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ABSTRACT This paper presents a health monitoring approach for Electro-Mechanical Actuators (EMA).
We define four different indicators to continuously evaluate the health state of the system. The four indicators
are computed by leveraging the output from a Statistical Process Monitoring (SPM) method based on
multivariate statistics, such as the Hotelling’s T 2 statistic and the Q statistic. SPM approaches give a
dichotomous answer, i.e. the presence/absence of a fault. In this work, we propose four ways to compute
a continuous indicator starting from the discrete SPM output, that is better suited for health monitoring.
We test the approach using a dataset collected from a large experimental campaign on a 1:1 scale EMA
for primary flight controls of small aircrafts, that led to EMA failure. Results show the effectiveness of the
method.

INDEX TERMS Actuators, aerospace components, aerospace safety, condition monitoring, electromechan-
ical systems, fault detection, predictive maintenance, statistical process monitoring.

I. INTRODUCTION
The More/All Electric Aircraft (MEA/AEA) initiative is a
technological trend aiming to increase the adoption of elec-
trical actuation systems in the aerospace field [1], [2]. In this
context, we talk about Power-By-Wire (PBW) technology,
referring to the elimination of the hydraulic transmission in
flight control actuation systems (see Fig. 1).

Traditional actuation equipment on aircrafts rely on
hydraulic systems [3]. In PBW actuation, instead, hydraulic
pipelines are replaced by electrical wires. PBW actua-
tors benefit aircrafts actuation systems with a series of
advantages. These include the reduction of hydraulic flu-
ids, weight savings and improved energy efficiency [1], [4],
[5]. PBW solutions consist of: (i) Electro-HydroStatic Actu-
ators (EHSAs) [6] and (ii) Electro-Mechanical Actuators
(EMAs) [4], see Fig. 2.
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FIGURE 1. Flight control surfaces. Primary controls are highlighted.

Several research programs have been launched in order
to investigate the advantages of electro-mechanical actu-
ation systems in aerospace. Some of these, focused on
primary controls, include (in chronological order): the
Advanced Electromechanical Actuation System (EMAS) [7],
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FIGURE 2. EMA (Gear-drive) vs EHSAs.

the Electrically Powered Actuation Design (EPAD) [8],
the Power Optimised Aircraft (POA)-FP5 [9], the More
Open Electrical Technologies (MOET)-FP6 [10], the flight
control with distributed intelligence and systems integra-
tion (COVADIS) [11], and the ACTUATION2015-FP7 [12]
projects. Research on secondary control actuation has been
faced, as illustrative example, in the Distributed Electrically
Actuated Wing System (DEAWS) project [13].

After these researches, EMAs started to be deployed to
in-service aircrafts [2]. For instance, EMAs are used for
landing gear braking, mid spoiler surfaces and trimmable
horizontal stabilizer on Boeing 787 [14]. On Airbus A380,
EHSAs are employed for ailerons and elevators, while
EMAs are utilized for slats, trimmable horizontal stabi-
lizer and thrust reverser actuation [15]. Electro-mechanical
actuators are employed also for the following applications:
propeller brake system (Airbus A400M), cart lift system
(Boeing 747-8, Boeing 777-300), and pedestal radar actua-
tion (Agusta NH-90).

Nevertheless, compared to hydraulic actuators or EHSAs,
technological barriers remain for a wide adoption of EMAs,
especially considering these issues:

• It is difficult to provide space for EMAs on thin wings
of small aircrafts, i.e. maximum gross takeoff weight
of 5.670 kg (12.500 lb) or less [16].

• The use of EMAs for flight control surfaces requires an
optimisation effort in terms of materials, sensors, heat
dissipation and electrical distribution [17], [18].

• Mechanical jams cannot be tolerated in flight-critical
applications.

The last point raised a critical issue. The lack of accumu-
lated knowledge and experience regarding reliability, and the
risk of failure due to jamming of the mechanical transmis-
sion (usually a ballscrew), drove significant research efforts
towards the development of Fault Diagnosis (FD) and Health
Monitoring (HM) algorithms for EMAs in aerospace.

This paper presents a part of the results of the Reli-
able Electromechanical actuator for PRImary SurfacE with
health monitoring (REPRISE) initiative, a EU-H2020 funded
project that aims at introducing HM algorithms for primary
flight control surfaces EMAs in small aircrafts (aileron, ele-
vator and rudder) [19]. The scope of the REPRISE project is
to support the improvement of the Technological Readiness
Level (TRL) for a EMA-based flight control system of small
aircrafts bringing it to TRL 5. The goal of the project will be
achieved by:

1) Developing a Health Monitoring system (Phase 1).
2) Design a new electro-mechanical actuator architecture

(Phase 2).

This paper is focused on the results of the first activity (Phase
1). It entails the following aspects:

• Perform an endurance test campaign with a test rig
specifically developed for the project.

• Develop a HM system able to detect degradations of the
mechanical components (mainly the ballscrew transmis-
sion) before they will evolve into failures.

The need for a HM algorithm for flight EMAs is well
motivated by previous substantial research efforts [20]. The
Health On Line Monitoring for Electro-mechanical actuator
Safety (HOLMES)-FP7 project [21] focused on develop-
ing fault detection and isolation (FDI) methods for EMAs
mechanical components such as ballscrew transmission
[22]–[25]. In the same way, the NASA funded several activ-
ities on fault diagnosis in aerospace using a flyable test-bed
[26], [27]. A hybrid method, combining a signal-based and a
knowledge-based method, based on machine learning clas-
sifiers, was proposed in [28]. Authors in [29] proposed a
HM method for EMAs based on position predictive models.
A model-based prognostic method for the freeplay identifica-
tion in flight EMAs has been devised in [30]. Fault detection
in aerospace EMAs for unmanned aerial system flight con-
trols was proposed in [31]. Vibration symptoms of jam and
metal flaking in the actuator ballscrew mechanism have been
considered in [27]. Authors in [32] defined the structure that
a knowledge-based approach to aerospace health monitoring,
using expert systems, should have. Monitoring methods have
been developed also for aircrafts hydraulic systems, see [33].

The goal of this paper is to use Statistical Process Moni-
toring (SPM) methods for Health Monitoring of EMAs.
SPM is used to perform Fault Diagnosis (FD) by applying

multivariate statistics to industrial process data [34]. Typ-
ically, the Hotelling’s T 2 statistic and the Q-statistic, also
known as the Squared Prediction Error (SPE), are used for the
detection of an out-of-control situation [35], [36]. Extension
of the basic fault detection mechanism, like contribution and
reconstruction plots, have been devised to accomplish also
fault isolation and fault identification [34], [37].

However, fault diagnosis methods based on SPM look for
a dichotomous answer, i.e. if there is an abnormal situation or
not. This answer is not suited for health monitoring, since we
need indicators that continuously evaluate the general health
state of the system.

So, in this paper, we present a general Health Mon-
itoring approach for Electro-Mechanical Actuators based
on Statistical Process Control methods. The focus of the
monitoring is on the mechanical transmission components,
in particular, in the REPRISE project actuator, the ballscrew
and nut assembly. The choice of using SPM methods over
model-based approaches is due to the following facts:

• The design effort of HM indicators is lower for SPM
approaches.
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• Ability to capture the high-level, overall health state of
the selected components, as opposed to focusing on their
detailed behaviour.

