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ABSTRACT Because the existing finger vein segmentation networks are too large and not suitable for
implementation in mobile terminals, the reduction of the parameters of the lightweight network leads to the
reduction of the segmentation index, and the long-running time of deep network on hardware platforms; this
paper proposes a lightweight real-time segmentation method for finger veins based on embedded terminal
technique. In the preprocessing stage of the algorithm, the data is greatly expanded by randomly selecting
the center to obtain sub-blocks on each image of the training set. The network first uses deep separable
convolution to greatly reduce the U-Net parameters of a basic network and introduces an attention module
to reorder the features to improve network performance, followed by a preliminary lightweight network
Dinty-NetV1. Second, the Ghost module is added to the deep separable convolution, and the feature map
of the network part is obtained through a cheap operation so that the network is further compressed to
obtain Dinty-NetV2. After adding channel shuffle, all the characteristic channels are evenly shuffled and
reorganized to obtain Dinty-NetV3. Finally, a study of the filter norm yields the distribution characteristics
of the finger vein picture features. By using the geometric median pruning method, the network models for
each stage of the algorithm proposed in this paper achieved better segmentation performance and shorter split
time after pruning. The overall Dinty-NetV3 model size is only less than 9% of the U-Net and Mult-Adds
is less than 2% of the U-Net with the same structure. After testing on two-finger vein datasets SDU-FV
and MMCUBV-6000, we confirm that the performance of Dinty-NetV3 surpasses all previously proposed
classic compression model algorithms and it is not inferior to more complex and huge networks such as
U-Net, DU-Net, and R2U-Net. The proposed algorithm has advantages in terms of time needed to train the
network, and we verify its universality using NVIDIA’s full range of embedded terminals.

INDEX TERMS Channel shuffle, depth separable convolution, Dinty-Net, embedded terminal, filter pruning
via geometric median, finger vein segmentation, GhostNet, lightweight network, U-Net.

I. INTRODUCTION
In recent years, biometric technology has been gaining more
and more attention from the general public owing to its
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increasing need to in ensuring the safety and accuracy of bio-
metric systems. At present, various biological characteristics
such as fingerprints [1], palm-print [2], finger-vein [3], [4],
hand-vein [5], palm-vein [6], face [7], iris [8], voice [9],
gait [10], and signature [11] have been employed in recog-
nition and verification applications. Finger vein recognition
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has been gaining tremendous attention in the research com-
munity due to its advantages of non-contact collection, live
detection, not easy to forge, and low cost compared to other
biometric recognition technologies [12]. Because the quality
of the segmentation effect will directly affect the accuracy
of subsequent finger vein feature extraction and recognition,
segmentation of finger vein images has become a key step
in finger vein recognition technology. The quality of the
segmentation effect will directly affect the accuracy of subse-
quent finger vein feature extraction and recognition scheme.
Although previously proposed segmentation networks for
finger veins such as FCN [13], SegNet [14], RefineNet [15],
U-Net [16], etc., have achieved better performance, it is wor-
thy of note that these methods require a huge amount of stor-
age resources in the device’s space. Further, huge computing
resource requirements make it difficult to effectively apply
these methods in many current mobile hardware platforms.
At present, domestic and foreign researchers have done a lot
of research on finger vein segmentation and recognition and
even on various network lightweight methods, however there
are only a few embedded terminal implementation analysis
algorithms.

Nowadays, artificial intelligence (AI), machine learning
(ML) and deep learning (DL) all play important roles in many
applications. In the ImageNet challenge [17], computers have
surpassed the ability of humans to classify images. Since the
invention of AlexNet (convolutional neural network) in 2012,
computer vision has entered a new era. Deep neural net-
works are the most advanced technology used in applica-
tions including computer vision, natural language processing,
speech recognition, etc. They enable computers to perform
tasks that were once considered impossible. Al is becoming
increasingly popular. The new industrial revolution dedicated
to contributing to smart cities is called Industry 4.0, smart
medical systems, agriculture, and education. The list con-
tinues. Internet connection has become an important feature
of every household device. Internet-connected devices are
growing explosively, and there are currently 20 million IoT
devices in the world [18].

The problem of finger vein segmentation in embedded
terminals is similar to the multi-objective optimization prob-
lem and segmentation performance. Further, network size
and running time also need to be considered. Most of the
previous lightweight research goals are to achieve relatively
good accuracy with a network with small parameters on
a computer terminal and considers only segmentation per-
formance optimization and network size. However, in deep
networks, it is necessary to reduce the number of parameters.
The lightweight method often introduces a large number of
operations that are more complicated and time-consuming
than convolution. Although the results of this operation are
reduced on the PC side and the accuracy is not reduced
or even improved. To perform the above simple operations
in an embedded terminal, longer calculation time is often
needed, which is contrary to the original purpose of the
lightweight method. Han published deep compression and

304

EIE [19] in 2015. This article is a review-type article on
model compression methods and successfully examined cut-
ting, quantifying, and techniques for sharing weights which
are used in model compression. It achieved quite satisfactory
results and ultimately was the best paper of ICLR2016. After-
ward, a research on model compression methods showed that
DL mainly has the following branches: (i) Refined design
for the model. At present, a large number of networks are
very large in depth and width, resulting in a large number
of redundant parameters. Further, there are many studies on
model design, such as MobileNet [20] and Inception [21] that
used more detailed and efficient model design techniques to
achieve better performance results while reducing the number
of model parameters. Although these models can achieve
excellent performance with few parameters, they have never
fully exploited the correlation and redundancy between fea-
ture maps. (ii) Tailoring for smaller neurons. Algorithms with
complex structures and large neural networks usually have
better performance. As result, there will be more redundancy
in neurons, thus, a standard can be used to limit the unim-
portant connections or filters of the trained network. It is
tailored to reduce the redundancy of the model, as reported
in [22]-[24].

