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ABSTRACT In this article, a reinforcement learning (RL)-based scalable technique is presented to control
the probabilistic Boolean control networks (PBCNs). In particular, a double deep-Q network (DDQN)
approach is firstly proposed to address the output tracking problem of PBCNs, and optimal state feedback
controllers are obtained such that the output of PBCNs tracks a constant as well as a time-varying reference
signal. The presentedmethod is model-free and offers scalability, thereby provides an efficient way to control
large-scale PBCNs that are a natural choice to model gene regulatory networks (GRNs). Finally, three PBCN
models of GRNs including a 16-gene and 28-gene networks are considered to verify the presented results.

INDEX TERMS Double deep-Q learning, model-free technique, output tracking, probabilistic Boolean
control networks, scalability.

I. INTRODUCTION
Reinforcement learning (RL) provides effective strategies to
bridge the gap betweenmodel-based andmodel-free controls,
by combining features of optimal control and adaptive con-
trol. In particular, optimal controllers are normally designed
offline by solving Hamilton-Jacobi-Bellman (HJB) equa-
tions, using complete knowledge of the system dynamics;
on the other hand, adaptive controllers learn online how
to control an unknown system but usually are not optimal.
The framework of RL allows designing adaptive controllers
that learn online, without the full knowledge of the sys-
tem dynamics, optimal feedback laws. Specifically, RL con-
siders an agent-environment interplay, whereby the agent,
i.e., the controller, receives feedback (stimuli) in the form
of rewards or penalties by interacting with the environment,
i.e., the system, and modifies its acting behavior accordingly.
For this reason, RL can be seen as an action-based learning.
One framework for studying RL is based on Markov

decision processes (MDPs), which is interpreted to be the
environment. Based on the MDP and other frameworks,
many RL algorithms have been studied extensively in lit-
erature, both model-free and model-based [1]–[6]. One of
the first and most popular model-free methods for solving
RL problems, namely the Q-learning (QL), was proposed by
Watkins in 1989 [7]. This technique has been proved to be a
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powerful solution for controlling small-scale environments.
However, when RL deals with large-scale MDPs, i.e., the
case of more realistic scenarios, QL turns out vulnerable in
terms of slow or no convergence towards an optimal solu-
tion. The issue of large state-action space is known as the
curse of dimensionality. One of the most productive ways to
solve this limitation is the combination of QL and machine
learning techniques. Recently, deep neural networks spurred
significant interest in the scientific community and Google
DeepMind [8] proposed deep-Q network (DQN), a combi-
nation of deep learning and QL. Moreover, Mnih et al. [8]
introduced two main concepts in DQN, namely experience
replay and target network thereby offering a viable solution to
complex and high-dimensional MDP problems. Researchers
have developed diverse applications based on the advan-
tages of DQN. For instance, control of autonomous vehi-
cles [9], [10], smart grids [11], disease identification [12]
and gene regulatory networks (GRNs) [13]. Furthermore,
van Hasselt et al. [14] proposed double DQN (DDQN) to
overcome problems of overestimation, improving the conver-
gence and performance of the DQN algorithm.

In this article, we consider an MDP as the underlying
structure to model probabilistic Boolean control networks
(PBCNs) [15], and study the output tracking problem of
PBCNs by using DDQNs. A PBCN is a collection of Boolean
control networks (BCNs) switching randomly between con-
stituent BCNs with certain probability distribution. PBCNs
offer a natural framework to model the development of
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cellular systems and large biological networks from a
practical perspective. PBCN models of GRNs developed
within the framework of MDPs have gained considerable
attention from systems and control theorists. For exam-
ple, Vahedi et al. [16] and Wu and Shen [17] designed
optimal therapeutic methods by solving an optimal control
problem.

Several control-theoretic problems have been investigated
by various researchers for BCNs and PBCNs, see for exam-
ple [18]–[29] and the references therein. Specifically, the out-
put tracking problem so far has been thoroughly investigated.
The main aim of the output tracking (or model reference
control) problem is to design a controller that renders the
system output to follow a constant or time-varying reference
signal. Recently, the output tracking of PBCNs was studied
in [30]–[32] to track a constant reference signal whereas
Chen et al. [33] examined asymptotic time-varying tracking
problem. The techniques in [30]–[33] resort to the semi-
tensor product of matrices developed by Cheng et al. [34],
[35]. These techniques are model-based and heavily rely on
the qualitative model of the systems under consideration.
However, such model is often unavailable or difficult to
build [36]–[38] from laboratory experiments due to gigantic
nature of GRNs. Furthermore, model-based techniques suffer
due to exponential computational complexity and not suitable
for large-scale PBCN models of GRNs. The development of
new GRN (modeled as PBCN) control techniques that are
model-free and computationally efficient for large networks
is therefore crucial.

In the literature, model-free QL [39], fitted QL [40], [41]
techniques have been employed to control GRNs. Authors
in [42] recently proposed a DDQN based intervention tech-
nique to address the controllability problem of probabilistic
Boolean networks. Nonetheless, the above results focused
only on altering the activity levels of specific genes by
controlling one or more genes in the network and do not
provide any specific feedback law to control the network.
Lately, Acernese et al. [43] presented a QL-based technique
to stabilize small-scale PBCNs. However, the output tracking
problem of PBCNs (both large and small-scale) using model-
free techniques is still a significant open problem and indeed
deserves further investigation.

Motivated by the above discussion, in this article we uti-
lize a model-free DDQN technique to investigate the output
tracking problem of PBCNs. The main contributions of this
article are as follows.