• Difficulty to develop an adequate model of the system
due to the limited number of measurable variables.

This paper presents the results of the first activity of the
REPRISE project. The contributions are:
• To devise a methodology to generate a set of Health
Monitoring indicators from the results of the SPMmeth-
ods. As far as we are aware, this is the first time that such
approach is proposed in literature.

• For HM, we employ only standard measurements (no
additional sensors are used). In particular, we rely only
on the EMA motor phase currents.

• The proposed method is general and applicable to dif-
ferent types of electro-mechanical actuators (also not in
aerospace applications).

• We propose a preflight test strategy that employs the
devised monitoring solution.

• We tested the method on a large dataset, collected from a
1:1 scale EMA for primary actuation of small aircrafts.
To do this, we performed an extensive experimental
activity, monitoring the actuator continuously.

The remainder of the paper is organized as follows.
In section II, we show the results of a Failure Mode Effect
and Criticality Analysis (FMECA) and a Fault Tree Analy-
sis (FTA) on the tested EMA. Section III describes the exper-
imental setup and the undergone test procedure. Section IV
shows the results of visual inspections on the mechani-
cal components of the EMA, i.e. the ballscrew. Section V
describes the proposed general methodology, developing the
health monitoring indicators. Section VI applies the method
to the specific flight EMA. Finally, Section VII is devoted to
conclusions and suggestions for future work.

ACRONYMS
A/C Aircraft
AEA All Electric Aircraft
HM Health Monitoring
EHSA Electro-HydroStatic Actuators
EMA Electro-Mechanical Actuators
FD Fault Diagnosis
MEA More Electric Aircraft
PBW Power-By-Wire
PCA Principal Component Analysis
SPM Statistical Process Monitoring

GLOSSARY
Health Monitoring A continuous real-time task of deter-

mining the health conditions of a physical system.
Failure Permanent interruption of a system/component

ability to perform a required function under specified
operating conditions.

Failure mode (ARP 1181A) A manner in which a device
can or did fail. Simple devices may have only one failure

mode; whereas, more complex devices can have several
failure modes.

Failure Rate (MIL-F-9490D) The number of failures of
an item per unit measure of life (flight, time, cycles,
events, miles, etc) as applicable for the item.

Fault Unpermitted deviation of at least one characteris-
tic property or parameter of a system from its accept-
able/usual/standard condition. Failures and malfunc-
tions originate from a fault.

Fault Diagnosis Determination of kind, size, location, time
of occurrence of a fault and the fault signal. Fault diag-
nosis includes fault detection, isolation, estimation and
identification.

Flight Hour Unit of measure of the time recorded in flight;
generally reckoned from engine starting to shut-down.

Inspection Visual verification that the equipment as man-
ufactured conforms to the design documentation.

Preflight Test A test that is administered on the ground and
before every mission for the purpose of detecting latent
failures

II. IDENTIFICATION OF THE MOST CRITICAL FAILURES
This section presents the reliability analysis performed in
order to guide the experimental procedure design. Specifi-
cally, Failure Mode Effect and Criticality Analysis (FMECA)
was performed to identify the actuator failure modes and their
occurrence likelihood during a given mission profile. Then,
exploiting the FMECA results, a Fault Tree Analysis (FTA)
was performed to check if the existing actuator is compliant
to the safety requirements.

A. FAILURE MODE EFFECT AND CRITICALITY ANALYSIS
The EMA used in this work consists of: (i) a BrushLess
DC (BLDC) motor; (ii) a direct-drive nut-ballscrew transmis-
sion; (iii) an Electronic Control Unit (ECU), see Fig. 3.
This assembly was subject to a Failure Mode Effect and

Criticality Analysis (FMECA), evaluating the failure mode
rates of each single component according to theMIL-HDBK-
217F handbook [38], over the mission profile reported
in Table 1. The duration of the mission was one million of
flight hours and the FMECA identified a total of 1950 differ-
ent failure modes.
Table 2 shows the resulting Failure Mode Effect Summary

(FMES): this table presents a summary of the identified
equivalent failure modes rates, expressed as failures per mil-
lion flight hours (fpmh). FMES results show that the majority
of component failures do not compromise the overall system
functionality. The results in Table 2 are then used as input to
a Fault Tree Analysis (FTA), that will be used to test the com-
pliance of the considered EMA with the safety requirements
defined by the project specifications. For instance, the safety
requirement on ‘‘Actuator runaway’’ in Table 3 depends on
failure modes related to the static brake and loss of actuator
reported in Table 2.

153620 VOLUME 7, 2019



M. Mazzoleni et al.: Experimental Development of a HM Method for EMAs of Flight Control Primary Surfaces in MEAs

FIGURE 3. REPRISE EMA general view. The position of the direct-drive
ballscrew transmission is measured by an internal LVDT sensor.

TABLE 1. Mission profile used for FMECA.

TABLE 2. Failure mode effect summary.

B. FAULT TREE ANALYSIS
The fault tree analysis was performed to identify if the actu-
ator is compliant to predefined safety requirements. FTA
assessed four fundamental failure modes with their risk
likelihood:

TABLE 3. Fault tree analysis summary.

1) Actuator loss of control/function: the actuator is lost
and cannot be controlled anymore. This event has been
evaluated considering the combination in OR of all the
failures leading to ‘‘Loss of Actuator’’. In particular,
according to Table 2, the following failure mode end
effects have been considered as causes for this event:
a) Loss of actuator.
b) Static brake always engaged.
c) Possible loss of actuator.

2) Actuator free floating: the actuator results in free float-
ing or excessive backlash, due to structural failures
(e.g. the actuator is mechanically detached from the sur-
face it controls). This is caused by breakage of physical
structures.

3) Actuator runaway: the actuator results in free floating,
hardover (deflection to an extreme position), uncom-
manded movements or oscillations, due to a failure in
the actuator brake or erroneous readings from the motor
position sensor. This event has been evaluated consider-
ing the following cases:
a) The actuator has lost its functionality and it cannot be

braked.
b) The actuator makes a mistake in the evaluation of its

position and moves in an incorrect position.
In particular, case 3a has been considered as the combi-
nation in AND of: (i) actuator Loss of Control/Function
and (ii) the actuator cannot be braked due to a failure of
the brake assy or the loss of capability to command the
actuator brake.

4) Actuator jam: there is a failure in themechanisms related
to the movement of the actuator, leading to actuator
jamming. The considered components are the ballscrew,
the nut and the bearings in the actuator assembly.

Table 3 shows the FTA results. The considered operational
time for FTA is of 1 Flight Hour (FH). As can be noticed, the
safety requirements for failures 1) and 4) are not satisfied for
the considered actuator.
As a result of Table 3, we want to focus on failures with

a risk likelihood higher than required by specifications. The
actuator loss of control/function and jam failures can derive
mainly from binding or breakage of the mechanical transmis-
sion, i.e. the ballscrew. One of the most plausible causes of
the ballscrew damaging is the dwindling or contamination of
the lubricant inside the ballscrew/nut assembly. Also, notice
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TABLE 4. Aileron duty cycle.

that, while possible during the operating life of the EMA,
the lack of lubricant is more plausibly due to a maintenance
error. So, the experimental conditions were designed in order
to evaluate the requirements not satisfied in Table 3 (see
Section III-B).

The experimental activity, described in the following
Section III, is specifically conceived to collect data for devel-
oping the monitoring algorithms with specific attention to the
critical failures of the ballscrew/nut assembly, as evidenced
above.