Since U-Net was proposed, due to its excellent
performance in medical image segmentation, it is often used
as infrastructure in other networks such as R2U-Net [25],
DU-Net [26], etc. Most of these networks greatly increase
the size and parameters of the model in pursuit of higher seg-
mentation performance. Although this article chooses U-Net
as the infrastructure network, the purpose is to compress
the network. In the refined design of compression, the deep
separable convolution in MobileNet was first used to reduce
the parameters of the network initially, however it did not
reach the ideal goal of this article. GhostNet [27] is also a
kind of compact model design. It proposes that a feature map
can be used as a “Ghost” of another and the “Ghost” can
be generated by a cheaper operation. Using this algorithm
can reduce the total number of parameters and computational
complexity of the network that has been compressed earlier.
This article uses the “GhostNet” idea to further compress the
network. The hypothesis of the depth separable structure in
MobileNet is that correlation and spatial correlation between
the channels of the convolutional layer can be decoupled by
ignoring the correlation and spatial correlation between them;
however, it is not applicable in finger vein segmentation. This
article uses ShuffleNet [28] proposed to use channel shuffle
to reorganize the feature map after group convolution, so that
the information can be transferred between different groups.

Generally speaking, a filter with a smaller norm is expected
to make an absolutely small contribution to the network,
rather than a relatively small but positive contribution, how-
ever this is not the case. After checking the features extracted
by the network for redundancy, it is found that the conven-
tional clipping method for smaller neurons can only speed
up the network, but Filter Pruning via Geometric Median
(FPGM) [29] proposed a filter pruning method selects the
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filter with the greatest replaceability for cutting, which not
only accelerates the network but also eliminates harmful
features of the network results to improve the segmenta-
tion performance of the network. It is also necessary while
compressing the model to consider that the segmentation
performance of the network itself cannot be reduced due to
a large reduction in parameters. Squeeze-and-Excitation Net-
work [30] proposes attention and gating mechanisms (SE).
The module can reorder the convolutional information, model
the relationship in the feature map channel in an efficient
calculation method, and is designed in the network to enhance
the expressive ability of the network module. This module
can improve the segmentation performance of the network at
alow calculational cost.

Inspired by MobileNet, GhostNet, ShuffleNet, FPGM,
Squeeze-and-Excitation Network and U-Net, we refine
a U-Net-based lightweight fusion segmentation algorithm for
finger veins.

The main contributions of this paper are as follows:

(1)First, this article aims at the problem of the traditional
network being too large and requiring too many parameters,
thus we employ deep separable convolution to lighten the
network. Aiming at the feature map redundancy problem
found in network visualization, GhostNet mapping is used to
further compress the network and add the algorithm “SE”
module that can improve the accuracy is improved, and the
performance of finger vein segmentation reduced due to
parameter reduction is improved.

(ii)Breaking the depth separable convolution is the hypoth-
esis that the correlation and spatial correlation between the
channels of the convolutional layer can be decoupled, and
channel shuffle is added to the depth separable convolution
with Ghost to group all feature channels and disrupt and
reorganize evenly, the network is further compressed, and the
performance is further improved.

(iii)Because of the excessively concentrated characteristics
of the norm distribution of the finger vein filter, FPGM not
only enables the network to be further accelerated on the test
platform, but also the network models proposed at each stage
achieved a better performance after pruning.

The rest of the paper is organized as follows: Section 2
introduces related work, Section 3 describes our method in
detail, Section 4 gives experimental results and analysis, and
Section 5 gives conclusions and future work.

Il. RELATED WORK

The GhostNet[27] idea comes from Huawei’s Noah’s Ark
Laboratory. It proposes that a well-trained deep neural net-
work usually contains rich or even redundant feature maps,
and one feature map can be transformed from another feature
map through certain operations. It has been reported that once
obtained, it can be assumed that one of the feature maps
is a “phantom” of the other. Therefore, GhostNet proposed
that not all feature maps need to be obtained by convolution
operation, and “‘phantom’ feature maps can be generated by
cheaper operations. Praticularly, the ordinary convolutional
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layer in the deep neural network will be divided into two parts.
The first part involves ordinary convolutions, but the total
number of them will be strictly controlled. Given the inherent
feature map of the first part, a series of simple linear oper-
ations are applied to generate more feature maps. Without
changing the size of the output feature map, the total number
of parameters and the computational complexity required in
the Ghost module have been reduced when compared with the
ordinary convolutional neural network. The article shows that
the Ghost module can reduce the computational cost of the
general convolutional layer while maintaining similar recog-
nition performance, and GhostNet can surpass advanced and
efficient deep models such as MobileNetV3 to perform rapid
inference on mobile devices.

ShuffleNet proposes the depth separable convolution uses
an independent feature channel extraction to make a 1x1 con-
volution in MobileNet, which is equivalent to the limit of
the Inception structure. The hypothesis of this refined oper-
ation is that the correlation and spatial correlation between
the convolutional layer channels can be decoupled. Map
them separately and use channel shuffle technique instead
of pointwise convolution to reorganize the feature map after
group convolution so that the information can be transferred
between different groups.