1) We pose PBCN dynamics in the MDP framework
to investigate the output tracking problem. In our
approach, the controller has no knowledge of the
environment (the underlying transition probabilities of
PBCNs).

2) We employ DDQNs with prioritized experience replay
(PER) to formulate the output tracking problem and
design optimal state feedback controllers rendering the
output of PBCNs track constant as well as time-varying
reference signals.

3) Further, we compare the performance of DDQN +
PER controllers with the traditional model-free QL
controllers.

4) Finally, to test the scalability of the presented results we
consider three different models, i.e., 10-gene, 16-gene
and 28-gene PBCN models of GRNs and validate the
main results presented in the paper through a computer
simulation.

The rest of the paper is organized as follows.
First, we state the set of preliminaries required for defining

the problem statement. In the same Section II, we explain RL
fundamentals, i.e., MDP,QL and DDQL, to help reader moti-
vate in the direction of the research. In Section III, we propose
a DDQL algorithm for the output tracking objectives. Finally,
we use software tools in Section IV to illustrate the ideas
mentioned in Section III of the manuscript.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this section, we formalize the problem of RL as the optimal
control of MDPs. We also refer to the QL methodology and
its variants for solving the MDP problem.

Notation. R and Z+ denote the sets of real numbers and
nonnegative integers, respectively. B := {0, 1}, and Bn :=
B × . . .× B︸ ︷︷ ︸

n

. The basic logical operators Negation, And, Or

are denoted by ¬, ∧, ∨, respectively.

A. MARKOV DECISION PROCESS
A discrete-time Markov decision process (MDP) [44] is a
quadruple (X, U, P, G), where X is the state-space, U
is the action-space, and P : X × U × X → [0, 1] is
the function of state-transition probabilities that describes,
for each state xt ∈ X and action ut ∈ U, the conditional
probability Putxt ,xt+1 = P{xt+1|xt , ut } of transitioning from xt
to xt+1, when ut is taken. We consider the index t ∈ Z+
to be the discrete time-step, and state and action values at
t are xt and ut , respectively. Moreover, let G : X × U ×
X→ R denote the cost function; given xt and ut is selected,
the expected cost paid after transitioning to state xt+1 is
Gut
xt ,xt+1 = E[gt+1|xt , ut ], with gt+1 = gt+1(xt , ut , xt+1) and

E[·] is the expected value operator.
Define a performance index at time-step t as the sum of

future costs,

Jt :=
∞∑

i=t+1

γ i−t−1gi, (1)

where 0 ≤ γ < 1 is the discount factor weighting costs along
the trajectories. The basic RL problem is to find a closed-loop
control or policy π : X×U→ [0, 1] that minimizes the long-
term expectation of the performance index (1), i.e., Eπ [Jt ],
at each t . We refer to the optimal policy as π∗(xt , ut ), ∀xt ∈
X, ∀ut ∈ U. If π admits only one control action for each state
with probability 1 (w.p.1), it is called deterministic policy,
i.e., of the form µ(xt ), mapping states xt into controls ut =
µ(xt ),∀xt .
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Given an initial state x0 and following the acting behav-
ior π , the value function of the state x0 is defined in terms of
the expected future cost as:

vπ (x0) := Eπ
[ ∞∑
i=1

γ i−1gi

∣∣∣∣x0], for all x0 ∈ X. (2)

A fundamental property of vπ (·) is that it satisfies the recur-
sive Bellman equation:

vπ (xt ) =
∑
ut∈U

π (ut |xt )
∑
x∈X

Put
xt ,x

[
Gut
xt ,x + γ vπ (x)

]
, (3)

for all xt ∈ X, where π (ut |xt ) represents the conditional
probability of taking the action ut given that the system is
in the state xt . Similarly, given a state xt , an action ut and
following the policyπ thereafter, let the action-value function
be defined as qπ (xt , ut ) := Eπ [Jt |xt , ut ]. It can be shown that
also qπ (xt , ut ) takes a recursive form similar to (3), namely:

qπ (xt , ut ) =
∑
x∈X

Put
xt ,x

[
Gut
xt ,x + γ

∑
u∈U

π(u|x)qπ (x, u)
]
, (4)

for all xt ∈ X and ut ∈ U.
The policy that minimizes the value function for any

initial state is the optimal policy, namely π∗(xt , ut ) :=
argmin
π∈5

vπ (xt ), ∀xt ∈ X, where5 is the set of all admissible

policies, and the corresponding optimal value function is
v∗(xt ) := vπ∗ (xt ). It can be shown [1] that (3) and (4) can
be expressed in terms of the Bellman optimality equation as:

v∗(xt ) = min
ut∈U

∑
x∈X

Put
xt ,x
[
Gut
xt ,x + γ v

∗(x)
]
, (5)

q∗(xt , ut ) =
∑
x∈X

Put
xt ,x
[
Gut
xt ,x + γ min

u
q∗(x, u)

]
, (6)

where v∗(xt ) = min
ut

q∗(xt , ut ). Given a solution q∗(xt , ut ),

one can obtain an optimal deterministic policy as:

µ∗(xt ) := argmin
u∈U

q∗(xt , u), for all states xt ∈ X. (7)

Note that in case there exist more than one optimal determin-
istic policy, they will share the same action-value function.

When a complete knowledge of an MDP is available,
several algorithms referred to the general term of dynamic
programming (DP) can be used to compute exact solutions for
the optimal policies, e.g., value iteration and policy iteration
methods, [45]. In this article, we consider the more realistic
case where the transition probability distribution is unknown
to the agent, or where it is known but it is too complex to
be represented. In such cases, an approach to solve the MDP
problem is to approximate the expected value of a state-action
pair qπ with an estimation Q̃ : X× U→ R computed along
trajectories. This idea is known as temporal-difference (TD)
learning and it resorts to bootstrapping [1].