C. PERFORMANCE REQUIREMENTS AND DESIGN
OF EXPERIMENTS
In order to design the experimental activity for the realiza-
tion of the Health Monitoring algorithm, it is of paramount
importance to know the performance requirements that the
available EMA has been designed to fulfil, so that it will be
possible to perform tests which can bring to system degra-
dation (in addition to evaluate its current health status). The
considered EMA has been designed according to specifica-
tions about:

(i) dynamic properties of the control system (i.e. closed
loop bandwidth and tracking error), not reported for
confidentiality reasons, but considered in the design of
experiments;

(ii) physical characteristics of the assembly (i.e. mass, over-
all dimensions), also confidential but not limiting the
design of experiments;

(iii) nominal operating conditions: the EMA is also required
to comply with predefined duty cycles for each of the
actuated primary flight control (aileron, elevator, rud-
der).

Tables 4, 5, 6 show the duty cycles for the primary controls,
where:

• Full range refers to the surface full deflection (Aileron:
20.5mm, Elevator: 48.5mm, Rudder: 47.4mm);

• Max load is the largest rated axial load (Aileron:
1346N, Elevator: 1405N, Rudder: 1494N). The EMA
is required to tolerate a radial load up to 17% of the axial
load;

TABLE 5. Elevator duty cycle.

TABLE 6. Rudder duty cycle.

• The EMA has to be able to perform such duty cycles,
with a sinusoidal position profile with amplitude given
by the amplitude column of the Tables 4, 5, 6, and a
frequency between 0.2Hz and 1Hz.

From Tables 4, 5, 6 it can be noticed that the most demanding
condition is the rudder configuration (in terms of combined
axial force and stroke). This worst-case configuration is taken
as a guide for the experimental campaign design.

It is also worth noting that the EMA, for the most time of
its life, actuates a very little range (less than 1mm) with a
very small load (less than 150N). So, the experiments will be
designed taking into account this feature, but also considering
that using sinusoidal profiles with higher amplitudes, i.e.
5mm and 10mm, will accelerate the test times leading to
earlier observation of a degradation in the system. Experi-
mental setup and performed tests will be described in the next
section.

III. EXPERIMENTAL LAYOUT AND TESTING
PROCEDURE DEFINITION
Following the results of the failure analysis of the previous
section, there are two ways to increase the compliance to
not satisfied requirements: (i) design an enhanced actuator
(phase 2 of the REPRISE project); (ii) embed the EMA with
a monitoring software that can assess the system state and
prevent the appearance of a failure (phase 1 of the REPRISE
project and focus of this paper). In order to design a HM algo-
rithm, an extensive experimental activity has been devised
with two main goals: (i) to induce accelerated degradation of
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FIGURE 4. Test bench with main components.

the EMA, accordingly with the conclusions of the previous
section; (ii) to periodically evaluate the EMA health status.

This section discusses the experimental activity carried
out on the available EMA. The aim is to progressively lead
the actuator to failure by means of an ‘‘Endurance’’ test
activity. Data are collected to characterize the system and
the degradation behaviour. In the following, we will describe:
(i) the experimental setup and the measured variables; (ii) the
chosen test procedure; (iii) a summary of the performed tests.

A. EXPERIMENTAL LAYOUT
The EMA is installed in a test bench suitably designed to
provide the desired load and the actuator position reference
trajectories, see Fig. 4. The test rig is endowedwith additional
external sensors in order to monitor the system status.

1) EMA DESIGN
The EMA is composed by a BrushLess Direct Cur-
rent (BLDC) electricmotor, an Electronic Control Unit (ECU)
and a ballscrew (see Section II-A and Fig. 3). The BLDC
motor is a 3-phases Brushless DC motor with 5 poles. Two
28Vdc power supplies are used to power a single DC bus,
so that the actuator is able to operate even when one elec-
tric power supply is missing. The ECU also hosts current,
speed and position closed-loop controllers. The position
measure comes from three Hall sensors and an embedded
LVDT transducer. The EMA can travel up to ±30mm from
its centered position (position offset equal to 0mm). The
ballscrew transmission consists of 8 circuits with 1 turn each
and a specific number of balls per turn (not specified for
confidential reasons). Moreover, in its standard operating
conditions, the EMA is endowed with an anti-rotation device
which is able to compensate small radial load components.
We considered tests with and without this component.

2) LOAD GENERATION
The load on the actuator is generated by a Parker Ironcore
R16-3A-HS linear motor controlled by a force closed-loop

controller; this control loop uses a piezoelectric Kistler
9321BU load cell to feed back the measured load. The test
bench has a Renishaw Resolute absolute optical encoder to
measure the EMA absolute position; this sensor is used to
evaluate the position controller performance and it is not used
in the actuator position control system. Finally, three LEM
ATO-20-B333-D10 sensors, that enclose the phase currents
cables, are used to sense the 3 motor phase currents. This is
necessary because the motor ECU cannot save the current
internal measurements. Finally, the EMA is placed inside
an air-cooled box to keep its temperature at standard room
values.

3) CONTROL AND USER INTERFACES
The supervision and management software of the test bench
is realized in National Instruments Labview and it is deployed
on a National Instrument (NI) cRIO 9030. The cRIO gener-
ates the force and position reference signals. The cRIO uses
the force measure fed back by the load cell to compute the
load control command. This command is sent to the linear
motor drive, that generates the control action to actuate the
linear motor. The position control loop is managed by the
ECU of the EMA, which gets the position reference from the
cRIO and implements three cascaded control loops (position,
speed and current). The software exposes a user interface
where it is possible to insert the test parameters. Furthermore,
it is also responsible for collecting measurements from the
control chain. Finally, it is possible to configure the bench
software to one of the aforementioned applicative settings,
i.e. aileron, elevator and rudder. As said in Section II,we used
the rudder configuration of the test rig to carry out the tests.
It is worth noting that, in this configuration, the software is
designed to provide only sinusoidal position reference trajec-
tories. This follows from the specifications given in Table 6.

The physical variables, collected by the cRIO described
above and a NI cDAQ 9188, are:

1) Linear motor load reference.
2) Temperature inside the EMA box.
3) Current supplied to the EMA (from power supply)
4) Load cell measure.
5) EMA position reference.
6) EMA position measure from (embedded) LVDT sensor.
7) EMA position measure from (external) absolute optical

sensor.
8) Current supplied to the linear motor (from its drive).
9) EMA 3-phase currents.

The data are sampled at 100Hz, but for the phase currents
(sampled at 4800Hz). An example of measured data is shown
in Fig. 5.

B. TESTING PROCEDURE
As already said, the goal of the tests is twofold: (i) to stress
the actuator with tests in operating conditions suitable to
lead the ballscrew to mechanical degradation and, eventually,
to jamming, while (ii) providing measurements useful to

VOLUME 7, 2019 153623



M. Mazzoleni et al.: Experimental Development of a HM Method for EMAs of Flight Control Primary Surfaces in MEAs

FIGURE 5. Examples of measurements from the test bench. Sine
frequency: 0.5Hz. Position amplitude: 10mm. Load: 300N. The phase
currents plot has been zoomed, in order to see the currents behaviour.

continuously monitor the health state of the ballscrew, using
the proposed algorithm.