FPGM believes that the previous pruning work uses the
“smaller norm less important” criterion to prune filters with
smaller norms in convolutional neural networks, pointing
out that its effectiveness depends on two requirements that
are not always met: (i) The specification deviation of the
filter should be large; (ii) The minimum specification of
the filter should be small. There are two prerequisites for
using this “‘smaller, less standardized importance” standard.
First, the deviation of the filter specification should be large
enough. This requirement makes the search space of the
threshold T wide enough so that separating those filters that
need to be pruned will be an easy task. Second, the spec-
ifications of the filters that can be pruned should be arbi-
trarily small, that is, close to zero; in other words, filters
with smaller norms are expected to make an absolute small
contribution to the network, rather than a relatively small but
positive contribution, and it is not the case. Therefore, a novel
filter pruning method is proposed, called “‘filter pruning via
geometric median (FPGM)”’. FPGM selects the filter with
the greatest replaceability unlike the previous method, which
trims the filter with less contribution.

llIl. PROPOSED METHOD

A. DATA EXPANSION PART

The experiments in this paper were performed using the
public datasets of SDU-FV [31] and MMCBNU_6000 [32].
One of the biggest characteristics of the data set of finger
vein images is that the number of classifications is large or
the training period is unknown, and the number of training
samples for a single classification is very small. In order
to increase the number of training samples and make full
use of the limited data, at this stage, we use a block for
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FIGURE 1. Algorithm improvement process.

data expansion. It worthy of note that the basic network U-Net
used in this article has been down-sampled four times, so the
block size is 64*64. According to this method, 100 training
pictures of data can be divided into 200,000 pictures.

B. THE OVERALL IDEA OF THE ALGORITHM
The problem of finger vein segmentation in the embedded
terminal is similar to a multi-objective optimization problem,
the segmentation performance, network size and the running
time of the embedded terminal with different computing per-
formance should be considered at the same time. Therefore,
the research in this paper cannot just add various modules
to the network to improve accuracy like traditional research
methods. The proposed algorithm flow is shown in Figure 1,
and the overall network architecture of this paper is shown
in Figure 2.

The first step is to build a U-Net based lightweight fin-
ger vein fusion segmentation network Dinty-NetV1 through
MobileNetV2[33] according to the traditional lightweight
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FIGURE 3. Database training original image and 64 feature maps
generated by Dinty-NetV1 and V2.

network research process. Then integrate “SE” module to
improve the accuracy of the model, but there are many redun-
dant feature maps in the current network.

Aiming at the redundancy problem of feature maps, Ghost-
Net and deep separable convolution are fused, so that part
of the feature maps in the network get Dinty-NetV2 through
GhostNet’s ““cheap operation”.

Figure 3 shows the visual observation of the feature map
output by the middle layer of the Dinty-NetV1 network.
It can be seen that compared with the original image, when
64 feature maps are output for the first convolution, not
all feature channels have the characteristics of the original
image. The extracted is relatively complete. A considerable
part of the feature maps cannot clearly see the characteris-
tics of the veins, and there are many pairs of feature maps
with similar features. They do not need to be generated by
depth separable convolution but can be obtained by linear
transformation with less calculation. Therefore, the mapping
idea proposed in Ghost is used to share part of the calcu-
lation of generating feature maps to further compress and
accelerate the network. Select half of the feature map of each
layer of convolution as the mapped feature map. The same
generated feature map is shown in Figure 3(c). You can see
that the Ghost’s feature map has more items to extract than
Dinty-NetV1 (Figure 3(b)). Feature map of deep features.
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FIGURE 2. Network architecture of the proposed method.
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TABLE 1. Deep separable convolution structure.

Input Operator Output
1<1 h < wx (tk)
hxwxk conv2d, expand
ReLU6 P
3x<3 h w
hx wxtk dwise s=s, :X?x(tk)
ReLUG6 conv
Linear h _w ,
— < — < k
h w 1x<1 s s
— =< — =<tk
s s conv2d compress

Dinty-NetV3 breaks the assumption that the correlation and
spatial correlation between channels in the convolutional
layer can be decoupled based on Dinty-NetV 1. Channel shuf-
fle is added in the convolution process to evenly shuffle and
reorganize all feature channels to make their characteristics.
The channel information and spatial information communi-
cate with each other to complete the final lightweight model
in the model structure design.

Additionally, this article also proposes cutting out some of
the feature maps that are useless or even unfavorable for the
subsequent extraction of features for ensuring the redundancy
of feature maps. The pruning of the model is actually a
very direct method to accelerate the model. The pruning of
the filter for the redundancy of the feature map is not only
accelerated, but the network performance of each stage is
further improved after the pruning.

C. A LIGHTWEIGHT SEGMENTATION ALGORITHM BASED
ON U-NET-DINTY-NETV1

Dinty-NetV1 is composed of three steps as a whole. The
first step is to follow the U-Net architecture as the basic
network. U-Net is mainly composed of a contracted path and
an expanded path. The contracted path is used to capture
the contextual information in the picture while the expanded
path is used to accurately locate the part that is needed to be
segmented in the picture. The down-sampling process in the
left half of the structure can gradually reveal environmental
information while the up-sampling process in the correspond-
ing right structure can be combined with the down-sampled
input information to gradually restore the image accuracy,
convolution and convolution in the network after adding
ReLU and normalization.

The second step is the lightweight processing of U-Net.
This is done by replacing the ordinary convolution layer
in U-Net with the depth separable convolution proposed by
MobileNetV2. The depth separable convolution structure of
MobileNetV2 is shown in Table 1. Where t represents the
“expansion” multiple, k represents the number of output
channels, k’ represents the number of repetitions, and s rep-
resents the step size. Among them, operation 1 and operation
3 are called point convolution, and operation 2 is called depth
convolution. The spatial structure is shown in Figure 4.
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FIGURE 4. Depth separable convolutional space structure diagram.

For a feature image of size Dg x Dg x M input to the
neural network, the output feature image is D x D x M,the
size of the convolution kernel Dg x Dk x M. The amount of
calculation for the standard convolution operation is

DKXDKXMXN (1)

For depth separable convolution, the amount of calculation
for point convolution is

I x1xMxN 2)
Depth convolution:
Dk x Dk xM x 1 3)
The overall amount of calculation is
Dk xDg xMx 1+l x1xMxN “4)

The depth separable convolution is compared with the
standard convolution parameters. Assuming that the input and
output are feature images of the same size, we get:

1 n 1 )
N D

Further, in a situation where the value of N is generally
larger, the size of the previous item can be ignored. Assuming
that the size of the convolution kernel we set is 3*3, only in
this convolution process compared to the standard convolu-
tion, the parameter amount can be reduced to one-ninth of
the original. Taking this as an example, U-Net achieves model
reduction through depth separable convolution.