B. Q-LEARNING ALGORITHM
The original QL [7], [46] is an off-policy TD control
algorithm in which, given a pair (xt , ut ), then qπ (xt , ut ) is
estimated as Q̃(xt , ut ) = gt+1 + γ Q̃π (xt+1, µ(xt+1)). The
estimates are improved at each time-step t with the following
update rule:

Q̃t+1(xt , ut ) = Q̃t (xt , ut )+ αt [TDEt+1],

TDEt+1 = gt+1 + γ min
u∈U

Q̃t (xt+1, u)− Q̃t (xt , ut ), (8)

where the quantity TDEt+1 can be seen as an estima-
tion error given by the difference between the old esti-
mated value Q̃t (xt , ut ) and the new better estimate gt+1 +
γ min

u
Q̃t (xt+1, u); moreover, the learning rate or step-size

rule 0 < αt ≤ 1 is a time-varying parameter responsible for
how much the learning process is affected by newly acquired
information. Under the assumption that all states are visited
infinitely often and some other common stochastic approxi-
mation conditions on the sequence αt , QL has been shown to
converge toward the optimal solution Q̃∗(xt , ut ) := q∗(xt , ut ),
∀xt ∈ X, ∀ut ∈ U, w.p.1 [46]. The problem of maintain-
ing sufficient exploration can be addressed by choosing the
actions ut in a proper way, e.g., by following an ε-greedy
policy, i.e., choosing a greedy action ut = argmin

u∈U
Q̃t (xt , u)

w.p.(1−ε), and a random action ut = rand(U) w.p.ε, where
rand(·) is the discrete uniform distribution.

C. DOUBLE DEEP-Q NETWORK
QL creates a look-up table for all state-action pairs, thus
requiring a big amount of memory when |X × U| is very
large, e.g., in continuous time problems and in large GRNs,
because the state-action space grows exponentially in the
number of genes and inputs. To overcome this tabular repre-
sentation limit, function approximators emerged as an alter-
native. In the case of Deep Q-Learning, an artificial neural
network (ANN) is used to create a parameterized model
that estimates online the action-value function. In particular,
a DQN is a multi-layered ANN that provides an estimation
Q̃ : X × U × W → R of qπ (·, ·), where W is the set of
‘‘tunable’’ parameters that is responsible of how good is the
approximation.1 Given a state xt and some set of values for
W , the output of a DQN is a vector of approximated action-
values, one for each possible action u:

Q̃(xt , u,W) = ψ (L)(W (L)(. . . ψ (2)(W (2)ψ (1)(W (1)xt
+ b(1))+ b(2)) . . . )+ b(L)), (9)

where L is the number of layers of the network, W (l)
∈

Rn(l)×n(l−1) are the ANN weights, b(l) ∈ Rn(l) is the bias
vector and ψ (l) is the activation function in the l-th layer,
respectively. We refer to the number of neurons for each
layer as {n(l)}Ll=0, i.e., n

(L)
= |U|. Using ANNs to approx-

imate action-value functions, the goal of DQNs become to

1With a slight abuse of notation, we use the same symbol Q̃ for both QL
and DQN to emphasize the fact that both methodologies approximate the
same function qπ (·, ·).

199256 VOLUME 8, 2020



A. Acernese et al.: Double Deep-Q Learning-Based Output Tracking of PBCNs

learn the network parameters W = {W (l), b(l)}Ll=0 such that
Q̃(xt , ut ,W) converges toward the optimal q∗(xt , ut ), for all
xt ∈ X and ut ∈ U. Thus, given a tuple (xt , ut , gt+1, xt+1),
in DQN the parameters of the network are updated to mini-
mize a differentiable loss function, namely the Bellman error

L (W) =
1
2

∣∣∣∣∣∣∣∣Q̃(xt , ut ,W)− yt+1

∣∣∣∣∣∣∣∣2, (10)

i.e., the error between the current estimated state-action value
and the target value yt+1 = gt+1 + γ min

u∈U
Q̃(xt+1, u,W).

Then, the training of the network, i.e., the update of W ,
can be performed through stochastic gradient descent (SGD)
method:

W = W − α∇WL (W)

= W − α
[
Q̃(xt , ut ,W)− yt+1

]
∇W Q̃(xt , ut ,W). (11)

Despite the important capabilities to deal with huge state-
action space problems, convergence properties of DQN is
still an open issue to research community. This limit is
mainly linked to two problems; firstly, SGD method assumes
that samples are uncorrelated but, following (11), the net-
work parameters are sequentially updated online over tuples
{(xt , ut , gt+1, xt+1)}t=0,1,..., that in general are temporally
correlated, thus leading to locally over-fit data to each region
of the state space. Furthermore, the reference value yt+1
in (11) depends on the ANN parametersW , and consequently
its value changes over time-steps.

