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ABSTRACT Improving the quality of work for human beings is receiving a lot of attention from multiple
research communities. In particular, digital transformation in human factors and ergonomics is going to
empower the next generation of the socio-technical workforce. The use of wearable sensors, collaborative
robots, and exoskeletons, coupled with novel technologies for the real-time assessment of human ergonomy
forms the crux of this digital transformation. In this direction, this paper focuses on the open problem of
estimating the interaction wrench experienced at the human extremities (such as hands), where the feasibility
of direct sensor measurements is not practical.We refer to our approach as non-collocated wrench estimation,
as we aim to estimate the wrench at known contact locations but without using any direct force-torque sensor
measurements at these known locations. We achieve this by extending the formulation of stochastic inverse
dynamics for humans by considering a centroidal dynamics constraint to perform a reliable non-collocated
estimation of interaction wrench and the joint torques (articular stress) experienced as a direct consequence
of the interaction. Our approach of non-collocated estimation is thoroughly validated in terms of payload
estimation and articular stress estimation through validation and experimental scenarios involving dynamic
human motions like walking.

INDEX TERMS Human factors, ergonomics, human–robot interaction, exoskeletons.

I. INTRODUCTION
Despite the recent concerns of automation, the significance of
human beings as an integral part of the future socio-technical
workforce is being validated through several studies [1], [2].
The rise of digital transformation in human factors and
ergonomics enhancement is an indication of targeted focus
on improving the quality of work for human beings through
wearable sensors, collaborative robots, and exoskeletons,
as the complexity of work is increasing [3], [4]. The quali-
tative assessments that are typically employed in the field of
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occupational health and safety are limited in their applicabil-
ity for the new age of Industry 4.0 [5], [6].

Human-Robot Collaboration (HRC) is an example of com-
plex work scenarios, which is considered to be one of the
key enabling technologies that truly holds the potential to
usher us through Industry 4.0 [7], [8]. The last decade
has seen significant research and development efforts in
improving robotic systems that are to be deployed along-
side human partners, primarily with the focus on the safety
and protection of humans. The aspect of human factors
and ergonomics enhancement in the context of HRC is
slowly gaining attention among interdisciplinary scientific
communities [9], [10].
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FIGURE 1. (a) Human subject lifting an external payload of 9.55 kg ;
(b)-(c) 3D RViz visualization of increase in ground reaction force
measurements at the feet of the human model under the influence of
payload; (d) An instance of walking motion while carrying the payload;
(e) 3D RViz visualization of payload estimation and articular stress
estimation. The arrows indicate the external force at the links of the
human model, and the scale does not correspond to the magnitude. The
spheres at the joints indicate joint efforts.

Novel tools and techniques that provide continu-
ous, real-time quantitative metrics of a human partner
hold the promise to realize truly collaborative scenarios
where the robot partners are fully aware of their human
partners [11], [12]. Besides that, the lack of standard criteria
for the design and performance evaluation of exoskeletons
needs to be addressed through quantitative metrics [13]–[15].
Real-time ergonomy assessment is an active research topic
that focuses on quantitative metrics to assess and eventually
improve the quality of work [16], [17]. Furthermore, stan-
dardized and reliable real-time ergonomy assessment is a
key enabling technology [18] for realizing many real-world
applications with collaborative robots [19], [20], and assistive
exoskeletons [14], [21]. Articular stress or joint stress is an
important aspect of ergonomy to ensure safe working con-
ditions. Real-time human joint torques estimation is consid-
ered in the problem of whole-body human inverse dynamics
which has been investigated through different approaches
considering different sensor modalities [22]–[25]. Further-
more, incorporating ergonomic optimization during physical
collaboration tasks such as manipulating a heavy object is
another emerging research direction [26], [27].

Complementary topics of contact detection [28], [29] and
contact force estimation [30]–[32] have been an active subject
of investigation in robotics literature. Given the system has
contact with the environment, the problem of contact detec-
tion deals with the localization of the contact, and contact
force estimation deals with identifying the strength of the
contact. Typically, in the case of human inverse dynamics,

rigid contacts at a subject’s feet are considered, and the
ground reaction force-torque measurements at the feet are
important to evaluate the joint torques. However, in some
manipulation scenarios such as logistics, the subject carries
a payload and an external interaction wrench is experienced
at the contact locations of the hands, which in turn affects
the internal joint torques under the influence of the payload.
The authors of [33] propose an online contact detection and
localization method for human ergonomic assessment appli-
cations where the weight of the object being manipulated is
assumed to be known and only quasi-static movements are
considered. An interesting open problem we consider in this
work is to estimate the external interaction wrench experi-
enced at human extremities such as hands while manipulating
a payload. Particularly, in manipulation scenarios where the
user may wear specialized gloves that are safety compliant
but do not embed any sensors due to their rugged nature,
or in scenarios that require rich tactile perception abilities
from direct contact to engage with different tools of the trade.
Furthermore, although the recent advances in wearable glove
technology are very promising [34], [35], they are still limited
in their use for a wide variety of practical applications.

In this work we assume the contact locations to be known,
and propose a generalized approach to estimate the exter-
nal wrench at these known contact locations that are not
equipped with any sensors to get direct force-torque mea-
surements. In control theory, scenarios where the actuator
and the sensor (providing direct measurements for con-
trol) are not positioned (collocated) nearby at the model-
ing level, are classified as non-collocated problems [36].
We adopt the same terminology and refer to our approach
as non-collocated wrench estimation, as we aim to estimate
the wrench at known contact locations but without using
any direct force-torque sensor measurements at these known
locations. Instead, we make use of the force-torque mea-
surements available from the sensors at a different contact
location, and this process of non-collocated wrench estima-
tion becomes evident in Section III-A. More importantly,
we present the problem formulation as an extension of the
stochastic human inverse dynamics method [24] through a
two-step approach where the estimation of external wrenches
on the links is decoupled from the estimation of internal
wrenches exchanged through the joints of the human that
results in articular stress. The first step deals with the cen-
troidal dynamics-based non-collocated wrench estimation,
followed by the whole-body human dynamics estimation as
the second step. A thorough validation of our approach is
demonstrated through a set of experimental scenarios where
a human subject lifts a payload as shown in Fig. (1a) or
(1d), assuming the known contact locations at the hands of
the subject.

The main contributions of this manuscript can be summa-
rized as follows,
• Systematic description of stochastic whole-body inverse
dynamics problem formulation and its limitation for
human articular stress estimation under payloads.
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• Extended formulation of stochastic whole-body inverse
dynamics through centroidal dynamics constraint in
order to achieve non-collocated wrench estimation dur-
ing external interactions.

• Validation of non-collocated wrench estimation through
payload and the associated articular stress estimation.

The rest of the paper is organized as follows: Section II
presents the general notation used in the paper followed by
the original stochastic inverse dynamics problem formula-
tion and its current limitations. Section III-A describes the
general formulation of the stack of tasks stochastic estima-
tion problem, and the extension of the stochastic inverse
dynamics problem through centroidal dynamics constraint
to achieve non-collocated wrench estimation. Description
of the conducted experiments and the discussion of the
results that validate the approach are presented in Section IV.
In particular, we thoroughly highlight the effect of different
parameters that influence the stochastic estimation process.
Finally, the concluding remarks that indicate the current lim-
itations and challenges for the real-world application of the
proposed approach are discussed in Section V.