1) DESIGN OF EXPERIMENTS
In order to obtain the aforementioned goals, an alternation of
two kinds of trials was used:

(i) Monitoring trials, designed to acquire themeasurements
necessary to evaluate the health status of the EMA.

(ii) Endurance trials, designed to gradually deteriorate the
ballscrew components by ‘‘over-stressing’’ them using
suitable load and suitable reference trajectories.

These two kinds of tests alternate, providing both periodic
continuous monitoring of the ballscrew conditions and wors-
ening of the system conditions. Specifically, the Monitoring
trials have been performed 16 times, from April 2017 to
October 2017. Between two consecutive Monitoring trials,
Endurance trials are performed.

As specified above, in the rudder configuration, the EMA
can be commanded only by sinusoidal position reference.
So, an experiment is completely defined by the frequency,
amplitude and offset of the position reference trajectory.

A total of 10 frequency values are used (in Hz):
{0.1, 0.3, 0.5, 0.8, 0.9, 1, 1.5, 2, 2.5, 4}. This range was cho-
sen according to the designed position tracking bandwidth of
the EMA. For each frequency value, we tested the amplitude
and offset values described in Table 7. So, an experimental
session consists of repeating the 6 test configurations of
Table 7 for each of the 10 frequency values defined above.
Usually, a Monitoring trial consists in executing one exper-
imental session, while Endurance trials consist in repeating
many successive identical experimental sessions.

TABLE 7. Position configurations in the experimental table.

Notice that the EMA total stroke range during the tests
is [−20,+20]mm. According to Table 6 this represents the
stroke value of about the 99.9% of the total cycles.

The axial load conditions were chosen based on: (i) the
requirements of Table 6; (ii) the pressure experienced by the
balls in the ballscrew at those loads.

According to Table 6, in the 99.6% of the total cycles the
aerodynamical load is smaller than 373N, which is about the
25% of the maximum rated load of 1494N. For this reason,
we used a load of 300N as the nominal H0 load test condition.

2) EXPERIMENTAL CONDITIONS
The experimental conditions have been defined to accelerate
the system failure, i.e. the ballscrew/nut assembly degrada-
tion process. Specifically, the following actions have been
undertaken:
• Employing 3 circuits out of 8 in the ballscrew.
• Removing EMA anti-rotation device (after an initial test
period).

• Radial load equal to 17% of axial load.
• Progressively remove lubricant in ballscrew/nut
assembly.

We employed only 3 circuits out of the 8, which is the
design value. In this way, the load is sustained by a smaller
number of balls. In addition, after the initial test phase, the
anti-rotation device was removed. These expedients lead to a
greater force acting on the balls and ballscrew tracks, creating
an harsher condition for the EMA.

Also, we configured the bench such that a radial load,
proportional to the axial load, is generated. Specifically,
the radial load is 17% of the applied axial load, i.e. the max-
imum radial load imposed by the EMA design requirements.

Recall that, as discussed in section II, we want to focus
on failures of the ballscrew and the main possible cause of
degradation is the lack of lubricant. For this reason (and also
to accelerate the EMA damaging) we tested the EMA in three
different operating conditions:
1) Normal lubricant: standard level of lubricant.
2) Poor lubricant: lubricant partially removed (about half).
3) No lubricant: lubricant completely removed.

In all the cases, the temperature of the test bench cabin,
where the EMA resides, was kept approximately constant
(at ambient temperature) by means of an air-cooling system
(see Fig. 5). For each of the listed conditions, Monitoring
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and Endurance trials are performed as described in the next
paragraphs.

3) FINITE ELEMENT ANALYSIS
A major factor for ballscrew deterioration is the force acting
on the recirculating balls. In order to estimate this force,
a Finite Element Method (FEM) analysis has been performed
to assess at which load an overstressed condition of the
ballscrew is present. We denote a condition as over-stressing
if at least one ball is subject to a force greater than an
assigned nominal value N0 N (the value N0 is not shown for
confidential reasons). Otherwise, we say that the system is in
a nominal load condition.
First of all, the FEM analysis was performed before the

anti-rotation device removal in three load conditions: 300N,
800N and 1200N. In these settings, we identified that at
300N of axial force, no ball was over-stressed. At 800N and
1200N, more than one ball is over-stressed.

The FEM analysis was performed also without the
anti-rotation device. Fig. 6 depicts the computed force on
each ball, for three balls circuits. It can be observed that,
also in this case, no ball is over-stressed with 300N load.
In the other load conditions, there are over-stressed balls.
However, pressures at 1200N load were too high and so, after
anti-rotation removal, the tests were performed only at 800N
load.

FIGURE 6. Simulated force on the balls in the three recirculation circuits.
Axial load: 300N (solid line), 800N (dashed line), 1200N (dotted line).
Circuit 1 (blue), Circuit 2 (red), Circuit 3 (black). The number of balls
shown does not reflect reality, and units are normalized for confidential
reasons.

Concluding, Monitoring trials were executed at a load
of 300N (nominal H0 condition); Endurance trials were
performed with loads of 800N (over-stressed H1 condi-
tion) and 1200N (over-stressed H1b condition - only before
anti-rotation removal).

C. TEST REPORT
The tests were performed from April 2017 to October 2017
(see Table 8 where the number of cycles refers to the number

TABLE 8. Tests summary.

FIGURE 7. Graphical representation of performed tests during time.

TABLE 9. Number of screw revolutions after anti-rotation removal.

of periods of sinusoidal profiles executed). The traveled dis-
tance is computed by taking into account the amplitude of the
reference position and an estimate of the position closed-loop
transfer function. The estimation of the Frequency Response
Function (FRF) has been performed by sine sweeps at 0N
of reference load (Other loads condition). Fig. 7 presents
a complete test summary during time. Some dates, when
we performed Monitoring trials, are highlighted (in some
dates we performed more than one Monitoring trial). The
anti-rotation device was removed after an initial test phase,
since no evident actuator degradation were observed (visually
and from data).

Fig. 8 depicts the travelled distance and the screw rev-
olutions (drawn in the plot) considering only tests after
anti-rotation removal. The tests performed between 11 and
18 Sept. 2017 were all with normal lubrication. After that,
tests were performed by gradually removing lubricant. The
dates evidenced in the plot refer to Monitoring trials execu-
tion. It is useful to remind that, between aMonitoring trial and
another, Endurance trials were executed to stress the actuator.
For the algorithm evaluation, Monitoring trials from 18 Sept.
2017 to 12 Oct. 2017 were considered. It is worth noting

VOLUME 7, 2019 153625



M. Mazzoleni et al.: Experimental Development of a HM Method for EMAs of Flight Control Primary Surfaces in MEAs

FIGURE 8. Graphical representation of performed tests during time, after
anti-rotation removal.

FIGURE 9. Visual inspection at 01 September 2017. Balls of third circuit
(a) and screw shaft (b). The components do not show degradation.

FIGURE 10. Visual inspection at 13 October 2017. Balls of third circuit
(a) and screw shaft (b). The balls show ‘‘hammer-blow’’ signs. The screw
threads show signs of wear (white arrows).

that, few days after 13Oct. 2017, themechanical transmission
underwent a mechanical jam, reaching a complete failure.

IV. VISUAL INSPECTION RESULTS
This section describes qualitative evaluations regarding the
health state of the balls and the screw threads. After each
Monitoring test the ballscrew was disassembled and the balls
and the screw threads where visually inspected, in order to
verify the real state of degradation of the mechanical trans-
mission. At the end of the test campaign, the screw thread
deformation was also measured with a profilometer.