An important technique to mitigate these stability issues
is the use of experience replay (ER) [47]. Specifically, letM
be a data-set of transitions {(xj, uj, gj+1, xj+1)}j=0,1,...,|M−1|
that the agent stored. Then, the updates can be performed by
sampling uniformly a mini-batch M1 from M, M1 ⊆ M,
and by considering the following loss function:

L ′(W) = E(x̄j,ūj,ḡj+1,x̄j+1)∈M

[ |M1−1|∑
j=0

Lj(W)
]
, (12)

where in the sequel, the notation ¯(·)j refers to the j-th experi-
ence and not to the value at time-step j, and Lj(·) is the loss
function (10) computed on the experience j. Thus, if M is
large, ER is close to sample independent transitions from an
exploratory policy. Moreover, Schaul et al. in [48] introduced
the prioritized experience replay (PER), resorting to the idea
that an agent can learn more from some experiences than
others. Let φ̄j+1 := Q̃(x̄j, ūj,W) − ȳj+1 be the error of an
experience (x̄j, ūj, ḡj+1, x̄j+1). Consequently, the probability
of sampling such tuple from the data-setM can be computed
with the proportional prioritization criterion, namely:

P{(x̄j, ūj, ḡj+1, x̄j+1) ∈M} =
(p̄j+1)ω∑|M−1|

k=0 (p̄k+1)ω
, (13)

where p̄j+1 := |φ̄j+1| + ζ , ω determines the magnitude of
prioritization—ω = 0 corresponds to the uniform ER— and
ζ is a small positive constant. However, PER creates a bias in
learning because the experiences with high errors are sampled

more often. To anneal this bias, one can use the weighted
importance-sampling (W-IS) [49]:

θ̄j+1 =

(
1
|M|

1

P{ ¯(·)j ∈M}

)β
, (14)

where P{ ¯(·)j ∈ M} represents the probability to sample the
experience (x̄j, ūj, ḡj+1, x̄j+1) from M, and the parameter
β is used to anneal the amount of importance sampling over
the episodes.

In addition to ER and PER, another important suggestion
to mitigate the problem that the target value yt+1 changes
over time-steps in (11), is the implementation of DDQN [14].
The traditional Double QL [50] addresses the problem of
overestimation of Q̃(·, ·) linked to the minimum operator
in (8) and prevents the instabilities to propagate quickly by
using a double estimator, namely Q̃A and Q̃B. The learning
mechanism is the same of traditional QL but, at each time-
step t , one of the two estimators is selected randomly for
the evaluation of ut and then it is updated in terms of the
other one. This methodology can be extended to DDQN,
using two networks: an online network, with parameters
W , that is responsible for choosing the policy, and a target
network, with parameters W−, which is used for the eval-
uation of the current action. Thus, given a mini-batch of
transitions {(x̄j, ūj, ḡj+1, x̄j+1)}j=0,1,...,|M1−1|, the parameter
updates (11) in DDQN + PER with W-IS is replaced with:

W =W − α
|M1−1|∑
j=0

θ̄j+1φ̄
′

j+1∇W Q̃(x̄j, ūj,W), (15)

where

φ̄′j+1 = [Q̃(x̄j, ūj,W)− ḡj+1 +

− γ Q̃(x̄j+1, argmin
ū∈U

Q̃(x̄j+1, ū,W),W−)]. (16)

The update rule of the target network can be carried out
in different ways. The first choice [14], keeps W− constant
over time-steps and every k iterations hard updates them as
W− =W . Another possibility, introduced in [51], is the use
of the soft update through Polyak averaging, i.e.,W− = (1−
τ )W−+τW , with 0 < τ ≤ 1 a parameter that constrains the
target ANN to change slowly, greatly improving the stability
of learning.

III. OUTPUT TRACKING PROBLEM
In this Section, we introduce the PBCNs followed by some
definitions. Further, we structure the problem of finding a
near-optimal solution to the output tracking control problem
of PBCNs in a model-free context using DDQN + PER.

A. PROBABILISTIC BOOLEAN CONTROL NETWORKS
A PBCN with n nodes, m control inputs and q outputs is
defined as follows:{

X i(t + 1) = f σ (t)i (U(t), X (t)) , i = 1, . . . , n,
Y j(t) = hj(X (t)), j = 1, . . . , q,

(17)
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where X (t) = Xt :=
(
X 1(t), . . . ,X n(t)

)
∈ Bn is the state,

U(t) = Ut :=
(
U1(t), . . . ,Um(t)

)
∈ Bm is the control

input, Y(t) = Yt :=
(
Y1(t), . . . ,Yq(t)

)
∈ Bq is the output,

and fi ∈ Fi = {f 1i , f 2i , . . . , f lii } : Bn+m → B,
i = 1, . . . , n, are logical functions randomly chosen with
probability {P1

i , P2
i , . . . , Pli

i }, where
∑li

j=1 Pj
i = 1 and

Pj
i ≥ 0. hj : Bn → B, j = 1, 2, . . . , q, are deterministic

logical functions. We denote by 3 =
∏n

i=1 li, the total num-
ber of sub-networks of (17). Switching among sub-networks
is governed by the switching signal σ (t) ∈ [1, 3], that is
an independently and identically distributed (i.i.d.) process.
We assume that the selection of a sub-network for each logical
function fi is independent of time and current state. Given
an initial state X (0) ∈ Bn and a control sequence U t :=

{U(·)[0, t−1]} in the discrete time interval [0, t − 1], denote
the solution to PBCN (17) by X (t; X (0), U t). A state
X (0) = X0 ∈ Bn is called an equilibrium point if, there
exists a controlU(0) ∈ Bm such thatP{X (1; X (0), U(0)) =
X (0)} = 1. We denote by X̄j, 1,≤ j ≤ 2n, the j-th state in Bn
and Ūl, 1 ≤ l ≤ 2m, the l-th input in Bm, without referring
to the particular time-step t .
Definition 1: A PBCN (17) is said to be asymptotically

stabilizable at a given equilibrium point X̄d ∈ Bn in dis-
tribution, if for every X0 ∈ Bn there exists U t such that
limt→∞ P{X (t; X0, U t ) = X̄d } = 1.