II. BACKGROUND
A. NOTATION
• In denotes an identity matrix, and 0n denotes a zero
matrix of (n× n) dimensions.

• I denotes the inertial frame of reference with z-axis
pointed against gravity.

• g =
[
0 0 −9.81

]> denotes the gravity vector expressed
in the inertial frame of reference.

• The human is modeled as a rigidmultibody floating base
mechanical system [37] that hasNB rigid bodies as links.
Each link pair is connected through three one Degree
of Freedom (DoF) rotational joints, that constitute a
spherical joint.

• The frame associated to the base link is denoted as B,
and the frame associated to the i-th link of the system is
denoted as Li.

• The configuration space of a free-floating mechanical
system is characterized by the floating base frame B and
the joint positions. It is defined as a set of elements with
6 dimensions representing the floating base and the total
number of joints n = 3× (NB − 1). Hence, it lies on the
Lie group Q = R3

× SO(3)× Rn.
• An element in the configuration space is denoted by
q = (qB, s) ∈ Q, which consists of pose of the base
frame qB = (IpB,

IRB) ∈ R3
× SO(3) where IpB ∈ R3

denotes the position of the base frame with respect to
the inertial frame; IRB ∈ SO(3) denotes the rotation
matrix representing the orientation of the base frame
with respect to the inertial frame; and the joint positions
vector s ∈ Rn which captures the topology, i.e., the
internal configuration of the system.

• The system velocity is characterized by the linear and
the angular velocity of the base frame along with the
joint velocities. Accordingly, the configuration velocity

space lies on the group V = R3
×R3

×Rn. An element
of the configuration velocity space ν ∈ V is defined as
ν = (vB, ṡ), where vB = (I ṗB,

IωB) ∈ R3
× R3 denotes

the linear and angular velocity of the base frame, and
ṡ ∈ Rn denotes the joint velocities.

• The operator S(.) : R3
→ so(3) maps 3D vectors to

skew− symmetric matrices, such that given two vectors
v,u ∈ R3, it is defined as v × u = S(v)u, where × is
the cross-product operator.

• The vee operator .∨ : so(3)→ R3 denotes the inverse of
the skew-symmetric operator, such that given a matrix
A ∈ so(3) and a vector u ∈ R3, it is defined as
Au = A∨ × u.

• The estimate of a quantity is indicated witĥplaced on
top of the symbol, such as (̂·).

B. STOCHASTIC INVERSE DYNAMICS
A stochastic formulation of the inverse dynamics estimation
problem for a whole-body fixed-base human model was first
investigated in [25], [38] and later extended to a floating
base human model in our recent work [24]. The central idea
of the stochastic human dynamics estimation approach is
to define a dynamic variables vector d that is composed of
accelerations and kinetic quantities, i.e., the external forces
and torques (wrenches) acting on the human subject.

1) DYNAMIC VARIABLES
The dynamic variables vector d is defined as,

d =
[
d>link d>joint

]>
∈ R12NB+7n, (1)

where, d link ∈ R12NB and d joint ∈ R7n, are defined as,

d link =
[
α
g
0 f x0 . . . α

g
NB−1

f xNB−1
]
, (2a)

d joint =
[
f J1 . . . f Jn s̈1 . . . s̈n

]
, (2b)

where, αgi ∈ R6 denotes the proper acceleration [24] of
the i-th link, and f xi denotes the external wrench acting on
the i-th link, which is emphasized by the superscript x. The
link quantities are expressed in their body frame. f J i denotes
the internal wrench exchanged through the i-th joint, and
s̈i denotes the acceleration of the i-th joint. These dynamic
variables are estimated by exploiting the kinematic and the
dynamic model constraints of the system along with the
sensor measurements.

2) SENSOR MEASUREMENTS
Human biomechanical analysis requires kinematic informa-
tion such as position, velocity, and acceleration of various
body parts that can be obtained through different sensory
modalities such as marker-based optical tracking or inertial
tracking systems. Furthermore, the ground reaction forces
and torques at the feet of the human are the kinetic infor-
mation that is typically measured through force-torque plat-
forms. Given the definition of the dynamic variables vector d ,
we consider proper acceleration measurements mag ∈ R3,
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and wrench measurements mf x ∈ R6 as sensor measure-
ment inputs. Note the superscript m(.) denotes a measured
quantity. Let us consider N a

s number of inertial measure-
ment units (IMUs) that provide acceleration measurements
and assume the net external wrench acting on all the links
of the model i.e., NB are available as measurement inputs.
The total number of ‘‘sensors’’ considered is denoted as
Ns = N a

s + NB. The measurement vector y ∈ R3 N a
s +6 NB is

denoted as,

y =
[
(mag0)

>
· · · (magN a

s
)> (mf x0)

>
· · · (mf xNB−1 )

>
]>

(3)

3) OPTIMIZATION PROBLEM
The dynamic variables d and the measurements y are con-
sidered to be stochastic variables with Gaussian distribu-
tions. The estimation of dynamic variables d problem is
posed as finding the Maximum A-Posteriori (MAP) estimate
by maximizing the conditional probability distribution of
the dynamic variables d given the measurements y, and
the prior knowledge of the system encapsulated through
the model constraints. Now, the stochastic inverse dynam-
ics problem when posed as an optimization problem is
represented by (4), as shown at the bottom of the page,
where D ∈ R(18 NB+n)×(12 NB+7 n) is a model-constrained
block matrix, bD ∈ R18 NB+n is a model bias vector,
Y ∈ RNs×(12NB+7n) is a measurement block matrix and
bY ∈ RNs is a measurement bias vector. The detailed exam-
ination of the model constraints equation and the measure-
ments equation is beyond the scope of this manuscript. The
reader is advised to refer to Chapter 4 of [25] for further
details.

4) COVARIANCE EFFECT
Given the structure of the optimization problem presented
in (4), the solution of the dynamic variables estimation is
influenced by three covariances: i) prior covariance 6d ,
ii) measurement covariance 6y, and iii) model covari-
ance 6D. The effect of these covariances on the estimation
can be summarized as:

• Prior covariance 6d influences the change of the
dynamic variables with respect to the prior mean µd .

• Model covariance 6D influences the consistency of the
dynamic variable estimates with respect to the model
constraints.

• Measurement covariance 6y influences some of the
dynamic variable’s convergence towards their associated
sensor measurements in y.

The combined contribution of this set of covariances
results in the estimation of dynamic variables denoted as,

dMAP
=

[̂
d>link d̂>joint

]>
, (5)

d̂ link =
[
α̂
g
0 f̂ x0 . . . α̂

g
NB−1

f̂ xNB−1
]
, (6a)

d̂ joint =
[̂
f J1 . . . f̂ Jn ̂̈s1 . . . ̂̈sn] . (6b)

C. CURRENT LIMITATION
This section details the limitations of the original stochas-
tic inverse dynamics approach presented in Section II-B in
relation to the interaction wrench experienced by the payload
carried by a human subject, and the associated joint torques.
To explain the concepts further, let us consider a set of frames
L = {L0,L1,L2, . . . ,LNB−1} that are associated with all the
links of the human model. Let F ⊂ L be the subset that
contains the links associated with the feet, and H ⊂ L be
the subset that contains the links associated with the hands.
The subset U ⊂ L contains all the frames excluding the
frames associated with the feet and hand links. Given these
definitions, the set of all the frames is the union of the three
disjoint subsets, i.e., L =

(
F ∪H ∪ U

)
.