The inspections on balls and screw threads were performed
at various stages between September 2017 and October 2017.
Fig. 9 depicts pictures of the balls and of the screw shaft
at 01 September 2017 and no sign of degradation is visible.
Fig. 10 shows the same components during the tests without
lubricant. The balls show a strong degradation of their sur-
face, with typical ‘‘hammer-blow’’ signs. The screw threads
show evident dark scrapes. The reason for this is that the balls,
due to the high pressure on them, are no more rolling but they
are sliding for the most of their time.

FIGURE 11. Profile of the screw thread in one of the areas of higher
contact pressure (third circuit). The thread profile is deeper than the ideal
one (in places pointed out by arrows).

FIGURE 12. Bode diagrams of the position closed-loop system.
No difference is visible through time.

The visual inspection data are confirmed by a quantitative
measurement of the deformation of the screw thread profile.
This was measured by means of a profilometer Mitutoyo CV
3200 H4. The tolerance bands on profiles are of ±0.05 µm.
Fig. 11 reports the profile measurement for the third screw
thread (the one with higher contact pressures, see Fig. 6). The
regions where balls, due to the high pressures, delved into the
screw are evidenced in the plot by arrows.

Last but not least, it is worth stressing that, during all
the tests, the motor correctly performed its function, i.e. the
position tracking was correctly performed in all test condi-
tions, notwithstanding the mechanical degradation evidenced
by the above described analysis. Fig. 12 reports the Bode
plots resulting from this analysis at three different dates:
(i) before anti-rotation removal - 11 April 2017; (ii) just
after anti-rotation removal - 15 Sept. 2017, (iii) during no
lubricant tests - 09 Oct. 2017. The plot shows how the fre-
quency response of the EMA did not change significantly.
So, in order to design a Health Monitoring algorithm detect-
ing a degradation in the system, it is necessary to resort to
‘‘internal’’ variables, such as the phase currents (the control
actions).

V. HEALTH MONITORING ALGORITHM
This section presents an algorithm for continuous Health
Monitoring of EMAs. The algorithm is based on Statistical
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Process Monitoring (SPM) ideas and it provides a set of
indicators that have well defined stochastic properties and
can be easily used for the health state assessment of the
ballscrew/nut assembly.

SPM has the Fault Detection (FD), not Health Monitoring
(HM), as its main goal. In this work, we adapt the SPM Fault
Detection approach to Health Monitoring needs, by using
a wise method for the thresholds assignments and the def-
inition of indicators that can be used (jointly or alone) for
a quantitative evaluation of the system health conditions.
Moreover, having the time history of the indices it is possible
to estimate the Remaining Useful Life (RUL) of the system
by extrapolation.

Results of the application of this method to the REPRISE
project EMA will be presented in section VI and it is worth
noting that the results provided by the algorithm are in strong
agreement with the visual inspection results presented in the
previous section IV.

First, we review basic notation and results from the process
monitoring field [37], [40]. Let x ∈ Rn×1 be a sample vector
of n variables. Givenm observations, a data matrixX ∈ Rm×n

can be defined as

X = [x (1) x (2) . . . x (m)]> . (1)

From now on, we suppose that data in matrix X have been
normalized to zero mean and unit variance, using sample
estimates of the mean and variance of each of the n variables.
The covariance of x is approximated by the sample covariance
matrix

S ≈
1

m− 1
X>X. (2)

Principal Components Analysis (PCA) is used to decompose
S as

S = P3P> + P̃3̃P̃> = Ŝ+ S̃, (3)

where Ŝ = P3P> and S̃ = P̃3̃P̃>. Here P ∈ Rn×l and
P̃ ∈ Rn×(n−l) contain the principal and residual orthonormal
loading vectors, respectively, with l denoting the number of
Principal Components (PCs) retained by the model. Diagonal
matrices 3 ∈ Rl×l and 3̃ ∈ R(n−l)×(n−l) contain the
principal eigenvalues set Ŝ = {σi}i=1,··· ,l and the residual
eigenvalues set S̃ = {σ̃i}i=l+1,··· ,n, respectively. The most
popular statistical indices used in SPM fault detection are
the Squared Prediction Error (SPE) and the Hotelling’s T 2

statistics [36].

A. SQUARED PREDICTION ERROR (SPE) INDEX
OR Q STATISTIC
The SPE index, also know as Q statistic, is defined as:

Q ≡ ‖
(
I− PP>

)
x‖22. (4)

For an assigned confidence level (1− α) × 100%,
the threshold for the SPE index can be computed as

ρ2 = gSPEχ2
α

(
hSPE

)
with gSPE = θ2

θ1
, hSPE =

θ21
θ2
, θj =∑n

i=l+1 σ̃
j
i , where σ̃i ∈ S̃ is the i-th eigenvalue of S, and

χ2
α

(
hSPE

)
is the hSPE degrees of freedom Chi-squared distri-

bution deviate, corresponding to the (1− α) percentile [37].
Further improvements for the SPE bounds can be found
in [34].

B. HOTELLING’S T 2 STATISTICS
The T 2 index is defined as

T 2
≡ x>P3−1P>x = x>Dx, (5)

where D = P3−1P> ∈ Rn×n is a positive semidefinite
matrix computed using P and 3 defined above. A process
is said to be in nominal conditions when T 2

≤ τ 2, where
τ 2 =

l(m−1)(m+1)
m(m−l) Fα(l,m− l)1 is a positive threshold value.

Here, Fα(l,m− l) indicates the deviate corresponding to the
(1− α) percentile of a F-distribution with l andm−l degrees
of freedom, see [34]. Notice that both T 2 and τ 2 are strictly
greater than zero if m > 1 and x 6= 0.

C. FAULT DETECTION USING Q AND T 2 STATISTICS
The use ofQ and T 2 for Fault Detection consists in a two-step
procedure. First of all, a training or set-up phase of the FD
algorithm is performed, using data measured in ‘‘nominal’’,
i.e. no fault, condition (training data). Then, the FD algorithm
is ready to be used on new data sets (test data). The procedure
is summarized in Algorithm 1.

Algorithm 1 Fault Detection With Q and T 2 Statistics
Input: Training and test data, l, α
Output: Presence or absence of a fault

Training or set-up phase:
1 normalize training data to zero mean and unit variance
2 using l, compute the matrices P, 3 and 3̃
3 using α, compute the ρ2 and τ 2 thresholds

Test phase:
4 normalize test data using the same mean and variance
used in step 1

5 compute the statistics (4) and (5) on the normalized test
data using P, 3 and 3̃ computed in step 2

6 compare each statistic with its threshold: if its value
exceed the threshold, then a fault is detected in the
process data and an alarm is raised

Finally, notice that both these indices depend on tuning
parameters. Specifically, both of them depend on the choice
of l, i.e. the dimension of the PC subspace and on the
confidence level α. Obviously, the smaller is α, the larger
will be the thresholds τ 2 and ρ2 and so it is less likely to have
crossings. For instance, as a consequence, the false alarm rate

1In the cases that the covariance matrix is estimated from data and they
are assumed to follow a multivariate Gaussian distribution.
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will be decreased. The number of PCs l that are retained
is guided by the amount of the variance of the data that is
explained. This parameter can be tuned, for instance, on the
basis of the S/N ratio in the measurements.