B. MODEL-FREE OUTPUT TRACKING FOR PBCNs
Here, we cast the output tracking problem of PBCNs into
model-free RL framework and provide a general algorithm
to design a near-optimal state feedback control law.

Let us consider a general PBCN (17) as a model of
GRNs. It can be represented in an MDP framework by the
tuple (Bn, Bm, P, R). Assuming that system dynamics P is
unknown to the agent, our aim is to force the concentration
of one or more proteins (observed as an output) to follow an
a priori defined reference signal rendering the GRN stabi-
lized at a desired or healthy state(s). Particularly, we use a
constant reference signal and a reference signal with finite
number of states occurring in periodic or aperiodic manner.
Let B̄n ⊆ Bn be a subset of the state-space, andXr (t) = Xrt ∈

B̄n be the known tracking signal, whose dynamics is given as
follows:

Xr (t + 1) = g(Xr (t)). (18)

Without loss of generality, we assume that Definition 1
is valid for every state in the reference signal. Under this
assumption, we define the controller of the system as an ANN
that at each time-step t takes as input the set of features
Z(t) := {X (t); Xr (t)} ∈ Bn and outputs a vector of
action-value estimates, one for each control input, namely
Q̃(Zt ,U ,W), ∀U ∈ Bm. Thus, given a stateXt , and given the
current target stateXrt , the aim of the agent is to find the deter-
ministic control policy µ(Zt ) = argmin

µ(Zt )∈Bm
Q̃(Zt , µ(Zt ),W)

(in the sequel referred as a state feedback law) that minimizes
the long-term expectation of a user-defined performance

index Eπ [Jt ]. The definition of such cost function plays a
crucial role in the efficacy of the control and it must be chosen
according to the problem requirements. In the specific case
of output tracking control problem, let the cost be defined
at each t as gt+1 = gt+1(Zt ,Ut ,Zt+1) = A(Zt+1) + [1 +
A(Zt+1)]C(Xt ,Xt+1). The function A(·) is responsible for
steering the state Xt to the next reference state g(Xrt ), and
it is equal to −1 if Xt+1 = g(Xrt ), 1 otherwise. Moreover,
the function C(·, ·) aims at avoiding undesired self-loops
along the trajectory, thus a suitable choice to this aim is

C(·, ·) =
{
1 if dH (Xt ,Xt+1) = 0
0 otherwise,

where dH (·, ·) is the Hamming distance. With a slight abuse
of notation we represent the cost as a function of the input
features’ set Z , implicitly including its dependence on both
X and Xr .

The selection of such values for the cost is quite intuitive;
the value 1 for each state with an undesired self-loop indicates
a strong penalization because PBCN could be stalled in that
state indefinitely. The assignment of 0 to non-significant
states is to penalize the agent for not tracking the reference
signal, however it is encouraged (with respect to the previous
case) to find actions that will lead the network towards the
desired state as fast as possible. For such choice of the cost
function, the model-free optimal tracking control problem
can be formulated as:

min
µ(·)

Eµ
[ ∞∑
t=0

γ tgt+1(Zt , Ut ,Zt+1)
]
, ∀Z0 ∈ Bn

subject to systems (17) and (18). (19)

With this settings, the agent is guided to find deterministic
policies µ(Zt ) that can steer the state of the system Xt along
the reference trajectoryXrt , while minimizing the cost associ-
ated to the action performed, i.e., finding the expected optimal
shortest path.

To solve the optimization problem (19) in a model-
free context, we use an episodic framework. The RL term
‘‘episode’’ represents the interactions between the agent and
the system from an initial state X0 towards a terminal condi-
tion, e.g., XT = XrT , by following some policy that achieves
exploration, i.e., the random selection of various actions at
various states. It is worth to note that, depending on the
particular policy and on the system dynamics, the final time-
step T can change along the episodes.

Thus, for each features’ set Zt , DDQN + PER estimates
the action-values Q̃(Zt ,U ,W) through a forward propaga-
tion step and then it improves the parameters of the model
W by applying an SGD step as in (15). After the completion
of the training phase, that lasts for N episodes, the optimal
output tracking control law of the system (17) with unknown
dynamics can be determined using the target network as:

µ∗(Z̄j) = argmin
Ū∈Bm

Q̃∗(Z̄j, Ū ,W−), (20)

for each pair Z̄j = {X̄j, X̄rj}, X̄j ∈ Bn, X̄rj ∈ B̄n.
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Algorithm 1 PBCN Output Tracking Using DDQN + PER
Input: α, γ, ε-greedy policy, N , mini-batch size |M1|, ω, τ , β
Output: µ∗(Z̄t ), ∀X̄t ∈ Bn, ∀X̄rt ∈ B̄n
1: Initialize weightsW ← rand({0, 1}),W−←W
2: Initialize the replay memoryM← ∅, 1← 0
3: for ep = 0, 1, . . . ,N − 1 do
4: t ← 0, Xt ← rand(Bn), read(Xrt )
5: while Xt 6= Xrt do
6: Choose Ut using ε-greedy policy
7: apply(Ut ), read(Xt+1), read(gt+1), create features Zt ← {Xt ,Xrt }