The attention mechanism is introduced after the deep sepa-
rable convolution. Further, we use the “SE’” module proposed
by the Squeeze-and-Excitation Network[30]. The “SE” mod-
ule can learn the correlation between channels and improve
the accuracy of the model by sacrificing a small amount
of calculation. Figure 5 shows the structure diagram of the
“SE” module. First, perform the overall average pooling of
C xH xW to obtain a feature map of 1 x 1xC size. This
feature map can be understood as having a global receptive
field, followed by two full connection layer structure diagram
to model the correlation between the roads, then obtain the
normalized weight between 0 and 1 through a sigmoid, and
finally use a Scale operation to weight the normalized weight
to the features of each channel to complete the original feature
in the channel dimension. Calibration makes the network
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Residual
HxWxC

Ix1xC

IxIx—

Ix1xC

Ix1xC

FIGURE 5. “SE” module structure.

have the ability of targeted learning. Overall, the integration
of the above several steps algorithms completes the core
construction of the network.

The total parameters of the built network are 5.36M,
the model calculation cost Mult-Adds is 0.17G, and the U-Net
training parameter of the same structure and the number of
channels is 13.39M, which is 2.5 times that of the model in
this article, Mult-Adds It is 1.93G, which is 11.4 times that of
the current model, so this article refers to the current network
as Dinty-NetV 1.

D. GHOST IS INTEGRATED INTO DEEP SEPARABLE
CONVOLUTION-DINTY-NETV2
GhostNet follows the assumption that a well-trained deep
neural network usually contains rich or even redundant fea-
ture maps to ensure a comprehensive understanding of the
input data. The feature map extracted by the network can
be obtained by transforming another feature map through a
cheap operation. It can be considered that one of the feature
maps is the “Ghost” of the other, and not all feature maps
need to be obtained by a convolution operation as shown
in figure6(a). We used deep separable convolution to com-
plete the first part of the feature map generation, then merge
the GhostNet module and use this part of the feature map to
generate their corresponding “Ghost” as shown in figure6(b).
The profit analysis of Dinty-Net fusion Ghost module
memory usage and theoretical acceleration is as follows:
For a feature image of size Dg x Dg x M input to the neural
network, the output feature image is Dp x Dp x M, the size
of the linear mapping is d x d. The calculation is divided into
two parts:

first part is
Dk x Dk xM x N

R (6

second part is
dxdxNx(R-1)

R

(N
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the convolution kernel D x Dk x M, Ghost mapping ratio is
R, that is, the N/R output feature map is obtained by convo-
lution, the number of feature maps in the linear mapping part
is N x (R-1)/R partis N x (R-1)/R, the average kernel

Total calculation is

Dk xDgk xMxN dxdxNx(R-1)
R R

The compression ratio can be obtained by dividing standard
convolution operation Dk x Dk x M x N

Dk x Dk x M x N

Dk xDg xMxN + dxdxNx(R-1)
R R

RxM
= ~ R
R+M-1
Since the average kernel of the mapping d x d is similar
to the size of Dk x Dk, so the compression ratio Rc is
approximately equal to the mapping ratio R. If the number
of feature maps mapped in the output image is half of N, that
is, R=2, the network calculation amount is reduced to half of
the previous one.
Integrate Ghost into Dinty-NetV1 and the improved
module performs accelerated revenue analysis as follows:

®)

Re =

&)

N
DKxDKxMX1+1><1xMxE (10)

The second part of the calculation is still the formula (7)
At this time compression ratio is

Dk x Dk xM x N

R, =
¢ D xDgxMx 1+l x 1 x M x N 4 &XOEX®RD
_ RxM (11
R+ 2
Dk

If R=2 and Dk x Dk = 9, the theoretical compression
ratio is R, = I\ﬁ% when the number of input channels
M is 1, it is the first feature extraction. We believe that the
network is shallow at this time and the number of channels
is not too redundant, so the source network is still almost
uncompressed; when the number of input channels is 64, this
the theoretical compression ratio is 14, and the compression

ratio will increase as the network deepens.

E. GROUP CONVOLUTIONAL SHUFFLES-DINTY-NETV3

Depth separable convolution is to use an independent feature
channel extraction to make a 1*1 convolution, which is equiv-
alent to the limit of the Inception structure. The fundamental
hypothesis behind Inception is that cross-channel correlations
and spatial correlations are sufficiently decoupled that it is
preferable not to map them jointly. Sometimes better results
may be achieved, but the finger vein image features studied
in this article may violate this assumption. Therefore, this
article adds channel shuffle to Dinty-NetV2 to conduct new
experiments and propose Dinty-NetV3. After channel shuffle
undergoes the same deep convolution, it does not separate the
spatial features from the convolution channel like the depth
separable convolution, but groups all the feature channels
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FIGURE 7. The operation process of ordinary convolution, depth
separable volume and channel shuffle.

and “evenly shuffles” them to regroup their feature chan-
nels. Figure 7 shows the exchange of information as well
as spatial information and convolutional process is shown
in figure6(c). Compared with the previous Dinty-NetV2, the
number of 1x1 convolutions will be greatly reduced, thus
reducing the params and multy-adds of the network. The size
of the Dinty-NetV3 model is only less than a percentage of the
same structure U-Net Ninth, Mult-Adds is less than 2% of the
U-Net with the same structure, and after experimentation, it is
found that the segmentation performance of Dinty-NetV3 is
improved again and the time is reduced again compared with
Dinty-NetV2.