The current formulation of the stochastic inverse dynam-
ics estimation problem presented in Section II-B assumes
that only the feet links of the human are in contact with
the environment and the external wrench at the feet mf xL∈F
are obtained through the force-torque sensor measurements.
Assuming that no external wrench is present on any other
links, the external wrench measurements mf xL∈(H∪U) for the
rest of the links is set to zero, i.e., 06×1. The measurement
covariance for link external wrenches 6f x

y are chosen to
a very low value such that the estimates of the external
wrench at the feet links f̂ xL∈F are as close as possible to the
input measurements mf xL∈F represented by (7a). This point
becomes evident from the discussion of results presented
in Section IV-C1.
Similarly, the estimates of the external wrench at all

the other links f̂ xL∈(H∪U) are close to their assumed zero-
measurements, represented by (7b)-(7c).

f̂ xL∈F ≈
mf xL∈F , (7a)

f̂ xL∈H ≈
mf xL∈H = 06×1, (7b)

f̂ xL∈U ≈
mf xL∈U = 06×1. (7c)

Now, let us consider an example scenario where the
human is lifting a payload such as a heavy object as shown
in Fig. (1a). When the object is handled, the additional
weight of the object is reflected in the ground reaction forces

(4)
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at the feet as shown by the increase of the yellow arrows
in Fig. (1b)-(1c). Under such circumstances, the subject
experiences external interaction wrench at the hands that
correspond to the payload weight, and it further affects the
associated internal joint torques. In such a scenario, rather
than forcing the wrench estimates at the hand links f̂ xL∈H
toward their assumed zero measurements, we consider the
problem of estimating the external interaction wrench that
reflects the weight of the payload, and estimate the internal
articular stress under the influence of the payload. This prob-
lem is referred to as the non-collocated wrench estimation as
it deals with the wrench estimation on links that do not have
any direct force-torque sensor measurements.

Considering the current formulation of the estimation
problem represented by (4), the wrench estimates at the hand
links f̂ xL∈H can be influenced only through their measurement
covariance value. However, the measurement covariance can
be tuned to either push the estimates to be close to their set
measurement of 06×1 or away from it. Moreover, the esti-
mated wrench at the hands will not reflect the payload that is
held by the human subject, and this will become evident dur-
ing the discussion of the results presented in Section. IV-C2.
Furthermore, given the definition of the dynamic variables
vector d from (1), the estimation of external link wrench
variables f x and the internal joint wrench variables f J is cou-
pled through the model constraints. This coupling renders it
difficult to adjust the model and measurement covariances to
achieve non-collocated wrench estimation for estimating the
external interaction wrench at the hands experienced by the
human subject while handling a payload, and the associated
joint torques under the influence of the payload.

In addition to the limitations mentioned above, the current
formulation assumes that the state information of the system,
i.e. x =

[
s>ṡ>

]> is available as a measurement without
uncertainty. As some of the measurements and model con-
straints are state-dependent, any noise in the state information
eventually affects the estimation of the dynamic variables.
Hence, the state estimation needs to be formulated as a part
of the stochastic framework to account for the noise in the
state information. An initial investigation of simultaneous
state and dynamics stochastic estimation is carried in [39]
with limited offline validation results using a fixed-base artic-
ulated humanoid robot as an experimental platform. Online
implementation of state and dynamics stochastic estimation
for highly articulate floating-base systems like humans is yet
to be realized and validated.

The limitations highlighted so far can be addressed by
reformulating the original stochastic estimation problem
as a hierarchical stack of tasks formulation. Furthermore,
the main contribution of extended formulation of stochastic
whole-body inverse dynamics problem through centroidal
dynamics constraint is presented in detail in the next section.

III. STACK OF TASKS STOCHASTIC ESTIMATION
Looking at the original stochastic estimation problem repre-
sented by (4), it is evident that the estimation is focused on the

entire set of dynamic variables vector d . Such a consideration
proved to be difficult to tune the various covariance values
to achieve a physically consistent estimation of different
dynamic variables. Hence, a general framework composed
of a stack of tasks stochastic estimation formulation allows
for an intuitive covariance tuning. Towards realizing such a
general formulation, let us first consider the internal state
variables vector denoted as,

x =
[
s> ṡ>

]>
. (8)

The internal state variables of the vector x are consid-
ered to be stochastic variables with Gaussian distributions.
Now, let us consider a forward kinematics model denoted as
FK (x) [40], [41], and the target kinematic measurements of
link pose qL and link velocity vL denoted as,

ykinematic =
[
q>Li v>Li

]>
∀i ∈ [1, . . . ,NB]. (9)

Note that the internal state estimates allow us to compute
the quantities necessary for the higher-level tasks. Now, let
us consider the measurement vector yk that is composed of
all the external link wrenches acting on the systems, i.e.,

yk =
[
(mf x0)

> . . . (mf xNB−1 )
>
]>
. (10)

Similarly, a dynamic variables vector composed of only the
external link wrenches is denoted as,

dk =
[
(f x0)
> (f x1)

> . . . (f xNB−1 )
>
]>
. (11)

Given the previous definitions from (1)-(3), and (8)-(11),
a general stack of tasks stochastic estimation problem is
represented by (12a)–(12c), as shown at the bottom of the
next page. Such a hierarchical formulation ensures the state
estimation followed by the kinetics, and the estimation of the
full dynamic variables vector with the possibility to account
for uncertainty at each level. The research topic of online
stochastic state estimation for highly articulated systems like
humans is under active research in the biomechanics commu-
nity [42], and it is not the central topic of this manuscript. So,
the next section highlights the exact details of exploiting the
stack of tasks formulation to address the particular problem
of non-collocated wrench estimation.

A. NON-COLLOCATED WRENCH ESTIMATION
Given the general stack of tasks stochastic estimation prob-
lem represented by (12), it is to be noted that the external link
wrench variables are decoupled from the internal joint wrench
variables by considering the kinetics estimation problem.
Furthermore, the limitations of guiding the hand’s wrench
estimation towards the payload are realized by considering
centroidal dynamics as a new constraint.