8: Store transition (Zt , Ut , gt+1, Zt+1) inM with maximal priority pt+1← max
i∈M

pi
9: if |M| ≥ |M1| then

10: for j = 0, 1, . . . , |M1| − 1 do
11: Using (13), sample transition j with probability P{j ∈M} ←

p̄ωj+1∑
i(p̄i+1)ω

12: According to (14), compute normalized IS weight θ̄j+1←
(|M|P{j∼M})−β

max
i∈M

ωi

13: Compute TD-error through (16) φ̄′j+1← Q̃(Z̄j, Ūj,W)− ḡj+1 − γ Q̃(Z̄j+1, argmin
Ū

Q̃(Z̄j+1, Ū,W),W−)

14: Update transition priority p̄j+1← |φ̄′j+1| + ζ
15: 1← 1+ θ̄j+1φ̄

′

j+1∇W Q̃(Z̄j, Ūj,W)
16: end for
17: Using (15), update network weightsW ←W − α1, 1← 0
18: Update target network weightsW−← (1− τ )W− + τW
19: end if
20: t ← t + 1
21: end while
22: end for
23: return µ∗(Z̄t )← argmin

Ū
Q̃(Z̄t , Ū,W−), ∀X̄t ∈ Bn, ∀X̄rt ∈ B̄n

It is worth to note that the optimal solution (20) refers to
DDQN + PER approach, that has the advantage to accept
as input a set of features rather than a single one; in case
the traditional QL algorithm is used, as in [43] for a stabi-
lization problem of PBCNs, the action-value function will
be expressed as Q̃(Xt ,Ut ), thus requiring multiple training
sessions, one for each possible value of Xr ∈ B̄n, exhibiting
weaker generalization properties with respect to function
approximators.

Remark 1: It is worth to point out that DDQN + PER
algorithm estimates the action-value function relying on the
features’ set Zt , that includes both the state and the current
value of the tracking signal. Thus, once an optimal policy is
obtained, such policy can be used to track different signals
Xrt independently on g(·), given that Xrt ∈ B̄n.

Based on the above discussion, we now introduce in
Algorithm 1 the DDQN + PER procedure to design near-
optimal tracking controllers based on real system data such
that the PBCNs (17) track given reference signals.

Note that in the algorithm,N represents the total number of
episodes, that is defined by the user, and a linearly decaying
ε-greedy policy is used to choose the actions. Moreover,
we apply a soft-update of the target network for DDQN part.

The control scheme corresponding to Algorithm 1 is shown
in FIGURE 1; it includes the general agent-environment
communication as well as the target network and the replay
memory roles, without the explicit reference to the kind of
prioritization and importance sampling.

C. COMPUTATIONAL COMPLEXITY
DDQN + PER algorithm is a more advanced version of
the basic QL algorithms and uses ANNs to approximate the
action-value function, overcoming the problem of high state-
action spaces and leading better generalization. Despite these
advantages, DDQN + PER algorithm takes longer time to
train per episode than QL algorithm. This is linked to the
fact that in the latter case at each time-step the agent has to
choose out of 2m control actions the one that gives maximum
Q-value. Thus, the computational burden involved in this part
is O(2m). Further, this operation must be performed at most
for T steps in each of the N episodes, leading to the overall
computational complexity of O(NT2m). Instead, in DDQN+
PER case, at the above mentioned operations must be added
to the complexity linked to the prioritization and to the update
of the parameters of the network. Thus, the complexity of
Algorithm 1 significantly increases.
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FIGURE 1. DDQN + PER control scheme. The transitions (Zt ,Zt , gt+1,Zt+1) are generated at each time-step t through the
agent-environment communications, and are stored in the replay memory. Subsequently, a mini-batch M1 is extracted from the
buffer using PER, and the data is sent to the ANNs in order to compute the loss function and to train the main network. Note that in
the control scheme the dashed lines represent the action of updating the ANN parameters.

On the same line, also the space complexity of Algorithm 1
is higher than the traditional QL. Assuming that in most of
the PBCNs m� n, the space complexity hinges on the order
of the Q-factors in the traditional method, i.e., O(2n), while
in DDQN + PER it can be considered considerably higher.
Indeed, even the tabular action-value function is replaced by
a function, there is still a relevant space memory that is used
to store the parameters W of such function, whose number
can be large in case of deep ANNs. Moreover, there is the
target network with the same number of weights of the online
network, and the replay memory should be generally very
large in order to guarantee independent samples.

In light of the above discussion, Algorithm 1 is not favor-
able with respect to QL in terms of training time and com-
putational load, thus simpler algorithms are preferred in case
of reasonably small-medium GRNs, e.g, up to 13-16 genes.
However, one of the most important advantages of DDQN+
PER algorithm is that, using function approximators instead
of Q-tables, it can generalize well on very large GRNs,
that other model-free and model-based methods are not able
to handle. In the next section, this property will be shown
through a GRN with 28 genes and 3 input genes, for a total
number of state-action pairs equal to 2.15× 109.

IV. SIMULATION RESULTS
In this section, we show how optimal solution to the track-
ing problem of PBCNs can be devised by using the results
obtained in the previous section. We consider three PBCN
models (10-gene, 16-gene and 28-gene) of GRNs to prove
the efficacy of the presented algorithm. The obtained DDQN
optimal policy for 10 and 16-gene networks is compared
with the one obtained using QL. It is worthwhile to note
that, we included PBCN dynamics to highlight the level of
complexity of the networks. Controller designing technique
presented in Algorithm 1 is completely model-free and do
not utilize the knowledge of underlying network transition
probabilities.