D. SPM FOR HEALTH MONITORING OF AN
ELECTRO-MECHANICAL ACTUATOR
We now present the main contribution of the paper, i.e. a gen-
eral method for Health Monitoring of EMAs. The algorithm
can be applied to any electromechanical system to evidence
degradation mainly in the mechanical components (e.g. the
transmission). The approach is based on the computation of
numerical indicators, based on Q and T 2 indices, using the
actuator control action, i.e. the motor phase current mea-
surements. This choice is based on the assumption that the
system will lose efficiency as degradation worsen and larger
control action would be required to perform the same task,
even though there is no external evident effect of degradation.
In fact, the EMA control system is generally able to compen-
sate for degradation hiding its effects (see Section IV).

The algorithm processes phase current measurements
taken during periodic tests along the lifetime of the actuator.
For instance, in the case of an airplane actuator, the data can
be measured during a preflight test or a periodic maintenance
test performed every assigned flight hours number.

The algorithm outline is the following:

1) Denote with i(i)t ∈ Rm×1 for i = 1, · · · , p the vectors
containing the p phase currents measurements in the t-th
experimental periodic test. Here,m indicates the number
of sampled data with sampling time Ts during the t-th
test.
The t = 0-th test is the training data set which is
reserved to compute the normalization mean and vari-
ance and the thresholds τ 2 and ρ2, for a given α value.

2) Then, the data matrix Xt ∈ Rm×(p−1) is constructed as
follows, ∀t:

Xt =

[
i(1)t i(2)t · · · i

(p−1)
t

]
=

 xt (1)>
...

xt (m)>

 , (6)

where each variable xt (j) ∈ R(p−1)×1, j = 1, . . . ,m

is such that xt (j) =
[
i(1)t [j] i(2)t [j] · · · i(p−1)t [j]

]>
, and

i(i)t [j] is the j-th component of the vector i(i)t , i ∈
{1, . . . , p− 1}.
The choice of using only p − 1 phase currents is due to
the fact that only p−1 of them are linearly independent,
as the phase currents sum to zero at each time instant in
BLDC motors.

3) Following the SPM rationale presented in Algorithm 1,
the next step is to perform PCA on Xt , retaining a
number of components l such that a given fraction of
the variance of the data is explained. Usually, l is chosen
so that 90% of the variance is explained, but a different

value can be chosen depending on the S/N ratio in the
available measurements.

4) Then, compute the Qt (j), T 2
t (j) values, one for each

observation xt (j), which will be used to create the mon-
itoring indicators. The computed values Qt (j) and T 2

t (j)
must be compared to the corresponding thresholds ρ2

and τ 2, previously computed using the training data set.
5) Each threshold violation define an event et (j) s.t. for

j = 1, . . . ,m:

et (j) =

{
1 if T 2

t (j) > τ 2

0 if T 2
t (j) ≤ τ

2 (7)

and similarly for the Q statistic. We assume that a lower
system health leads to a higher number of threshold
violations.

6) The event vector is used to compute four health moni-
toring indicators. They use the dichotomous (discrete)
notion of an event to produce an index that is amenable
to a continuous health assessment.
(i) Event frequency.

The event frequency indicator λt is defined as the
percentage of observed events Nt over the number of
data m in an observation time te with sampling time
Ts, s.t. m = te · 1/Ts and Nt =

∑m
j=1 et (j):

λt =
# of events
# of data

· 100% ≡
Nt
m
· 100. (8)

(ii) Mean time to event.
The mean time to event (MTTE) indicator 1t com-
putes the average time that lasts between any two con-
secutive events. We call these quantities inter-arrival
times. With Nt events, there are Nt − 1 inter-arrival
times. Define with K ⊂ N the ordered set (in increas-
ing order) of indices j s.t. et (j) = 1. Let the number
of observations between event i and event i+ 1, with
i = 1, . . . ,Nt − 1, be δi,t =

(
ki+1 − ki

)
, with ki ∈ K

the index when event i occurs. The indicator 1t is
therefore computed as

1t =
sum of inter-arrival times
# of inter-arrival times

≡

∑Nt−1
i=1 δi,t

Nt − 1
· Ts.

(9)

(iii) Weibull distribution of inter-arrival times rising
edges
The Weibull distribution is a vastly employed tool
in reliability engineering and survival analysis for
modeling random variables that represent times [41].
In particular, when the modeled variables consist
of ‘‘time-to-failure’’ data, the Weibull distribution is
used to model the failure rate of the components
subject to failure and it can be expressed as [41]:

w (x|β, η) =
β

η

(
x
η

)β−1
· exp

[
−

(
x
η

)β]
, (10a)
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W (x|β, η) = 1−exp

[
−

(
x
η

)β]
, (10b)

where x ∈ R≥0 represent time-to-failure data,
w(·),W (·) are the probability density function and
cumulative density function respectively, β > 0 ∈ R
is the shape parameter, η > 0 ∈ R is the scale param-
eter. Then, the following quantities can be computed:

h (x|β, η) =
w(x)

1−W (x)
=
β

η

(
x
η

)β−1
, (11a)

S (x|β, η) = 1−W (x) = exp

[
−

(
x
η

)β]
, (11b)

where h(·) is the hazard function or instant failure rate,
and S(·) is the survivor (or survival) function.
The shape parameter β characterises the aging prop-
erty of the components. In particular, we have [41]:
• Negative aging if β < 1, indicates that the failure
rate decreases over time.

• Non-aging if β = 1, indicates that the failure
rate is constant over time. It is equal to employ
an exponential distribution.

• Positive aging if β > 1, indicates that the failure
rate increases with time, which is appropriate for
modelling wear-out failure due to gradual deteri-
oration/degradation of an item over time.

As the considered component degrades, we expect
that:
• The average time-to-failure gets lower, since we
expect an impending failure. We call this quantity
life expectancy.

• The standard deviation of the times-to-failure
gets lower, since we are more confident about
the imminent event. We call this quantity life
expectancy awareness.

These rationales are condensed in the features of the
Weibull distribution parameters that can be used to
create two Health Monitoring indicators, exploiting
the events et (j) defined above.
First of all, define as rising edge the first event et (j) of
a continuous chain of succeeding events (i.e. a succes-
sive strike of et (j) = 1 values). Then, store the times
between consecutive rising edges in the variables rt (z)
and z = 1, . . . ,Rt with Rt the number of rising edges
in experimental test t . Values in rt (z) are the time-to-
failure data. Thus, we fit a Weibull distribution via
maximum-likelihood to this data.
The maximum-likelihood estimates of the Weibull
parameters, using the data data rt (z), indicated as η̂t
and β̂t , are the last two indicators.
Remark. The choice of using only times between
rising edges is due to to the fact that we could have
long strikes of events for which et (j) = 1. In this
case, most of the data (i.e. number of observations

between event i and i+1) are concentrated at the value
of δi,t = 1. This is detrimental for the estimate of
a distribution from time-to-failure observation. Using
falling edges instead of rising ones yields analogous
results.
Remark. When the observation time ends before
observing the event of interest, we have a so-called
right-censored value. In our case, censored data
appear only if the events strike last until the end
of the experiment. In this case, the last rising edge
does not have a corresponding ‘‘next rising edge’’.
We considered the measured number of observation
as a censored data. The fit of the Weibull parameters
accounts for this information.