F. FPGM FOR THE CHARACTERISTICS OF FINGER VEIN
FILTERS

The usual filter pruning method following the ‘“‘smaller stan-
dard filter is less important” when performing filter prun-
ing. However, such a standard requires two prerequisites as
support. First, the deviation of the filter specification should

VOLUME 9, 2021
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FIGURE 8. Ideal and reality of the norm-based criterion.
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be sufficiently big. This requirement makes the search space
of the threshold T wide enough such that separating those
filters that need to be pruned will be an easy task. Second,
the specifications of those filters that can be pruned should
be small, that is, close to zero; in other words, filters with a
smaller norm are expected to have a minor contribution to the
network, rather than a relatively small but active contribution.
Figure 8(a) shows the ideal norm distribution when these
two requirements are met. The blue curve represents the
ideal norm distribution of the network, and v1 and v2 are
the minimum and maximum values of the norm distribution,
respectively. To choose an appropriate threshold T (shaded in
red), two requirements should be met, that is, the specification
deviation should be large, and the minimum specification
should be as small as any. As shown in Figure 8, the actual
filter norm will have a special situation. Figure 8 (a) means
that the deviation of the filter norm distribution is too small,
and the norm value is concentrated in a small interval, which
makes it difficult to find a suitable one. The threshold to select
the filter to be trimmed. Figure 8(b) shows that V1’>V1—
—>0, those filters considered to be the least important still
make a significant contribution to the network, which means
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3
Value of norm

FIGURE 9. Requirements for norm-based filter pruning criterion and
visualization of filter distribution.

that each filter has high information significance. Therefore,
pruning those filters with the minimum norm will have a
negative impact on the network. FPGM(Filter Pruning via
Geometric Median) can solve these two problems shown
in Figure 8. The central idea of FPGM is as followes: given a
set of n points a®_ . a®™ with each a® e Rd, find x® € RY
that minimizes the sum of Euclidean distances to them:

x* = argminf (x)where
xeRd
def i
fO= Y (ke —d?|? (12)
ie[1,n]

Here use the geometric median to get the common
information of all the filters within the single ith layer:
x7% = argmin

>k =Figl? (13)
xeRNIE f 1 N )

GM

In the ith layer, find the filter(s) nearest to the geometric
median in that layer:

F; j =argmin ||F; j — x5 |2 (14)
ij

then Fj j+ can be represented by the other filters in the same

layer, and therefore, pruning them has little negative impacts

on the network performance.

We visualized the norm distribution on the lowest layer of
the encoder in Dinty-NetV 1, the network layer with 1024 fea-
ture channels, and obtained the norm distribution as shown
in Figure 9(b). It can be seen that the deviation of the norm
distribution of the filter of this layer is too small, which
basically conforms to the situation that the norm values of

Figure 8(a) are concentrated in a small interval. Therefore,
according to the characteristics of the finger veins, the geo-
metric median value is used in this article filter and trim.
After experimenting with different pruning rates, we selected
a pruning rate of 20% without reducing the network perfor-
mance to make the network run faster.

IV. EXPERIMENTAND ANALYSIS

A. DATASETS

The data sets used in this paper are the SDU-FV data set
created by Shandong University MLA Laboratory and the
MMCBNU_6000 data set created by Chonbuk National Uni-
versity in South Korea. There are 106 subjects in the SDU-FV
data set. Finger vein images of the index finger, middle
finger and ring finger of each person’s left and right hands
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are collected, and six pictures are collected for each finger.
Thus, there are 636 categories (106 people x 6 fingers) 3816
(106 people x 6 fingers x 6 sample fingers) images in the
library. The MMCBNU_6000 data set has a total of 100
subjects. Finger vein images of the index finger, middle
finger, and ring finger of each person’s left and right hands
are collected. 10 pictures are collected for each finger, and
the data set gives the extracted ROI area. Therefore, there are
600 categories (100 people x 6 fingers) and 6000 (600 people
x 6 fingers x 10 sample fingers) images in the library.
In the experiment we performed, 100 sheets of SDU-FV
and MMCBNU_6000 were selected as the training set and
20 sheets as the test set. For the 100 images in the training
set, 2000 patches were randomly selected for each image,
a total of 200,000 patches were used for network training and
one-fifth of the training set was selected as the verification
set during each round of training. Twenty images are used
as the test set. The size of the patch is the same as that the
one used during training. When the width and height are
both five steps, multiple consecutive overlapping blocks are
extracted for each test image. The probabilities are averaged
to obtain the probability that the pixel is a vein. To ensure that
the memory limit and real-time performance of the hardware
platform are not exceeded, a step size of five is selected
in the tradeoff between indicators and time, that is, each
270*150 finger vein test image is divided into 16,340 patches
and input to the network before re-splicing.

B. EXPERIMENT PLATFORM

In order to show the versatility of this algorithm on
embedded platforms, this article runs on the PC’s end
environment: Win10, Intel Core 19-990000@3.20GHz CPU,
memory 32GB, graphics card NVIDIA GeForce GTX 2080Ti
(11GB/GIGABYTE), Pytorchl1.4.0 and Python 3.6. The
Adam optimizer is used for gradient descent, the learning rate
15 0.001, and the batch size is 512.

Relevant experiments have been carried out on the full
range of NVIDIA embedded terminals JETSON NANO[34],
JETSON TX2, JETSON XAVIAR NXJETSON, JETSON
AGX XAVIAR, and verify the structure and ideas of the
algorithm proposed in this paper, as well as the feasibility of
implementation on the terminal.