Example 2 (Periodic trajectory tracking): Consider the
following PBCN model (21) of the lactose operon in
the Escherichia Coli derived from [52], where X i

+, i =
1, 2, . . . , 10, represents the state at next time-step.
We aim to design optimal state-feedback controllers such

that the output Y tracks the reference signal wherein the
gene X 4 being ON-OFF periodically, i.e., Xrt : B̄n →
{(0, 0, 0, 0, 1, 1, 0, 0, 0, 0); (0, 0, 0, 1, 1, 1, 0, 0, 0, 0)}.

X 1
+ = X 4

∧ ¬X 5
∧ ¬X 6

X 2
+ = X 3

+ = X 1

X 4
+ = ¬U1

X 5
+ = ¬X 7

∧ ¬X 8

X 6
+ = ¬X 7

∧ ¬X 8
∨ X 5

X 7
+ = X 3

∧ X 9

X 8
+ = X 9

∨ X 10

X 9
+ =

{
X 2
∧ U3

∧ ¬U1), P = 0.6
X 9, P = 0.4

X 10
+ = ((U2

∧ X 2) ∨ U3) ∧ ¬U1,

Y = X 4. (21)

By following the proposed approach, the state feedback
controls usingQL andDDQN+PER are obtained. FIGURE 2
depicts their comparison in terms of the cost paid to steer
the initial state to the reference signal, as a function of the
number of episodes, averaged over 1× 103 episodes. Even if
the two algorithms show slight different trends, both of them
reach almost the same minimum value of the cost function,
proving that both of them learn optimal strategies. However,
as explained in Section III-C, the training time involved in
DDQN+ PER is higher than the one required by QL, i.e., 40
mins and 15 mins, respectively, highlighting the preference
of simple QL when the system to be controlled is not too
complex.

Using the optimal control laws obtained through DDQN+
PER, FIGURE 4 and FIGURE 5 show the state transition
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FIGURE 2. Average cost of the proposed Algorithm in 10-gene 3-input
PBCN.

FIGURE 3. Average evolution of the genes in Example 2, over 1× 103

episodes.

graphs of the networks under the action of the controller,
one for each value of the reference signal. In both figures,
the green point represents the desired value of the state, and
the red one represents the other value of the desired signal,
that is an undesired self-loop and needs to be avoided. More-
over, the blue points in the figures represent all the remaining
states, where their dimension is proportional to the number
of states approaching that one, thus providing an indication
of the most crucial states in the GRN. We have not included
the state transition probabilities for clarity reasons, but by
carefully observing the figures one can notice that under
the optimal control the state transition graph significantly
simplifies, optimizing the trajectory lengths.

As for the validation of the controllers, FIGURE 3 shows
the average evolution of the closed-loop system over the time-
steps, controlled with QL and DDQN + PER, respectively,
when the reference signal Xrt has a period equal to 10 time-
steps. In particular, we represent only the switching gene,
i.e., X 4(t), in order to have a more readable graph. Both
agents are able to track Xrt in a maximum number of action
equal to 11, proving the capabilities of QL to reach optimal
state feedback controls in small-medium GRNs.
Example 3 (Aperiodic Trajectory Tracking): Consider the

following 16-gene PBCN model adopted from [53]:

X 1
+ = X 2

∧ ¬X 16

X 2
+ = ¬(X 5

∨ X 3
∨ X 16)

X 3
+ = (X 2

∨ X 3) ∧ (¬X 16)

X 4
+ = X 15

∧ ¬X 16

X 5
+ = X 4

∧ ¬X 16

X 6
+ = ¬(X 7

∨ X 16)

X 7
+ = X 15

∧ ¬X 16
∧ U1

X 8
+ = X 6

∧ (¬(X 15
∨ X 16)) ∨ U2

X 9
+ = (X 8

∨ (X 6
∧ ¬X 11)) ∧ ¬X 16

X 10
+ = ((X 12

∧ ¬X 13) ∨ X 9) ∧ ¬X 16

X 11
+ = ¬(X 9

∨ X 16)

X 12
+ = ¬(X 14

∨ X 16)

X 13
+ = ¬(X 12

∨ X 16)

X 14
+ =

{
¬(X 9

∨ X 16) ∧ U3, P = 0.5
X 14, P = 0.5

X 15
+ = ¬(X 8

∨ X 16)

X 16
+ = X 10

∨ X 16.

Y = X 8.

Here, we want to design optimal state feedback controllers
such that the out tracks an aperiodic reference trajectory
Xrt : B̄n → {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1);
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)}, in finite-time.
Similar to Example 2, the performance of the agent is
shown in FIGURE 6, where one can see that the agents
are able to control the system to track the chirp reference
signal Xrt w.p.1. In this case, however, QL is not able to
perform the optimal feedback control law, thus requiring a
maximum number of steps to steer the system toward Xrt
equal to 22, despite the 16 steps obtained with Algorithm 1.
This result is also confirmed by the trend of the average
costs, shown in FIGURE 7, where the average has been
taken over 1 × 103 episodes. As the average cost decreases
towards the episodes, we can infer that the algorithms
approach to a near-optimal policy. However, the terminal
average cost in QL is higher than the one obtained through
DDQN + PER, providing weaker performance. As far as
the training time is concerned, in this example the number
of episodes N for QL and Algorithm 1 increased to 2 ×
105, and the training time reached 50 mins and 2.5 hrs,
respectively.
Example 4 (Constant Reference Tracking): Consider the

following 28-gene PBCN model: X 1
+ = X 6

∧ X 13; X 2
+ =

X 25; X 3
+ = X 2; X 4

+ = X 28; X 5
+ = X 21; X 6

+ = X 5;
X 7
+ = (X 15

∧ U2) ∨ (X 26
∧ U2); X 8

+ = X 14; X 9
+ = X 18;