7) Each indicator can be interpreted by looking at:
• relative variations, i.e. changes in its value over time
• absolute variations, i.e. comparing its value to an
assigned ‘‘warning’’ threshold.

Considering the last case, it is worth noting that these
indicators, thanks to their properties, have ‘‘natural’’
thresholds. When the event frequency λ̂t is above 50%,
more than half of the data are above threshold. The
MTTE 1t has a natural lower limit that is the sampling
time Ts. In this case, all the data are above threshold. So,
a threshold can be put at 2Ts. When the Weibull shape
parameter β̂t is greater than 1, we have positive aging,
that means that the failure rate is increasing with time.
The Weibull scale parameter η̂t depends in a non-trivial
way from data. Since it is more complicated to set an
absolute value for a threshold, it can be useful to look
at relative variations, e.g. when it reaches −50% of its
first value. Obviously, the user can use these indicators
in different ways according to the application features.

As a consequence, different use strategies of the indicators
are possible. For instance, a warning can be raised only when
all the indicators crossed their own threshold or, when only
one among them crossed its own, or a majority of them did.
Also, a subset of indicators can be computed, for instance
only those based on the T 2, like in the application case of
this paper, or based on a combination of T 2 and SPE [37].
Notice that the indicators 1 and 3 in (8) and (9) are very
simple to compute, while accurate estimation of the Weibull
parameters requires an optimization process. Furthermore,
indicator 1 in (8) and indicator 3 in (9) represents very similar
information: from a practitioner point of view, it is possible
to implement just one of them. These choices depend on the
application field and the safety requirements.

The proposed HM approach is summarized in Algorithm 2,
for a specific test t .

VI. APPLICATION RESULTS AND DISCUSSION
This section shows the results obtained by applying the
procedure described in Section V to the datasets acquired
during the Monitoring trials highlighted in Fig. 8, using
the REPRISE three phase EMA described in section III.
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Algorithm 2Health MonitoringWithQ and T 2 Statistics
for a Single Test t

Input: i(1)t , i
(2)
t , . . . , i

(p−1)
t , l, α

Output: t-th value of the four HM indicators
1 compute Xt in (12)

Training or set-up phase (for t = 0):
2 run steps 1-2-3 of Algorithm 1(X0, l, α) to compute
ρ2, τ 2,P,3, 3̃

Training or set-up phase (for t > 0):
3 run steps 4-5 of Algorithm 1(Xt , l, α) to compute et (j)
in (7), for j = 1, . . . ,m

4 compute λt ,1t , η̂t , β̂t

Furthermore, a comparison with a different rationale
from [42], based on a change detection algorithm that also
relies on the motor phase currents, is provided.

A. PROPOSED METHOD
The proposed indicators are computed using Monitoring tri-
als data, from Sept. 21, 2017 to Oct. 12, 2017, see Fig. 8.
In this dates range, there are T = 9 datasets. The dataset
of Sept. 18, 2017, i.e. the last dataset in healthy condition,
is used as the t = 0 dataset (the training dataset), in order to
tune the alarm thresholds and to compute the normalization
mean and variance. The confidence interval is α = 0.05.
For each of the 9 datasets, one value of four indicators is
computed, using the T 2 index. Therefore, we have 9 values
for each indicator.

The current measurements were downsampled by a factor
of 4 to speed up the computations. So, the new sampling
time of the data is therefore Ts = 1200Hz. This operation
does not affect the dynamics of the phase currents. The data
consist of tests at 0mm offset and 10mm amplitude. This
choice approximates the motor usage described in Table 6:
(i) the actuator usually starts from the 0mm offset position;
(ii) the 10mm of amplitude span most of the useful stroke
of the actuator. This is also the condition that could be easily
used in a periodic preflight or maintenance test. The dataset
were measured with position closed loop control using sinu-
soidal reference trajectories at different frequency values,
as specified in section III-B. Each experiment was 90 s long
and the first 10 s were discarded to remove transients and
initial conditions effects.

The data matrixXt of the t-th Monitoring trial is computed
using two out of three phase currents i(b)t , i(c)t for t = 1, . . . , 9.
So, the data matrix Xt ∈ Rm×2 is, ∀t:

Xt =

[
i(b)t i(c)t

]
. (12)

In particular, the vectors i(b)t , i(c)t in (12) are defined as fol-
lows. Let F =

{
f1, f2, . . . , fnf

}
be a set of nf frequencies.

Denote with i(b)f ,t , i
(c)
f ,t ∈ Rm×1 the vectors containing the

phase currents measurements in the t-th Monitoring trial, at a

FIGURE 13. Indicator 1 λt and Indicator 2 1t computed on Monitoring
trials, as function of test dates (bottom axis) and total number of screw
revolutions after anti-rotation removal (top axis).

frequency f of the sinusoidal reference position profile s.t.
f ∈ F , for the two motor phases b, c respectively. Now,
compute the quantities i(p)t ∈ Rm×1, p ∈ {b, c}, as the sum of
two phase currents across all considered set of frequencies F :

i(p)t =
∑
f ∈F

i(p)f ,t . (13)

The set of considered frequencies in (13) is (in Hertz) F =
{0.3, 0.5, 0.8, 0.9, 1}. This is a subset of nf = 5 frequen-
cies from the 10 frequencies used to perform Endurance
and Monitoring trials, see Section III-B. The choice of the
frequencies in F is motivated by the requirements described
in Section II-C.

In this specific case, the data matrix has two columns
that are linearly independent, so the SPE index cannot be
computed and only the T 2 index is used. Here, using a 90%
threshold of explained variance in PCA ensures that, if one of
the two phase currents signals is faulty (e.g. due to a broken
sensor), the method will discard the noise component and
maintains the signal component.

The computed indicators are depicted in Fig. 13 and
Fig. 14. All the indicators show a fast evolving trend starting
when the lubricant has been reduced and then eliminated.
Also, a quite monotonic behaviour has been obtained, in line
with the progressive degradation of the actuator.

The Event frequency indicator λt shows an exponential
increase of the percentage of events with actuator degrada-
tion. A warning threshold can be set when a certain chosen
percentage level is reached. In Fig. 13 the 50% threshold is
evidenced. Remember that, in the case of complete failure of
the actuator, this indicator will reach the value of 100%. How-
ever, in the experimental tests performed, no failure happened
and at the end of the tests the system closed loop position
control was providing good performance (see section IV).

The MTTE indicator 1t shows a decreasing behaviour
of the mean time between events, as expected. Since the
pre-processed data have a sampling time of about Ts ≈
8 · 10−4 s, by the end of the tests, approximately 1 every
10 measurements generates an event. Again, a threshold can
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FIGURE 14. Indicator 3 η̂t (percentage change with respect to first value)
and Indicator 4 β̂t computed on Monitoring trials, as function of test
dates (bottom axis) and total number of screw revolutions after
anti-rotation removal (top axis). Confidence intervals on estimates are
shown (dashed red lines).

be set to raise a warning when the mean time to event gets
too low. In case of complete failure, the MTTE will be equal
to Ts.

