ST,L(q, ω) show two peculiar features: (i) a
broad peak that signals the presence of acoustic-like excita-
tions plus (ii) a plateau that tends to a q-independent finite
value at zero frequency, i.e., limω→0 ST,L(q, ω) 
= 0.

This behavior is in agreement with the model developed in
Ref. [32] where those authors have established the relation

ST,L(q, ω) ∝ D(ω)

ω2
. (10)

The model predicts that ST,L(q, ω) is flat at low frequencies
for a Debye spectrum. In particular, assuming a low-frequency
behavior D(ω) ∼ ωα , one has ST,L(q, ω) ∼ ωα−2. In this pic-
ture, a power law for ω → 0 in ST,L(q, ω) reveals deviations
from Debye’s law. It is worth noting that in the case of a
scaling D(ω) ∼ ω4, one has ST,L(q, ω → 0) ∼ ω2. We thus
have a stringent prediction about the behavior of ST,L(q, ω)
as the parental temperature decreases. Figure 6 suggests that
our data are consistent with Eq. (10) providing evidence
for ST,L(q, ω → 0) ∼ constant at high parental temperatures.
Moreover, as the temperature decreases toward Td (same fig-
ure), ST,L(q, ω) shows a different slope at low frequencies
with an effective exponent that is (parent) temperature depen-
dent. The same behavior is observed at larger wave numbers,
as shown in panel (b) of the same figure, where ST,L(q, ω) is
reported for q = 5 qmin. Again, at high parental temperatures,
ST,L(q, ω) develops a plateau at small frequencies, i.e., below
the resonant peak. The plateau changes into a power-law tail
as the temperature changes toward Td .

V. DISCUSSION AND CONCLUSIONS

Motivated by the upsurge of interest in understanding low-
frequency excitations in glasses, we performed a detailed
study of normal modes in a three-dimensional model of glass.
In agreement with early studies on the same subject [32], our
results provide evidence of the presence of extended modes in
the low-frequency spectrum for glassy configurations whose
parental configuration belongs to high temperatures. This
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FIG. 6. Dynamical structure factor ST,L (q, ω) as a function of ω as the temperature decreases toward Td , i.e., 1 − T/Td =
2.38, 0.35, 0.28, 0.22, 0.15, 0.08, 0.01 from white to red (SL) and from white to blue (ST ). In panel (a), q = qmin; in panel (b), q = 5 qmin.

finding is also in agreement with the behavior of the cu-
mulative distribution function of the density of states F (ω)
shown in Refs. [7,9]. In particular, configurations thermal-
ized at high parental temperatures and then instantaneously
quenched at T = 0 for computing the corresponding inherent
structures show a Debye spectrum at low frequency, i.e., at
frequencies below the resonant peak. Since we are exploring
small system sizes, i.e., N = 123 particles at ρ = 1 and thus
L = 12σ , this behavior turns out to be in apparent contradic-
tion with some strategies recently introduced for probing the
non-Debye spectrum, i.e., the so-called ω4 scaling, in models
of disordered solids [5,35,36].

Performing a detailed analysis of the density of states
D(ω), at high parental temperatures, we observed that D(ω) ∼
ω2 below ω0. The low-frequency tail changes to D(ω) ∼ ω4

as the temperature decreases toward Td . The behavior of F (ω)
confirms this finding.

Finally, we showed that our analysis of D(ω) is consistent
with the behavior of S(q, ω) computed in the harmonic ap-
proximation. As has been observed in Ref. [32], S(q, ω) →
constant for ω → 0 whenever the inherent structures refer to
high parental temperature configurations. When the parental
temperature approaches Td , S(q, ω → 0) ∼ ω2, this finding
supports a scaling D(ω) ∼ ω4.

In conclusion, our work suggests that soft-extended modes
are responsible for Debye’s scaling at frequencies lower than
ω0, i.e., the lowest resonant frequency of ST (q, ω), and high
parental temperatures. As discussed in Ref. [9], this fact gives
rise to a crossover in the low-frequency tail of F (ω) that
changes its slope smoothly from Debye’s law; i.e., the vi-
brational DOS changes from D(ω) ∼ ω2 to the famous ω4

scaling, by lowering the parental temperature. The results
presented here confirm that the crossover is related to the
suppression of extended modes below the lowest transverse
mode.

The distribution P (R) of the inverse of the participation
ratio R suggests that (i) the statistical properties of normal

modes around the resonant peak of ST (q, ω) show a weak
dependency on parental temperature, and (ii) the same prop-
erties at lower frequencies turn out to be parental temperature
dependent. The results presented here suggest that small sys-
tem sizes are particularly suitable for probing these extended
nonphononic modes. Further investigations are required for
understanding the role played by these modes in the thermal
and transport properties of structural glasses [37].

Considering our results in connection with those in
Refs. [5,36,38], it turns out that annealing protocols play a
pivotal role in detecting deviations from Debye’s law, as has
been mentioned in Ref. [27].

Our study also suggests that to collect information about
low-frequency extended modes, it turns to be much more
convenient, in terms of computational time, to consider small
system sizes instead of probing a larger system. This is be-
cause typical diagonalization algorithms scale with N3 and
thus, considering smaller system sizes M = N/n, with n > 1,
the same information is collected in a time that scales as
N3/n2. On the other hand, larger system sizes result in be-
ing more suitable for investigating the spatial properties of
extended and localized modes [6,37].
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