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Abstract
Motivation: The earlier version of MobiDB-lite is currently used in large-scale proteome annotation platforms 
to detect intrinsic disorder. However, new theoretical models allow for the classification of intrinsically 
disordered regions into subtypes from sequence features associated with specific polymeric properties or 
compositional bias.
Results: MobiDB-lite 3.0 maintains its previous speed and performance but also provides a finer classification 
of disorder by identifying regions with characteristics of polyolyampholytes, positive or negative 
polyelectrolytes, low complexity regions or enriched in cysteine, proline or glycine or polar residues. Sub-regions 
are abundantly detected in IDRs of the human proteome. The new version of MobiDB-lite represents a new step 
for the proteome level analysis of protein disorder.
Availability: Both the MobiDB-lite 3.0 source code and a  docker container are available from the GitHub 
repository:  https://github.com/BioComputingUP/MobiDB-lite. 
Contact: silvio.tosatto@unipd.it

1 Introduction 
The identification of protein domains and sequence 

conservation has long been central to the annotation of proteomes 
(Lee et al., 2005; Sonnhammer et al., 1997). Many proteins, 
known as intrinsically disordered, have been observed to escape 
the typical organization of globular proteins in domains (Dunker 
et al., 2001). A large fraction of the human proteome is devoid of 
domains (Mistry et al., 2013) and in this ‘dark’ proteome 
molecular conformations are completely unknown (Perdigão et 
al., 2015). Computational prediction of intrinsic disorder (ID) 
attempts to fill this gap by offering a wide array of prediction 
methods (Walsh et al., 2012; Mészáros et al., 2018) with different 
performances (Walsh et al., 2015; Necci et al., 2018). Despite 
many methods having been available for a long time, they had not 
been integrated into large-scale proteome annotation. MobiDB-
lite (Necci et al., 2017) was the first of such predictors to be 
included in InterProScan from its release 60 (Mitchell et al., 

2019). MobiDB-lite combines a set of  complementary ID 
predictors in a consensus optimized on a PDB X-ray dataset 
(Walsh et al., 2015) to limit over-prediction while balancing 
under-prediction.

In recent years theoretical models of ID proteins surpassed the 
bare distinction between disorder and structure and reached a 
point where classification of subtypes of disorder is possible 
based on sequence features (Das and Pappu, 2013; Holehouse et 
al., 2017). Furthermore, recent evidence highlighted how ID and 
low sequence complexity (LC) are strictly intertwined (Mier et 
al., 2020). For this reason, we developed a new version of 
MobiDB-lite, which can capture different classes of disorder and 
sequence features that we observed being biologically relevant in 
IDPs (Necci et al., 2016). MobiDB-lite 3.0 is already included in 
the latest versions of MobiDB (Piovesan et al., 2018). The new 
version is available as  docker container and also exposes bindings 
to use MobiDB-lite as a python library, in compliance with the 
FAIR principles (Wilkinson et al., 2016). 
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2 Implementation
MobiDB-lite disorder prediction unfolds in two steps as 

explained as in (Necci et al., 2017). Briefly, the first step 
calculates a strict majority (i.e. > 4) consensus between 8 
predictors (Linding, Jensen, et al., 2003; Dosztányi et al., 2005; 
Walsh et al., 2012; Linding, Russell, et al., 2003; Peng et al., 
2006), which in the second step is smoothed out in a process 
similar to dilation-erosion morphological operations and filtered 
to keep only regions longer than 20 residues (Necci et al., 2017).  
MobiDB-lite 3.0 further processes predicted disordered regions in 
order to achieve a finer classification in sub-regions, using a 
sliding window of 9 residues to assign each amino acid in the 
sequence of disordered regions to one of six classes based on 
conditions. By default each residue is only assigned to a single 
class by priority to simplify interpretation by non-experts and 
highlight the most relevant sub-regions. Overlapping sub-region 
assignments can be enabled by the user. Classes, in order of 
priority are: Polyampholyte, Positive Polyelectrolyte, Negative 
Polyelectrolyte, Cysteine-rich, Proline-rich, Glycine-rich, Low 
complexity, Polar. The first three classes reflect a classification 
proposed in (Das and Pappu, 2013) and were suggested to be 
associated with different structural and potentially functional 
characteristics. The latter four are assigned when the fraction of 
cysteines, prolines, glycines and polar residues in the sliding 
window is greater than 32%. Finally, Low-complexity is predicted 
by SEG (Wootton and Federhen, 1993). Both the sliding window 
size and threshold on the residue fraction in the sliding window 
were manually set based on a sample of biologically relevant 
proteins. Classification (including SEG prediction) is smoothed 
out in an iterative process following the same approach applied to 
disordered regions (Necci et al., 2017). Finally, a sub-region is 
reported for at least 9 residues, otherwise discarded. Both the 
MobiDB-lite source code and a docker container are available in 
the GitHub repository:
 https://github.com/BioComputingUP/MobiDB-lite.

Fig. 1. Abundance of IDRs and sub-regions. MobiDB-lite results for 
the human proteome. (A) Fraction of IDRs with (blue) and without sub-
types (orange). (B) Distribution of IDR sub-types . (C) Distribution of 
sub-regions detected per IDR, plotted on a logarithmic frequency scale (y-
axis).

3 Use case
IDRs and sub-regions were calculated with MobiDB-lite 3.0 for 

the whole human proteome from UniProt (UP000005640), 
consisting of 74,043 amino acid sequences, of which 33,322 
(44.5%) are predicted IDPs. A total of 64,484 IDRs and 71,921 
sub-regions were detected. The majority of IDPs (59.9%) have 
just one IDR while only 6 proteins have more than 30 IDRs. 
Mucin-16 (14,451 residues; UniProt ID: Q8WXI7) contains 112 
IDRs. Of the 64,484 IDRs detected, 21,610 (33.5%) do not have 
any sub-regions, while the remaining 66.5% can have 1 or more 
(Figure 1A). More than 66.1% of sub-regions are either 

Polyampholytes or Polar (Figure 1B). The remaining sub-regions 
are, in order of abundance, low-complexity (16.8%), proline-rich 
(7.9%), glycine-rich (3.9%), negative (3.3%) and positive 
polyelectrolytes (2.1%). Cysteine-rich sub-regions are never 
detected in this dataset. Many IDRs (67.6%) have just one sub-
region and the number of IDRs with more than one sub-region 
drops exponentially with the increase of sub-regions (Figure 1C). 
In only six cases an IDR has more than 30 sub-regions. Filaggrin 
(4,061 residues; UniProt ID: P20930) has a predicted IDR 
spanning from residue 255 to 3,971 hosting 105 sub-regions. 

Conclusions
We have described MobiDB-lite 3.0, an improved stand-alone 
version achieving a finer ID classification by detecting sub-
regions in predicted IDRs also available from MobiDB and 
InterPro. To the best of our knowledge, MobiDB-lite 3.0 is 
currently the only ID predictor able to sub-classify disorder and 
also the first ID predictor provided as a docker container.
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