The Centroidal dynamics of a rigid multibody system is
influenced only by the external wrench on the links of the sys-
temwhile it is not affected by the internal joint wrenches [43].
This effectively decouples the estimation of the external link
wrench and the internal joint wrench variables. More impor-
tantly, centroidal dynamics constraint relates the external
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wrench acting on the links of the system, which enables us to
perform non-collocated wrench estimation for links such as
hands, using the increase in feet wrench measurements under
the influence of a payload. The centroidal frame is a unique
coordinate frame with its origin at the center of mass of the
system and its orientation is the same as the orientation of
the inertial frame of reference [44]. The centroidal frame is
denoted by G[I] or Ḡ. Centroidal dynamics relate the rate
of change of momentum of the system to the sum of all
the external wrenches acting on the system defined by the
following relation,

Ḡ ḣ =
NB∑
i=1

Ḡf xLi +
[
m g
03×1

]
, (13)

where, Ḡ ḣ ∈ R6×1 denotes the rate of change of centroidal
momentum, Ḡf xLi denotes the external wrench acting on the
i-th link expressed in the centroidal frame, and m denotes the
mass of the human subject. Now, let us denote the gravity
wrench vector as Ḡw =

[
m g> 01×3

]>, and (13) can be
rearranged as,

Ḡ ḣ =
NB∑
i=1

Ḡf xLi , (14)

where, Ḡ ḣ = Ḡ ḣ − Ḡw ∈ R6×1.
The centroidal momentum of the system, i.e., the momen-

tum about the center of mass, can be computed as the
sum of the individual link momentum through kinematic
approach [45] given by,

Ḡh =
∑
L∈L

ḠX∗L LIL LvL, (15)

where ḠX∗L ∈ R6×6 is an adjoint wrench transformation
matrix, LvL is the velocity of the i-th link, and LIL is the
6D inertia of the i-th link expressed in the body frame and
denoted as,

LIL =
[

mLI3 −mLS(LcL)
mLS(LcL) ĪL

]
.

mL ∈ R is the mass of the link, LcL ∈ R3 denotes the
center of mass with respect to the body frame of the link, and
ĪL ∈ R3×3 denotes the 3D inertia of the link expressed with
respect to the body frame. On taking the time derivative of the
centroidal momentum (15), the rate of change of centroidal
momentum is expressed as,

Ḡ ḣ =
∑
L∈L

ḠẊ
∗

L LIL LvL +
∑
L∈L

ḠX∗L LIL Lv̇L, (16)

where Lv̇L ∈ R6 denotes the acceleration of the i-th link, and
ḠẊ
∗

L =
ḠX∗L

LvL×̄
∗

LvL×̄
∗
:=

[
S(LωL) 03
S(LvL) S(LωL)

]
.

The consideration of centroidal dynamics as a new con-
straint enables us to develop a version of the stack of tasks
stochastic estimation problems to achieve non-collocated
wrench estimation. Let us consider a newmeasurement vector
y′ ∈ R6NB+6 with themeasurements of external wrench on the
links, expressed in the body frame and an additional ‘‘sensor’’
input of Ḡ ḣ is considered as,

y′ =
[
yk

Ḡ ḣ
>
]>
. (17)

Based on the choice of d ′ and y′, the structure of the block
diagonal matrix Y ′ ∈ R(6×(NB+1))×(6×NB) becomes,

Y ′ =


I6 06 . . . 06
...

...
...

...

06 06 . . . I6
ḠX∗L0

ḠX∗L1 . . . ḠX∗LNB−1

 , (18)

where, ḠX∗Li ∈ R6×6 is an adjoint wrench matrix trans-
formation from the i-th link body frame to the centroidal
frame. Now, a new optimization problem considering only the
kinetics and the centroidal dynamics equation is defined as,

(19)
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The optimization problem presented in (19) does not
consider the model constraints, and as a result, the exter-
nal link wrench estimation and the internal joint wrench
estimation are decoupled. More importantly, it relates the
wrench at links where we have direct sensor measure-
ments, such as feet, and the wrench at links where we
do not have direct sensor measurements, such as hands.
This effectively facilitates non-collocated wrench estimation.
Following the measurement covariance tuning explained in
section II-B4, the link external wrench estimates at the feet
and all the other links, except for the hand links are forced
towards the measurements (from assumed values or sensor
readings),

f̂ xL∈F ≈
mf xL∈F , (20a)

f̂ xL∈U ≈
mf xL∈U = 06×1. (20b)

Concerning the wrench estimates at the hand links,
the effect of centroidal dynamics constraints added as a part
of the optimization problem of (19) can be explained analyt-
ically as following,∑

L∈U

ḠX∗L f̂
x
L +

∑
L∈F

ḠX∗L f̂
x
L +

∑
L∈H

ḠX∗L f̂
x
L =

Ḡ ḣ.

(21)

Using the estimates from (20a) and (20b) in the rela-
tion (21), we get,∑

L∈H

ḠX∗L f̂
x
L =

Ḡ ḣ −
∑
L∈F

ḠX∗L
mf xL. (22)

The relation (22) guides the external wrench estimates at
the hand links to reflect the wrench experienced under the
weight of the payload such as in an example scenario as
shown in Fig. 1. To understand the process of non-collocated
wrench estimation more intuitively, let us consider the pay-
load handling scenario as indicated in Fig. 2. The top row
indicates the subject standing without any payload, and with
a payload held at the hands. The bottom row indicates the
3D visualization of the human model corresponding to the
instances shown in the top row. The arrows on the feet
indicate the measured external interaction wrench (yellow-
colored), and the estimated external interaction wrench (blue-
colored) at the feet links of the human that are in contact
with the environment. Now, following the relation (7a) the
estimated interaction wrench and the measured interaction
wrench at the feet are nearly matching. This fact is high-
lighted and discussed quantitatively in Section IV-C1. The
interaction wrench experienced at the feet under the influence
of a payload corresponds to the weight of the subject and the
weight of the payload combined. This fact is highlighted by
a green double-sided arrow to show the slight increase in the
length of the wrench arrows at the feet. Now, following the
relation (22) this increase in the interaction wrench at the feet
that corresponds to the weight of the payload is reflected as
the estimated interaction wrench at the hands. This process

of estimating the interaction wrench at the contact locations
that do not have any direct sensor measurements, using
force-torque measurements from sensors at another contact
location is referred to as non-collocated wrench estimation.
Detailed visualization of non-collocated wrench estimation
process is highlighted in Fig. 15 from Section IV.
The resulting estimates of the dynamic variables from (19)

are denoted as,

dMAP
k =

[̂
f x0 f̂ x1 . . . f̂ xNB−1

]
. (23)

The original estimation problem represented by (4) can
be decomposed into a two-step process as presented in (25).
The non-collocated wrench estimation represented by (25a)
and (25b), as shown at the bottom of the next page, is con-
sidered to be the first step that results in link external wrench
estimates (23). These estimates are given as the input wrench

FIGURE 2. Payload handling example scenario to highlight the process of
non-collocated wrench estimation. The top row indicates the subject
standing without any payload, and with a payload held at the hands. The
bottom row indicates the 3D visualization of the human model
corresponding to the instances shown in the top row. The arrows are the
feet indicate the external interaction wrench at the feet links of the
human that are in contact with the environment. Yellow-colored arrows
indicate the interaction wrench measured through direct sensor
measurements, while the blue-colored arrows indicate the estimated
interaction wrench. Note that the arrow representation of the interaction
wrench is a qualitative representation rather than a quantitative
representation. So, the length of the arrow does not represent the exact
magnitude of the interaction wrench. The interaction wrench experienced
at the feet under the influence of a payload corresponds to the weight of
the subject and the weight of the payload combined. This fact is
highlighted by a green double-sided arrow to show the slight increase in
the length of the wrench arrows at the feet.
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measurements to the new measurement vector y′′ denotes as,

y′′ =
[
(mag0)

> . . . (magN a
s
)> (̂f x0)

> . . . (̂f xNB−1 )
>
]>
.