The Weibull shape parameter indicator β̂t and Weibull
scale parameter indicator η̂t are depicted with the 95% con-
fidence intervals on the parameters estimates. The index η̂t
is reported as percentage change with respect to the value
η̂1. As the motor degrades, more rising edges are present.
Therefore, the estimates are more certain and confidence
intervals get narrower. A warning level for β̂t can be auto-
matically computed noting that, when β̂t > 1 (i.e. the failure
rate increases with time), it is possible to say that the actu-
ator is starting to degrade. Fig. 14 shows how this value is
approached by the test of 06 Oct. 2017 and exceeded by the
test of 11 Oct. 2017, accordingly with the other indicators.
Indicator η̂t depends in a non-trivial way from data, so it is
more complicated to set a threshold. However, one can raise
an alarm when its value is, for example, less than 50% of
its first value η̂1 = 0.044, resulting in a threshold of 0.022.
Again, this is true for the test of 11 Oct. 2017.

The behaviour of η̂t and β̂t can be better understood by
computing the mean value and standard deviation of the
resulting Weibull distributions (one for each test). Fig. 15
depicts the empirical and estimated cumulative density func-
tions W (x|βt , ηt), see (10b). It can be seen how the mean
value (life expectancy) and the standard deviation (life
expectancy awareness) of the estimatedmodels decrease with
degradation. This means that the times between rising edges
are getting shorter and shorter, and there is less and less
uncertainty about their value.
Remark: The proposed rationale implicitly assumes that

test conditions are equal to those used for setting the τ 2

threshold. In fact, one can imagine that phase currents varies
with a different load than the nominal one used when setting
τ 2. For this reason, the proposed approach can be used when
the aircraft is on ground, for example during a preflight test,
when load conditions are supposed to be the same.

FIGURE 15. Estimated Weibull cumulative density functions (gray line)
and empirical distribution from data (dashed black line), for different
Monitoring trials, with respective mean values and standard deviations.

B. COMPARISON WITH A METHOD BASED ON
CHANGE DETECTION
In this section, we compare the proposed approach with
the one outlined in [42]–[44], based on a change detection
method. We choose this method for a comparison because:
(i) it is a data-driven batch approach, although based on the
evaluation of completely different statistical indicators; (ii) it
makes use of the motor phase currents for monitoring, as the
proposed methodology. Here the aim is to look for statistical
changes in the distribution of the data, from one experiment
to another. In this sense, the method in [42] works in a batch
fashion, as the one proposed in this work. The rationale is to
estimate the α̃-relative Pearson divergence [42] between the
distributions of the data sets from the two experiments that
are compared, with α̃ ∈ R an hyperparameter of the method.
The output is an indication of ‘‘dissimilarity’’ of the two
experiments. The divergence is computed by estimating the
ratio of the two data distributions (one for each test) through
a parametric linear combination of Gaussian densities.

The data considered in [42] are the Root Mean
Square (RMS) and Crest Factor (CF) features computed
from the same phase currents signals of the BLDC motor
considered in this work. Given a test with sinusoidal input
profile and a fixed frequency of movement, these two features
are computed with the three phase currents data for each
period of the sinusoidal input. So, we have that each test is
represented by a feature matrixZt ∈ R2×100, i.e. two features
and 100 input sinusoidal periods (cycles), see Table 7.

The rationale for computing the health monitoring indica-
tor is as follows [42]. First, in the set-up phase, compute the
divergence π0 between two healthy tests. We consider as the
t = 0 test the experiment on 11 Sept. 2017, and as t = 1
test the experiment on 18 Sept. 2017, see Fig. 8. Then, set
a threshold ξ as two-times π1. The subsequent tests are then
compared with the last experiment t = t∗ that exceeded the
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FIGURE 16. Results of the change detection method of [42] for an input
sinusoidal profile at 1 Hz, 300 N load and 10 mm stroke. (Top) Crest factor
values. (Middle) RMS values. (Bottom) computed divergence πt (gray and
black dots) and monitoring score ζ (white squares).

threshold ξ . Each time ξ is violated, a damage counter ζ is
incremented. The algorithm is summarized in Algorithm 3
and the results are reported in Fig. 16 for a fixed frequency of
1Hz, a 300N load and a 10mm stroke as in [42].

Algorithm 3 Health Monitoring With Change Detection
Input: Zt∗ ,Zt , hyperparameters vector ψ
Output: t-th value of the damage indicator ζ

Training or set-up phase (for t ≤ 1):
1 compute the divergence π1 between Z0 and Z1
2 set a threshold ξ ← 2 · π1

Test phase (for t > 1):
3 ζ ← 0; t∗← 1
4 compute the divergence πt between Zt∗ and Zt
if πt > ξ then

t∗← t; ζ ← ζ + 1
end

C. DISCUSSION
As can be seen in Figures 13, 14 and 16, both approach
are able to assess the motor degradation before the end of
the motor life. In this regard, the proposed indicators admits
a more intuitive threshold definition, upon which its cross-
ing denotes an ‘‘alarm’’ condition. In the method of [42],
the damage score ζ monotonically increases but it is difficult
to define a proper threshold to trigger and alarm.

The proposed approach needs the definition of only two
parameters: (i) the confidence level α and the number of
principal components l (or a percentage of explained vari-
ance). The method of [42] requires the tuning of three hyper-
parameters: (i) the α̃ term; (ii) a regularization term µ and
(iii) the standard deviation of the Gaussian components ι.
While, in principle, both sets of hyperparameters could be

tuned by some cross-validation procedure, in the proposed
approach their tuning is less critical and more interpretable.

Furthermore, for the specific applicative case considered,
the proposed approach is able to take into consideration more
frequencies of motion (remember that the reference position
is sinusoidal), while the method in [42] is constrained to
consider only a single input frequency.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS
A. CONCLUDING REMARKS
This paper presented the results of the REPRISE project
in developing a Health Monitoring approach for Electro-
Mechanical Actuators. An extended experimental activity
has been carried out on a 1:1 scale EMA, by means of a
test rig specifically designed for this project. Dynamic, load
and operating conditions were defined on the basis of the
flight actuator requirements and reliability analysis. Wear
was induced in the EMA transmission by lubricant gradual
removal. Since the actuators are usually closed-loop con-
trolled, the monitoring approach is based on the analysis of
the control actions, i.e. the motor phase currents. Relying on
methods borrowed from the statistical process control litera-
ture, that generally give a dichotomous output, we defined a
set of monitoring indicators suited to assess continuously the
overall health state of the actuator. We tested the proposed
general approach on an EMA employed for the actuation of
primary flight control surfaces in small aircrafts. Although
the proposed approach rely on the assumption that the exter-
nal conditions (load, disturbances) remain the same during all
the test sessions, it can be effectively employed as a preflight
test procedure or a periodic maintenance operation.

B. FUTURE DIRECTIONS
The method envisioned in this paper is a knowledge-based
one, i.e. it relies on a batch of previously acquired data to
set the value of statistic thresholds. As already mentioned,
the assumption about stationarity of the external conditions
has to be made for this approaches to remain valid through
different times and experiments. A model-based approach,
if feasible, would permit to decouple disturbances and noise
from actual inputs, being therefore robust against external
variations. However, a proper model-based scheme requires
specific conditions on the number of measured inputs/outputs
with respect to the number of faults/disturbances to be man-
aged, see [45], that are not always satisfied. Obviously,
a model of the system has to be developed, with its diffi-
culties such as non-linearities and time-varying behaviours.
A Model-based approach is therefore a sought next direction
to be investigated, that could bring noticeably improvements.
Further work is also envisioned in order to test the repeatabil-
ity of the results shown in this paper.
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