NVIDIA JETSON NANO Developer Kit is a powerful
small computer that uses a quad-core 64-bit ARM CPU and
a 128-core integrated NVIDIA GPU to support all major
DL frameworks and tools, including TensorFlow, Pytorch,
Caffe/Caffe2, Keras, MXNet and other famous frameworks.

Compared with the previous generation Jetson TX1,
NVIDIA Jetson TX2 provides twice the power efficiency,
faster calculation speed and stronger reasoning ability. Large
deep neural networks can be run on edge devices to achieve
higher accuracy. Power consumption was only 7.5 watts, and
the energy efficiency is more than 25 times higher than that
of a very advanced desktop CPU.

Jetson Xavier NX can use the complete NVIDIA software
stack to run modern Al networks and frameworks through
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TABLE 2. The performance of DINTY-NET and large networks on the
SDU-FV dataset.

Model Params Mult-Adds AUC ACC PRE SPE

R2U-Net 48.92M B 0.9029 0.9187 0.6218 0.9821
DU-Net 26.73M - 0.9133 0.9199 0.6420 0.9726
U-Net 13.39M 1.928G 0.8434 09117 0.5379 0.9648
Dinty-NetV1 5.29M 171.34M 0.8620 0.9136 0.5402 0.9549
(pruning) 0.8778 0.9091 05815 0.9667
Dinty-NetV2 0.8906 0.9156 05528 0.9567
(pruning) 334M 141.94M 357 09155 0.5604 0.9631
Dinty-NetV3 — conp 33.81M 0.8914 09156 0.5535 0.9576
(pruning) 0.8933 0.9165 0.5613 0.9601

TABLE 3. The performance of DINTY-NET and large networks on the
MMCBNU_6000 dataset.

Model Params Mult-Adds AUC ACC PRE SPE

R2U-Net 48.92M B 0.9058 0.9294 0.5468 0.9722
DU-Net 26.73M - 09125 0.9330 0.5882 0.9789
U-Net 1339M  1.928G 0.8474 0.9103 0.4949 0.9570
Dinty-NetV1 5.29M 171.34M 0.8225 0.9180 0.5931 0.9835
(pruning) 0.7744 0.9134 0.5709 0.9924
Dinty-NetV2 3 340 141.94M 0.7916 0.9141 0.5825 0.9916
(pruning) 0.7949 09151 0.5949 0.9905
Dinty-NetV3 — 1.156M  33.81M 0.7730 0.9090 0.4610 0.9847
(pruning) 0.8469 09125 0.5166 0.9763

acceleration libraries to meet the needs of DL, computer
vision, computer graphics, multimedia, etc.

JETSON AGX XAVIAR can obtain help to realize excel-
lent performance of GPU workstations on embedded mod-
ules below 30 watts. This developer kit is equipped with
a brand-new Xavier processor, designed for autonomous
machines, and its performance and energy efficiency are
2 times and 10 times higher than the previous generation
NVIDIA Jetson TX2, respectively.

C. PERFORMANCE EVALUATION INDEX

This article uses accuracy, specificity and precision metrics to
evaluate our model. Additionally, the receiver operating char-
acteristic curve (ROC) and the area under the curve (AUC)
are longer used in medical image segmentation tasks, so this
paper takes AUC as the most important index for network
performance comparison. We also use PRE and SPE as
additional indicators for network performance measurement.
PRE(precision) is the proportion of positive examples that
are actually positive, and SPE(specificity) is the proportion of
all negative examples that are matched. The segmentation of
finger veins can be regarded as a binary classification prob-
lem. The classification targets can be divided into positive
and negative : True positives(TP), False positives(FP), False

negatives(FN), True negatives(TN). PRE=%, SPE=% .

D. COMPARISON OF PROPOSED NETWORK WITH OTHER
LARGE-SCALE NETWORK ON THE PC
To verify the performance of the proposed method on the
PC side, we compare the network performance with the
basic network U-Net and its modified networks R2U-Net and
DU-Net in SDU-FV and MMCBNU_6000. The results are
shown in Table 2,3.

Looking at the two databases as a whole, the network sizes
of R2U-Net, DU-Net, and U-Net are 43, 23 and 12 times
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that of Dinty-NetV3, respectively. Dinty-NetV3 has been
implemented in terms of network size and model parameters.
From the longitudinal perspective of the proposed method in
the results of the two tables (excluding pruning), the Dinty-
NetV1 V2 V3 on the two databases has gradually reduced in
terms of network size and model parameters. Considering the
proposed method and its corresponding pruning results, in the
six groups of experiments, most of the network indicators
after pruning exceeded the original network and the best AUC
indicators finally displayed in the two databases were also
obtained from the pruning of Dinty-NetV3, which verifies
that not all the feature maps in the network that we proposed
have a positive effect on the final result and the result will be
better if the unimportant features are cut out. For the SDU-FV
database, from the perspective of four indicators, when we
proposed Dinty-NetV 1, three of the four indicators of the net-
work have exceeded the basic network U-Net. When Dinty-
NetV3, the three indicators are particularly It is AUC that far
exceeds U-Net. Dinty-NetV3 did not exceed the R2U-Net and
DU-Net indicators, but it can be seen that it is extremely close.
Further, the difference in the number of training parameters
is too large, but considering the network size and model
parameters. With the huge difference in the training param-
eters and possibility to be implemented on embedded ter-
minals, we believe that the performance of the proposed
model is good enough. For the MMCBNU_6000 database,
the performance of Dinty-NetV3 is not as average as in SDU-
FV, but it also has its advantages. In the AUC indicator,
the gap between Dinty-NetV3 and R2U-Net and DU-Net is
slightly larger than that of SDU-FV, but for the Specificity
indicator, the three proposed methods and pruning all surpass
R2U-Net and DU-Net, the surpass of the precision index on
Dinty-NetV2 is particularly obvious, but because this index
is too much affected by the number of convolution channels,
Dinty-NetV3 has a lower level of this index.