(24)

An updated dynamics estimation problem with the new
measurement vector y′′ is considered as the second step. It is
important to notice that the measurement covariances for the
first step 6y′ and the second step 6y are independent and
different parameters.

IV. VALIDATION
A. EXPERIMENTAL SETUP
The validation of the presented approach of non-collocated
wrench estimation is carried through experiments with human
subjects using two different types of measurement systems.
The first measurement system is related to human motion
tracking and we use Xsens inertial motion tracking system
which consists of 17 distributed inertial measurement units
(IMUs) placed at different body parts of the subject. We obtain
the pose, velocity, and accelerationmeasurements of different
body segments that constitute the links of our human model
as shown in Fig. 3. This information is used to compute
the joint position and velocity which constitutes the internal
state information through dynamical inverse kinematics [40].
It is important to highlight that in this work the human pose
estimation i.e., inverse kinematics is not formulated as a
stochastic estimation problem. Hence, the human joint quan-
tities such as positions and velocities are not dependent on
anymeasurement covariance values. However, we thoroughly
demonstrate and validate the approach of non-collocated
wrench estimation in experimental scenarios involving dif-
ferent motions that are composed of various human pose
configurations as described in Section IV-B.

The rigid-body human model1 is constructed through
anthropometric tables using subject-specific measurements
and is composed of 23 link segments with each pair of links
connected through three one degree of freedom rotational
joints. Although it is evident that the modeling assumption of
the human body as an articulated rigid body system is quite
limited in terms of capturing the complexity of a sophisti-
cated musculoskeletal structure, it is a necessary assumption

1https://github.com/robotology/human-gazebo

FIGURE 3. Human model in Tpose configuration with frame locations of
the shoulder, elbow, and wrist joints along with the center of mass (CoM)
locations of the upper arm, forearm, and hand links. Also, the frame
located at the center of mass of the hand link is highlighted. Baseline
joint effort values are computed for an ideal Tpose configuration where
the joint’s position, velocity, and acceleration values are set to 0. The
resulting joint effort corresponds to the gravity compensation torque.
Two cases of no-load (0 kg) and load (5 kg) at the center of mass frame of
the hand link are considered, and the resulting joint effort experienced
due to gravitational force is computed. Note that the joint effort values
displayed in the figure are absolute values.

considered towards building the framework towards enabling
novel HRC scenarios [15], [27].

The second type of measurement system provides the
wrench measurement at the feet of the human subject.
We consider two different types of wrench measurement
systems. The first wrench measurement system is ground
fixed AMTI force plates,2 which are a widely used standard
wrench measurement system for biomechanical studies. This
choice is made to demonstrate the validation experiments
using an industry-standard as the equipment for ground
reaction force-torque measurements. The second wrench
measurement system is a wearable technology that is a pair
of sensorized shoes developed at the Italian Institute of

2https://amti.biz/fps-guide.aspx
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FIGURE 4. Subject wears Xsens inertial motion tracking system and a pair of sensorized shoes equipped with force/torque
sensors developed at IIT.

Technology3 (IIT). Each shoe is equipped with two
Force/Torque sensors, one at the front of the shoe and the
other at the back. The wrench measurements coming from
different measurement systems are expressed in the frame
associated with the human foot link. The various measure-
ment systems used in the experiments are shown in Fig. 4
and Fig. (5a).

B. EXPERIMENTAL SCENARIOS
We considered two different experimental scenarios, with
two different subjects. The first experimental scenario is
referred to as the validation scenario. For this scenario we
considered ground fixed AMTI force plates as the source of
wrench measurements. The validation scenario constitutes
of two experiments where 1) the subject standing in Npose
configuration (Fig. (5a)) moves both the arms to a Tpose
configuration (Fig. (5b)) without any load at the hands,
and 2) the subject standing in Npose configuration moves
the right (dominant arm) to a Tpose configuration with a
5 kg payload (Fig. 5c)).

The second experimental scenario is referred to as the
application scenario where a real-world application of

3https://dic.iit.it/

carrying a heavy payload with both hands is considered and
the proposed non-collocated wrench estimation approach is
used to estimate the mass of the object. The sensorized shoes
are considered as the source of wrench measurement. Unlike
the ground fixed plates, sensorized shoes facilitate the mobil-
ity of the subject to perform dynamic motions like walking.
The application scenario constitutes two sets of experi-
ments. The first set of experiments conducted are based
on quasi-static human motion as highlighted in Fig. 6. The
subject initially stands in a static neutral Npose (6a), moves
forward, and picks up the payload placed in front of him (6b),
balances on his left foot (6c), then the right foot (6d) while
holding the payload with his hands. The second set of experi-
ments involves a dynamic motion while the human carries the
payload as highlighted in Fig. 7. The subject initially stands
in a static neutral Npose (7a), moves forward and picks up
the payload placed in front of him (7b), and walks a few steps
while carrying the payload. Particular instances when the left
foot (7c) and the right foot (7d) are in contact with the ground
during the dynamic walking motion are shown.

Heterogeneous experimental data coming from Xsens
inertial motion tracking system, AMTI force plates and
the sensorized Force/Torque shoes are combined into a

FIGURE 5. Validation scenario experiments showing instances of a subject in a) Npose configuration, b) Tpose configuration of both the arms,
and c) Tpose configuration of the dominant right arm with 5 kg payload. During both the validation scenarios the subject is initially in the
Npose configuration, moving the Tpose configuration with both the arms or the dominant right arm with 5 kg payload, and moves back to
Npose configuration.
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FIGURE 6. Application scenario experiment showing instances of
a) Npose without payload, b) Npose with payload, c) left foot balancing
with payload, and d) right foot balancing with payload during quasi-static
human motion.

FIGURE 7. Application scenario experiment showing different instances
of a) Npose without payload, b) Npose with payload, c) walking instance
with left foot in contact, and d) walking instance with right foot in contact
during dynamic human motion.

homogeneous ‘‘wearable’’ data format through the use of
wearables library,4 that is logged at a frequency of 50 Hz
through YARP middleware [46]. The logged homogeneous
data is played back in real-time to run the stochastic
inverse dynamics algorithm5 ‘‘without’’ and ‘‘with’’ the
non-collocated wrench estimation approach. To be more
precise, the case of without non-collocated wrench esti-
mation refers to the old approach of stochastic inverse
dynamics explained in Section II-B, while the case of with
non-collocated wrench estimation refers to the approach pre-
sented in Section III-A. The estimates of the dynamic vari-
ables are saved in Matlab data format for plotting the results
presented in the next section.