X 10
+ = X 25

∧ X 28; X 11
+ = ¬X 9; X 12

+ = X 24; X 13
+ = X 12;

X 14
+ = X 28; X 15

+ = (¬X 20) ∧ U1
∧ U2; X 16

+ = X 3;
X 17
+ = ¬X 11; X 18

+ = X 2; X 19
+ = (X 10

∧ X 11
∧ X 25

∧

X 28) ∨ (X 11
∧ X 23

∧ X 25
∧ X 28); X 20

+ = X 7
∨ ¬X 26;

X 21
+ = X 11

∨ X 22; X 22
+ = X 2

∧ X 18; X 23
+ = X 15;

X 24
+ = X 18; X 25

+ = X 8; X 26
+ = ¬X 4

∧ U3, P = 0.5;,
and X 26

+ = X 26, P = 0.5; X 27
+ = X 7

∨ (X 15
∧ X 26);

X 28
+ = ¬X 4

∧ X 15
∧ X 24.

The model is a reduced-order model of 32-gene T-cell
receptor kinetics model given in [54]. We aim to design
an optimal state-feedback controller such that the out-
put tracks the constant reference signal Xrt : B̄n →
(0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
0, 1, 1, 0). As reported in Section III-C, in this case the total
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FIGURE 4. State transition graph of PBCN with 10 genes and 3 inputs, under the action of the DDQN+ PER
controller, when Xr = (0,0,0,0,1,1,0,0,0,0).

FIGURE 5. State transition graph of PBCN with 10 genes and 3 inputs, under the action of the DDQN+ PER
controller, when Xr = (0,0,0,1,1,1,0,0,0,0).

number of state-action pairs is almost 2.15 × 109, thus the
application of the simple QL algorithm is not feasible due
to Q-table dimensions. Moreover, model-based techniques
could not be applied due to the large transition probability
matrix dimensions. Thus, for this example, we considered
the PBCN as a black-box: given a state and a control input,
it outputs a new state with some probability, without explicitly
using the transition probability matrix. FIGURE 8 shows
the average cost over the episodes, where the average has
been taken over 1 × 104 episodes, and N = 2 × 106

episodes. Clearly, in this case the training time was very
high, specifically 21 hrs, but this computational limit is
minor with respect to the potential to control huge networks.
As shown in FIGURE 8, the average cost decreases almost
linearly over episodes, and it reaches a plateau towards
episode 1.6× 106.
As for the validation of the controller, FIGURE 9 shows

the average evolution of the closed-loop system over the

FIGURE 6. Average evolution of the genes in Example 3, over 1× 103

episodes.

time-steps: the agent is able to stabilize the system at Xrt in a
maximum number of actions equal to 27.

A. DISCUSSION ON THE ARCHITECTURE
Here, we briefly discuss the parameter choices that enabled
the proposed model-free algorithms to derive the optimal
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FIGURE 7. Average cost of the proposed Algorithm in 16-gene 3-input
PBCN.

FIGURE 8. Average cost of the proposed Algorithm in 28-gene 3-input
PBCN.

FIGURE 9. Average evolution of the genes in Example 4, over 1× 104

episodes.

feedback control policies. Computations were run using
a 6-Core Intel i7-9750H processor with a frequency of
2.6 GHz, 32 GB RAM and Python software. In all the exper-
iments, we used the same values of γ , the ε rule, and α.
Specifically, we selected γ = 0.9, a linear decaying value
of ε, from 1 to 0.1, and the learning rate α = 0.03. Moreover,
the learning rate in the QL implementation has been chosen
polynomial, as suggested in [55], i.e, αep = 1/(ep + 1)ω,
where 0.5 < ω ≤ 1 is a constant, in order to guarantee a
polynomial convergence rate of the algorithm.

As far as the ANN structures are concerned, we chose a dif-
ferent number of layers (different depths) of the agentmodels,
based on the complexity of the system to control. Particularly,
we used an ANN with two hidden layers with n(1) = 4
and n(2) = 8 neurons respectively in example 2, n(1) = 8,
n(2) = 16 in example 3, and n(1) = 8, n(2) = 16, n(3) =
8 in example 4. Moreover, we allowed the same optimizer
function, i.e., Adam. As for the other hyperparameters used
in DDQN+ PER, we chose a dimension of replay memories
and mini-batches equal toM = {1× 104, 1× 106, 1× 106}

and M1 = {64, 128, 128} respectively for each example,
and a proportional prioritization with ω = 0.6, ζ = 0.01.
Furthermore, to anneal the amount of importance sampling
we applied a linearly increasing parameter β, from β = 0.4
to β = 1 for all the examples. As for the update of the target
network, we chose to use a soft update with τ = 0.005. The
implementation of our DDQN+PER algorithm for the output
tracking control design of Example 4 is available at a GitHub2

repository.

V. CONCLUSION
In this article, we have investigated output tracking control of
PBCNs using model-free RL techniques. A DDQN algorithm
has been presented to solve the tracking problem wherein the
output of the PBCNs tracks a constant as well as time-varying
reference trajectory. The state feedback control law has been
designed to reach the tracking objectives in minimum number
of steps. Moreover, the DDQN algorithm has been tested
for three PBCNs including a large 28-gene PBCN model of
T-cell receptor kinetics thereby proving the scalability of the
algorithm. A comparison of designedDDQNoptimal policies
is made with those of QL algorithm for 10-gene and 16-gene
PBCNs. The obtained results are promising to be extended
to newer yet complicated problems for generic PBCNs other
than systems biology.
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