E. COMPARISON OF THE PROPOSED NETWORK WITH
OTHER LIGHTWEIGHT NETWORKS ON EMBEDDED
PLATFORMS

In addition to comparing U-Net and two large-scale U-Net
based networks, this article also compares the model
size, segmentation index, and running time of the classic
lightweight network in recent years on NVIDIA’s full range of
embedded platforms. Comprehensive comparison, the results
are shown in Table 4 and Table 5.

From Table 4 and Table 5, we can see that Dinty-NetV3
parameters are only 1.156M, which consists of 40%, 34%,
and 17% of Squeeze_Unet, Mobile_Unet, and Ghost_Unet.
Mult-adds have already demonstrated the superiority of
the model in Dinty-NetV1, especially the Mult-adds of
Dinty-NetV3 are 12%, 7% and 26% of Squeeze_Unet,
Mobile_Unet, Ghost_Unet, reached the optimal model
compression.

Tables 4 and 5 show the most important AUC evalua-
tions, running time and other indicators at embedded plat-
forms. Although the network performs equally well on other
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FIGURE 10. U-Net(a), Contrast lightweight network(b)(c)(d) and Dinty-Net(e)(f)(g) segmentation results output on SDU-FV.
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FIGURE 11. U-Net(a), Contrast lightweight network(b)(c)(d) and Dinty-Net(e)(f)(g) segmentation results output on MMCBNU_6000.

TABLE 4. Proposes network and other lightweight network indicators on
the SDU-FV dataset.

Model  Params Mult- AUC Time (s) /a picture
adds Nano  Tx2 NX AGX
Squeeze_Unet 2.893M 287.61M 0.8630 1.3521 0.6853 0.6632 0.3881 0.9102 0.5190 0.9472
Mobile_Unet  3.392M 481.35M 0.8554 1.4248 0.5194 0.5053 0.2771 0.9131 0.5368 0.9534
Ghost_Unet 6. 783M 128.97M 0.8865 0.6799 0.6839 0.7222 0.3586 0.9184 0.5848 0.9675
Dinty-NetVl 5 ooy 17134 08620 06898  0.6450 0.5983 03470 09136 0.5402 0.9549
(pruning) (0.8778) (0.6715) (0.6304) (0.5718) (0.3401) (0.9182) (0.5815) (0.9667)

ACC PRE SPE

Dinty-NetV2 5 oy 141.04am 08872 07738 0.6925 06439 03911 09170 0.5598 0.9571
(pruning) (0.8954) (0.7687) (0.6805) (0.6240) (0.3812) (0.9193) (0.5786) (0.9619)

Dinty-NetV3 | 156M 33.81M 08914 08142 07112 0.6788 04349 09156 05535 09576
(pruning) (0.8933) (0.7931) (0.6923) (0.6451) (0.4375) (0.9165) (0.5613) (0.9601)

TABLE 5. Proposes network and other lightweight network indicators on
the MMCBNU_6000 dataset.

Model Params Mult- AUC
adds

Time (s) /a picture ACC PRE SPE
Nano  Tx2 NX AGX

Squeeze_Unet 2.893M 287.61M 0.7829 12051 0.6799 0.6991 0.3578 09146 0.5442 0.9799
Mobile_Unet 3930\ 481.35M 0.7521 1.3588 0.5237 0.7375 0.2622 0.8962 03775 0.9585
Ghost_Unet  6783M 128.97M 0.8432 0.6978 0.6126 0.7349 03469 0.8721 03848 0.8860

Dinty-NetVl 55901 171.34M 0.8225 0.7001 0.6478 0.5958 0.3501 0.9180 0.5931 0.9835
(pruning) : : (0.7744) (0.6818) (0.6405) (0.5849) (0.3456) (0.9134) (0.5709) (0.9924)

0.7916 07727 0.6927 0.6392 03748 0.9141 0.5825 0.9916
(0.7949) (0.7575) (0.6833) (0.6335) (0.3770) (0.9151) (0.5949) (0.9905)

Dinty-NetV2 3 pun  141.94M
(pruning)
Dinty-NetV3

. Lis6M 33giv 07730 07975 07083 0.6651 04263 09090 04610 0.9847
(pruning)

(0.8469) (0.7794) (0.6953) (0.6462) (0.4235) (0.9125) (0.5166) (0.9763)

indicators include AUC, we takes AUC as the most important
index and the following mainly analyzes AUC. In the overall
comparison of the AUC of SDU-FV, it can be seen that
in the pruning process of Dinty-NetV1, Squeeze_Unet and
Mobile_Unet should be surpassed. Dinty-NetV2 is com-
pressing V1 further, while AUC surpasses Dinty-NetV1.
Dinty-NetV3 and its pruned network reached the highest
AUC. Figure 10 shows the segmentation results of all the
SDU-FV networks. Normal network includes U-Net, contrast
lightweight networks include Squeeze_UNet, Mobile_UNet,
Ghost_UNet and Dinty-Net includes V1, V2 and V3 (prun-
ing). It can be seen from the red box in the figure10 that only
Dinty-NetV3 (pruning) has performed a complete segmen-
tation of the blood vessel, which is verified with the highest
AUC.

On MMCBNU_6000, it can be seen that the compression
of the model has a greater impact on the reduction of network
learning power than SDU-FV. The model has achieved better
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results in Dinty-NetV1, but in the subsequent compression
learning, due to the quality of the database, the difference
network learned more redundant information, however in
the final Dinty-NetV3 (pruning), it still achieved close to
the highest results and the AUC was slightly weaker than
Ghost_Unet. Figure 11 shows the segmentation results of
all the MMCBNU_6000 networks as Figure 10. It can also
be seen from the red box in the figure that only Dinty-
NetV3 (pruning) has performed a complete segmentation of
the blood vessel. Although the Ghost_Unet here is not com-
pletely segmented out, on the whole, Ghost_Unet’s resolution
of segmented images is equivalent to Dinty-NetV3 (pruning).
Figure 13,14 show the ROC curves of different networks on
two datasets, which (a) is comparative experiment including
U-Net, Squeeze_Unet, Mobile_Unet, Ghost_Unet and Dinty-
NetV3 (pruning), (b) is Dinty-NetV1 V2 V3 and there’s
pruning results.