C. RESULTS AND DISCUSSION
The validation scenario experiments are used to demonstrate
the estimation of feet and hands external link wench esti-
mation for different choices of measurement covariances.
Also, it is used for the validation of joint torques estimation
using the original stochastic inverse dynamics approach pre-
sented in Section II-B. More importantly, the limitation of
the original stochastic inverse dynamics approach for exter-
nal interaction wrench estimation presented in Section II-C
is highlighted quantitatively, and the utility of the pro-
posed approach of non-collocated wrench estimation (NCWE)

4https://github.com/robotology/wearables
5https://github.com/robotology/human-dynamics-estimation

presented in Section III-A is demonstrated. Later, the experi-
mental results of the application scenario highlight the util-
ity of the non-collocated wrench estimation approach for
practical real-world scenarios tasks such as carrying a heavy
payload. As we consider a rigid body human model, the exact
frame that is considered to be the contact location for the
wrench estimation is at the Center of Mass of the hand link
as shown in Fig. (3). Note that any further references to the
hand link correspond to the link that is defined at the Center
of Mass of the hand link.

All the wrench quantities presented in this section are
expressed in the inertial frame of reference. The force com-
ponents are denoted as fx , fy, fz, and the moment/torque com-
ponents are denoted as mx ,my,mz. The start and the end
instances of Tpose configuration during the validation sce-
nario are indicated with vertical dashed lines. The covari-
ance values chosen for different experimental scenarios are
highlighted in Table 1. Note that the main motivation behind
choosing different covariance values for different experimen-
tal scenarios is to demonstrate the limitation of the original
stochastic inverse dynamics approach, and to highlight the
utility of non-collocated wrench estimation and associated
joint torque estimation under the influence of a payload.
To utilize the proposed approach for real-world applications,
the covariance values indicated in Table 1 under the applica-
tion scenario experiments are used.

1) Tpose WITHOUT LOAD
The effect of measurement covariance values is previously
discussed in Section II-B4. The experiments of the validation
scenario have the measurement forces and torques at the feet
coming from the AMTI force plates. Fig. 8 highlights the
error between the measurements and the feet external wrench
estimates for different measurement covariance values. The
choice of a small value such as 10−6 indicates our trust in
the wrench measurement values that leads to a small error
when compared against other choices of the feet wrench
measurement covariance. So, the choice of 10−6 leads to the
estimated feet wrench to be close to the measurements from
AMTI force plates as highlighted in Fig. 9. The weight of the
subject is around 75.5 kg during the time of the experiment.
The wrench indicated here is expressed with respect to the
inertial frame of reference. So, the variation of the measured
wrench indicated here results from two possible sources of
error: a) the measurement accuracy (±0.5% of applied load)
of the force plates, and b) the possible errors in kinematics
information resulted from the inverse kinematics solution.
However, looking at the force components, only the force
component along the z-axis is prominent and is close to the
gravity wrench under the influence of the subject weight.
Whereas the force components along the x-axis and y-axis are
small. Concerning the moment components, the values indi-
cated are a direct result of the consideration of moments in the
inertial frame of reference. Note that the close match between
the measurements and the estimates is a direct indication of
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FIGURE 8. Feet wrench error between the measurements from AMTI force plates and the estimates for different feet
measurement covariance values during Tpose without load validation scenario experiment shown in Fig. (5b).
An increase in feet wrench measurement covariance increases the error indicating the feet wrench estimates diverge
from the measurements from AMTI force plates. Following the discussion of covariance tuning explained in
Section II-B4, choice of wrench measurement covariance value 10−6 results in the feet wrench estimates close to the
measurements from AMTI force plates. The start and end of the Tpose configuration is highlighted with vertical dashed
lines.

FIGURE 9. Feet wrench tracking between the measurements and the estimates for feet wrench measurement
covariance value of 10−6 during Tpose without load validation scenario experiment shown in Fig. (5b). The weight of the
subject is around 75.5 kg during the time of the experiment. The wrench indicated here is expressed with respect to the
inertial frame of reference. So, the variation of the measured wrench indicated here results from two possible sources
of error: a) the measurement accuracy (±0.5% of applied load) of the force plates, and b) the possible errors in
kinematics information resulted from the inverse kinematics solution. However, looking at the force components, only
the force component along the z-axis is prominent and is close to the gravity wrench under the influence of the subject
weight. Whereas the force components along the x-axis and y-axis are small. Concerning the moment components,
the values indicated are a direct result of the consideration of moments in the inertial frame of reference. Note that the
close match between the measurements and the estimates is a direct indication of the accuracy of the estimation that
resulted from choosing a small measurement covariance value of 10−6.

the accuracy of the estimation that resulted from choosing a
small measurement covariance value of 10−6.

The joint torque estimates at shoulder, elbow, and wrist
joints using feet wrench measurement covariance value
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of 10−6 are shown in Fig. 10. The joint effort is com-
puted as the L2 norm of the corresponding three one DoF
joints between the two link segments of the human model.
Following (23), the estimation of joint torques depends on the
model covariance 6D that is set to a value of 10−6 to ensure
all the model constraints are respected. During the Tpose
configuration, the estimated joint effort is around the baseline
joint effort that is shown in Fig. 3. The baseline joint effort is
computed bymanually setting the joint position, velocity, and
acceleration values to zero for the humanmodel which results
in an ideal Tpose configuration. So, the resulting baseline
joint effort corresponds to the gravity compensation torques
for the upper arm, forearm, and hand of the subject during
the Tpose configuration. The human subject cannot assume
an ideal Tpose configuration and this results in joint effort
estimates that are different from the exact baseline joint effort
values. Additionally, the joint torque estimates are compared
against computed torques that are computed through deter-
ministic inverse dynamics using the joint position, velocity,
acceleration, and the external interaction wrench measure-
ments at the feet from the experiment. Computed torques
are obtained using iDynTree6 library [31]. It is important to
highlight that this validation of joint torque estimation and the
resulting joint effort with respect to the baseline joint efforts
and computed torques complements the original validation
results presented in [24].

6https://github.com/robotology/idyntree

2) Tpose WITH LOAD
Concerning the experiment where the subject moves the
dominant right arm from Npose to Tpose configuration with
a 5 kg payload, we are certain that no external interaction
wrench is present on the left hand of the subject. Hence,
we consider zero wrench measurement and a low measure-
ment covariance value of 10−6 for the left hand. This results
in the left hand wrench estimates to be close to its set zero
measurement, i.e., 06×1 which is evident from the results
highlighted in Fig. 11 and Fig. 13.
Now, the link that is considered for wrench estimation is

at the Center of Mass of the right-hand link. During this
validation experiment, it is clear that the external force acting
on the link is the gravitational force of the payload, and the
moments generated at the considered frame are small. So,
we consider a high measurement covariance value of 104 for
the moments at the right hand Center of Mass link. Wrench
estimation for different force measurement covariances with-
out the consideration of non-collocated wrench estimation is
highlighted in Fig. 11. The increase in measurement covari-
ance results in higher values of the wrench estimates. How-
ever, the resulting estimates do no reflect the payload that is
being held by the subject. This is evident from the estimated
object mass results highlighted in Fig. 12. The object mass
is computed through the L2 norm of the estimated right-hand
forces. These results demonstrate the limitation of the original
approach of stochastic human inverse dynamics presented
in Section II-C.

FIGURE 10. Torque estimates for shoulder, elbow, and wrist joints during Tpose without load validation scenario experiment
shown in Fig. (5b) using feet wrench measurement covariance value of 10−6. The name of the joint of the human model is
indicated in the title of the subplots. The subject stands in Npose configuration, moves to Tpose configuration, and moves back to
Npose configuration. The start and end of the Tpose configuration are highlighted with vertical dashed lines. Computed torques
indicate the joint torques computed through deterministic inverse dynamics using the joint position, velocity, acceleration, and
the external interaction wrench measurements at the feet from the experiment.
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FIGURE 11. Hands wrench estimation without non-collocated wrench estimation for different measurement covariance values during the 5 kg
payload validation experiment shown in Fig. (5c). The subject stands in Npose configuration, moves to pick up a 5 kg payload, lifts the right
hand to Tpose configuration, and moves back to Npose configuration. The start and end of the right-hand Tpose configuration are highlighted
with vertical dashed lines. Left hand wrench measurement covariance value is set to 10−6 as there is no payload, and the resulting wrench
estimates are close to the set zero measurements. Right hand wrench estimates increase with increasing measurement covariance value.
However, the resulting wrench estimates do not reflect the wrench experienced under the influence of 5 kg payload.

FIGURE 12. Object mass estimation without non-collocated wrench
estimation for different measurement covariance values during the
5 kg payload validation experiment shown in Fig. (5c). The start and end
of the right-hand Tpose configuration are highlighted with vertical dashed
lines. Object mass is computed as the L2 norm of the estimated hand
wrenches highlighted in Fig. 11. The estimated object mass does not
reflect the 5 kg payload held by the subject.

On the other hand, using the approach of non-collocated
wrench estimation results in right hand wrench estimates that
are physically consistent with the 5 kg payload that is held by
the subject. This is evident from the wrench estimation pre-
sented in Fig. 13, and the resulting payload mass estimation
shown in Fig. 14. One key detail that needs to be highlighted
here is the measurement covariance values for the rate of
change of momentum from (14). As it is composed of link
velocity and acceleration values that can be noisy, a value of

10−3 is chosen. So, a measurement covariance value of 10−4

for the right-hand wrench does not result in any estimates
greater than their set zero measurements. Whereas, choosing
values greater than 10−3 starts yielding wrench estimates that
are physically consistent with the 5 kg payload held by the
subject in the right hand.

RViz 3D visualization of payload mass estimation without
and with non-collocated wrench estimation for different mea-
surement covariance values is indicated in Fig. 15. Using the
original stochastic inverse dynamics approach, i.e., without
the non-collocated wrench estimation, the estimated object
mass value is inconsistent with respect to the 5 kg payload
held by the subject. On the other hand, the proposed
non-collocated wrench estimation approach results in an esti-
mated object mass that is consistent with the 5 kg payload
held by the subject at the right hand.

The joint torque estimates and the joint effort values
for the shoulder, elbow, and wrist joints during the Tpose
configuration under the influence of the 5 kg payload
at the right hand is shown in Fig. 16. Consideration of
non-collocated wrench estimation directly results in the joint
effort values that are around the baseline values shown
in Fig. 3 for the case of 5 kg payload.

3) APPLICATION SCENARIO
The ground truth mass of the payload handled by the human
during the application scenario is 9.55 kg. In this scenario,
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FIGURE 13. Hands wrench estimation with non-collocated wrench estimation for different measurement covariance values during the
5 kg payload validation experiment shown in Fig. (5c). The subject stands in Npose configuration, moves to pick up a 5 kg payload, lifts the
right hand to Tpose configuration, and moves back to Npose configuration. The start and end of the right-hand Tpose configuration are
highlighted with vertical dashed lines. Left hand wrench measurement covariance value is set to 10−6 as there is no payload, and the resulting
wrench estimates are close to the set zero measurements. Right hand wrench estimates increase with increasing measurement covariance
value, and the resulting wrench estimates reflect the wrench experienced under the influence of 5 kg payload.

FIGURE 14. Object mass estimation with non-collocated wrench
estimation for different measurement covariance values during the
5 kg payload validation experiment shown in Fig. (5c). The start and end
of the right-hand Tpose configuration are highlighted with vertical dashed
lines. Object mass is computed as the L2 norm of the estimated hand
wrenches highlighted in Fig. 13. The estimated object mass reflects the
5 kg payload held by the subject.

the subject holds and carries the payload using both arms.
So, following the discussion presented in Section IV-C2,
the wrench measurement covariance values of both the
left hand and the right hand are set as to estimate
forces and moments experienced under the influence of
the payload. Non-collocated wrench estimation results cor-
responding to the quasi-static human motion experiment
depicted in Fig. 6 are shown in Fig. 17, while the results
corresponding to the dynamic human motion experiment

depicted in Fig. 7 are shown in Fig. 18. As explained
in section III-A, the measurement value of each of the
wrench components is set zero, i.e., 06×1. Considering
our approach of non-collocated wrench estimation through
centroidal dynamics constraint, the external force estimates
at the hands are guided to reflect the weight of the payload
handled by the subject. It is important to observe that the
centroidal dynamics constraint is composed of six dimen-
sions. So, one of the limitations of the proposed approach
to situations like the application scenario is that only three
components of forces or three components of torques can
be estimated individually. This limits the possibility to
control the estimation of forces or torques at both hands
simultaneously.

The mass of the object is computed as the L2 norm of the
increased force measurements at the feet under the influence
of the object, and the L2 norm of the force estimates at the
hands is highlighted in the last row of Fig. 17 and Fig. 18.
After the initial neutral Npose, the subject moves down to
pick up the object, and this is a transient phase where the
feet contact with the ground is unstable along with a sig-
nificant change in the body posture. This is visible through
the transient phase indicated by the vertical lines. Following
this transient phase, the estimation of the object mass is
close to the ground truth mass of 9.55 kg, even during the
contact transitions of the feet during the dynamic walking
motion.
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FIGURE 15. RViz 3D visualization of 5 kg payload mass estimation during right hand Tpose configuration (15a)-(15e) without non-collocated wrench

estimation, and (15f)-(15j) with non-collocated wrench estimation for different measurement covariance values for the right hand forces, i.e., 6
f x
RH

y ′ . The

estimated object mass does not reflect the 5 kg payload as highlighted in Fig. 12. The blue arrow at the hand is a representative indication of the
estimated hand force, but the scale does not correspond to the magnitude of the estimated forces. The yellow arrow at the feet represents the ground
reaction force that is measured and the blue line represents the estimated force at the feet links. Using the feet wrench measurement covariance value
of 10−6, the force estimates are similar to the force measurements at the feet. The spheres indicated the joint effort, with green color representing a low
joint effort value and the color red representing a high joint effort value.

FIGURE 16. Torque estimates for shoulder, elbow, and wrist joints using non-collocated wrench estimation with right hand force
measurement covariance value of 1 during Tpose with 5 kg payload validation scenario experiment shown in Fig. (5c). The name of the
joint of the human model is indicated in the title of the subplots. The subject stands in Npose configuration, moves to pick up a
5 kg payload, lifts the right hand to Tpose configuration with the payload, and moves back to Npose configuration. Estimated joint
torques and effort are closer to the joint torques and effort computed through deterministic inverse dynamics. The start and end of the
right-hand Tpose configuration are highlighted with vertical dashed lines. Computed torques indicate the joint torques computed through
deterministic inverse dynamics using the joint position, velocity, acceleration, and the external interaction wrench measurements at the
feet from the experiment.