The three-stage network proposed in this paper and its
pruned result output are sown in the red, yellow and blue
boxes of Figures 12 and 13. The pruned network can distin-
guish more than the previous network. The details also corre-
spond to that the pruning AUC of the three-stage network in
the table is greater than the network before pruning.

In terms of time, it can be seen from all network eval-
uations that even if the network architecture and accel-
eration method are not considered, the performance is
AGX>NX>TX2>NANO. Comparing the networks, it is
found that because other networks have added other mod-
ule structures to the depth of Mobile_Unet’s deep separable
convolution, these modules are often more time-consuming
than ordinary convolutions, resulting in Mobile_Unet being
able to be embedded in most of the embedded convolu-
tions. The terminal needs the shortest running time, however,
the gap displayed by all networks on embedded terminals,
especially the most powerful AGX, is quite small. Pruning
can effectively reduce the network time, but compared with
the comparison model, the shortcomings in the time of our
proposed model are also exposed. The model in this article
is too complicated in operation. At the Dinty-NetV3 stage,
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Dinty-NetV1 Dinty-NetV1 (pruning) Dinty-NetV2

Dinty-NetV2 (pruning)

Dinty-NetV3 Dinty-NetV3 (pruning)

FIGURE 12. Dinty-NetV1 V2 V3 and there’s pruning results are compared on SDU-FV.

Dinty-NetV1 Dinty-NetV1 (pruning) Dinty-NetvV2

Dinty-NetV2 (pruning)

Dinty-NetV3 Dinty-NetV3 (pruning)

FIGURE 13. Dinty-NetV1 V2 V3 and there’s pruning results are compared on MMCBNU_6000.
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FIGURE 15. ROC curve of on MMCBNU_6000.

except for the transformation of convolution, two modules
SE and channel shuffle were used after each convolution.
Even if the model has been compressed very small, these
operations have increased the network time to a certain extent,
so it is still necessary to seek a gap between the compression
operation and the running time Balance. In fact, the green box
in Figure 10 and11 indicates that the blood vessel failed to
segment at this place, and there is a relatively complete finger
vein segmentation result in the previous comparison figure.
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The reason may be the violent selection of pruning rate. The
shallow 64 feature map adopts 20% rate and the 1024 feature
map adopts 20% pruning rate too. This is obviously easier to
lose feature information in the shallow layer, so we maybe
use adaptive pruning later to try to solve this problem. In this
paper, the model size, segmentation index and running time
shown in Tables 4 and 5 are modeled through the Analytic
hierarchy process [35] and the consistency ratio is 0.045 less
than 0.1. It is considered that there is satisfactory consistency.
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TABLE 6. Comprehensive evaluation result of analytic hierarchy process.

Model SDU-FV MMCBNU_6000

Squeeze Unet 0.1053 0.1054
Mobile Unet 0.1043 0.1033
Ghost_Unet 0.0889 0.0962
Dinty-NetV1 0.0917 0.0944
(pruning) 0.0932 0.0909
Dinty-NetV2 0.1035 0.1021
(pruning) 0.1043 0.1022
Dinty-NetV3 0.1541 0.1498

(pruning) 0.1546 0.1556

Table 6 shows the indicators of Dinty-NetV1, V2, V3 and
other lightweight networks obtained from the analysis we
performed. From the Dinty-NetV1, V2, V3 and their prun-
ing networks on the two databases, it can be seen that the
analysis results are in line with our expectations. Overall,
we can also conclude that the pruning network of Dinty-
NetV3 proposed in this paper achieves the best overall model
size, segmentation index and running time.

V. CONCLUSION

Aiming at the current research status of finger vein embedded
terminals, this paper proposes a lightweight real-time finger
vein segmentation method based on embedded terminals.
First, we used deep separable convolution to significantly
reduce the U-Net parameters of the basic network, followed
by introduction of SE module. Reorder features to improve
network performance. Secondly, the Ghost module is added
to the deep separable convolution, and the feature map of the
network part is obtained through the cheap operation alone.
After adding channel shuffle, all the characteristic channels
were evenly shuffled and reorganized to obtain Dinty-NetV3.
Finally, our study on filter norm showed the distribution
characteristics of the finger vein picture features. By using
the median pruning method, the network models proposed in
each stage of this paper achieved better segmentation perfor-
mance and shorter after pruning Split time. Further, nearly a
hundred sets of experiments were conducted on two-finger
vein databases on NVIDIA’s full range of embedded plat-
forms and classic network compression models in the past
5 years, it is a systematic summary of the previous finger
vein segmentation and their lightweight method, and then
have a rich a priori effect on the realization of subsequent
finger vein recognition and lightweight work in embedded
terminals. Because the lightweight methods in this article are
highly portable, they can be used as a reference for other
algorithms besides image segmentation.

In the future, we plan to explore the multi-objective opti-
mization problem of segmentation performance, network size
and the running time of the embedded end with different
computing performance. Further, we plan to increase the
innovation of the network and without affecting the segmen-
tation performance while compressing the model. This would
be a part of our contributions to better feature extraction and
recognition in the follow-up. This work contributes to the
advancement of embedded terminal series knowledge base.
In addition to the NVIDIA series, the embedded terminals
of Huawei and Google are added for further networking on
terminals with different hardware characteristics in the study.
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