Fig. 19 highlights visualization of the estimated wrench
at the hands and the joint effort estimated during differ-
ent instances of the task. While the subject is standing in

neutral Npose without any object at the hands, the estimated
wrench at the hands is close to zero and the upper body
joints do not experience any effort as shown in Fig. (19a).
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FIGURE 17. Application of non-collocated wrench estimation during quasi-static motion from experiments highlighted in Fig. 6. As the
subject handles the payload with both the arms, the wrench measurement covariance at both the right hand and left hand is set to a
value of 1. Force estimation at both the left and the right hand is highlighted to emphasize the utility of the non-collocated wrench
estimation approach in estimating the interaction force experienced under the influence of the payload. The force measurement at
the hands is set zero, i.e., 03×1. Furthermore, payload mass estimation during quasi-static human motion is presented in comparison
with the mass computed as the L2 norm of the increase in force measurements at the feet.

FIGURE 18. Application of non-collocated wrench estimation during dynamic walking motion from experiments
highlighted in Fig. 7. As the subject handles the payload with both the arms, the wrench measurement covariance at
both the right hand and left hand is set to a value of 1. Force estimation at both the left and the right hand is
highlighted to emphasize the utility of the non-collocated wrench estimation approach in estimating the interaction
force experienced under the influence of the payload. The force measurement at the hands is set zero, i.e., 03×1.
Furthermore, payload mass estimation during quasi-static human motion is presented in comparison with the mass
computed as the L2 norm of the increase in force measurements at the feet.

On the other hand, when the subject is holding the object
the estimated wrench at the hands is highlighted through
blue arrows, and the joints in the upper body experi-
ence effort as shown in Fig. (19b). While the subject is

walking, depending on the foot that is in contact, either the
left leg as shown in Fig. (19c), or the right leg as shown
in Fig. (19d) experiences higher effort, while the estimated
wrench at the hands is consistent as highlighted through the
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FIGURE 19. RViz 3D visualization for application scenario of walking with non-collocated wrench estimation while
carrying a payload of 9.55 kg. The blue arrows at the hands are a representative indication of the estimated hand forces,
but the scale does not correspond to the magnitude of the estimated forces.

estimated object mass value that is close to the ground truth
of 9.55 kg.

V. CONCLUSION AND REMARKS
Real-time assessment of human ergonomic indices is receiv-
ing attention with the development of novel tools and
techniques. An interesting open problem we consider in this
work is to estimate the external interaction wrench experi-
enced at human extremities such as hands while carrying
heavy objects. We highlighted the current limitations of the
stochastic human inverse dynamics approach in the litera-
ture, and propose an updated formulation through the con-
sideration of centroidal dynamics constraint. We highlighted
the effect of different choices of measurement covariance
values using a validation experimental scenario and demon-
strated the usefulness of the proposed non-collocated wrench
estimation approach in terms of estimating the external
interaction wrench experienced at the hands, along with
the corresponding joint torque estimation. Furthermore,
we present the benefit of non-collocated wrench estimation
for a real-world application scenario of carrying a heavy
object that involved dynamic human motion such as walking.

At this stage, it is important to point out some of the
limitations and challenges in applying our proposed approach
in real industrial environments. One of the key limiting tech-
nologies is the current version of the sensorized shoe that
severely limits the natural gait of the subject. Restrictions
of motion of any sort that are caused due to the wearability
of a system is a key challenge to overcome in realizing
many potential applications for the industrial sector using
wearable technology [47]. So, improvements in the direction
of wearability through the usage of lightweight materials such
as Graphene and wireless connectivity for data acquisition
are some of the key technical activities that enable the use of
sensorized shoes in a wide variety of practical applications

such as industrial environments and rehabilitation. At the
modeling level, musculoskeletal modeling of humans lead to
novel research investigations. Also, consideration of contact
localization through human action recognition can enhance
the applicability of the proposed approach to a wide variety
of scenarios. Technically, our approach is straightforward to
set up in real-world environments, as long as the different
sensory measurements, and modeling tools are available.
However, the system complexity arises primarily from the
consideration of heterogeneous measurement systems such
as the motion tracking system and the force-torque measure-
ment systems explained in Section IV-A. Such measurement
systems are often available from different commercial ven-
dors who specialize in a single measurement system, and
establishing a robust software infrastructure to integrate dif-
ferent measurement systems is often a daunting task. This
work is realized using a variety of open-source software tools
for modeling,7 heterogeneous measurement data serializa-
tion,8 and estimation algorithms9 10 that can be set up easily
through a meta-repository.11 A key technical challenge is
to realize a single wearable system that combines different
measurement modalities12 and provides a quick and easy-
to-use software infrastructure. Furthermore, adding feedback
infrastructure such as haptic actuation will open novel appli-
cations in the field of real-time ergonomy assessment and
assistance for the future socio-technical workforce.

This manuscript primarily aims at presenting and thor-
oughly validating the approach of non-collocated wrench
estimation and the joint torque estimation for real-time

7https://github.com/robotology/human-gazebo
8https://github.com/robotology/wearables
9https://github.com/robotology/idyntree
10https://github.com/robotology/human-dynamics-estimation
11https://github.com/robotology/robotology-superbuild
12https://ifeeltech.eu/
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TABLE 1. Table indicating the different covariance values chosen for the experiments presented in Section IV. Note that the main motivation behind the
different covariance values chosen for different experimental scenarios is to demonstrate the limitation of the original stochastic inverse dynamics
approach and to highlight the utility of non-collocated wrench estimation and the associate joint torque estimation under the influence of a payload.
To utilize the proposed approach for real-world applications, the covariance values indicated under the application scenario experiments are used.

FIGURE 20. Experiments highlighting future research investigations in a) real-time risk classification during material handling, b)
human-robot collaborative object co-manipulation and transport, c) an active exoskeleton that provides support during overhead
tasks, and d) a human subject wearing an active exoskeleton that provides support during overhead tasks with human-in-the-loop
adaptive control strategies. All of these future research directions leverage the approach of non-collocated wrench estimation for
real-time estimation of interaction wrench under the influence of a payload at contact locations that do not have direct sensor
measurements.

assessment of human ergonomic indices. We consider
non-collocated wrench estimation to be a fundamental
enabling technique that facilitates future research investi-
gations involving real-time risk classification during mate-
rial handling in logistics [48], [49], partner-aware whole-
body humanoid control in providing assistance during
Human-Robot Collaboration tasks such as collaborative
object co-manipulation and transport [20], [27], and control
of adaptive exoskeletons for evaluating and validating the
amount of support they provide for overhead tasks on the shop
floor [14], [15], [21].

Some future research investigations are highlighted in
Fig. 20 showing experiments related to real-time risk clas-
sification during material handling Fig. (20a), human-robot
collaborative object co-manipulation and transport Fig. (20b),
an active exoskeleton that provides support during over-
head tasks with human-in-the-loop adaptive control strate-
gies Fig. (20c)-(20d). All of these future research directions
leverage the approach of non-collocated wrench estimation
for real-time estimation of interaction wrench under the
influence of a payload at contact locations that do not have
direct sensor measurements.
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