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Abstract

In this paper the problem of the real-time reconstruction of plasma insulin concentration by
using only blood glucose measurements is investigated. This is an interesting problem because
the knowledge of the time course of the glucose and insulin concentrations in an individual
provides precious informations concerning its health state, and may assume the role of a clinical
instrument. For the purpose of the reconstruction of the insulinemia a dynamical model of the
glucose-insulin homeostasis is required. The present work considers distributed delay models.
Such models have been preferred in recent papers with respect to the standard Minimal Models,
available in literature from 70's, because they allow to couple the glucose and insulin dynamics
in a unique extended system, whose solutions have been proven to be positive, bounded, and
globally asymptotically stable around the basal values of the equilibrium point. Data are ac-
quired according to the Intra Venous Glucose Tolerance Test (IVGTT). Simulation results are
reported in order to validate the developed theory.
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1. Introduction

Glycemia and insulinemia, i.e. glucose and insulin blood concentrations, are important vari-
ables in diabetic individuals, and in serious cases require frequent measurements. Glycemia can
be readily measured with low-cost devices. On the other hand, the measurement of insuline-
mia is expensive and not immediate. This fact stimulates the study of algorithms capable of
providing the insulin blood concentration by processing a stream of glycemia measurements. Al-
gorithms of this kind, in the control systems literature, are called state observers, and are aimed
to reconstruct the state of a dynamic system by processing the available measurements. The
observer design requires a dynamical model of the system under investigation. Many authors
in the last decades proposed and studied di®erent models for the glucose-insulin homeostasis
[1, 10, 9, 6, 7, 4, 8]. The models here adopted to estimate the time course of the plasma insulin
concentration are families of distributed delay models with single and double kernel [8]. Such
models allow to couple the dynamics of both glucose and insulin kinetics in a unique extended
system, whose solutions have been proven to be positive, bounded, and globally asymptotically
stable around the basal values of the equilibrium point [4]. The choice of the model in the family
to whom it belongs is left to the researcher, based upon theoretical or numerical grounds; from
a mathematical point of view di®erent choices are due to di®erent shapes of the delay-kernels
characterizing the model. This way, a wide frame of circumstances may be described. The
model parameters have been previously identi¯ed according to the Intra Venous Glucose Toler-
ance Test (IVGTT), an experimental procedure easy to perform, minimal invasive, yielding a
rich data set. It consists of an intra venous injection in a subject at rest of an impulsive amount
of glucose: then, the blood glucose and insulin concentrations are repeatedly sampled over a
typical period of three hours.

According to the nonlinear feature of the model for the glucose-insulin homeostasis, the
nonlinear observer presented in [3] has been chosen to solve the problem of insulin reconstruction
from glucose measurements. It is a powerful tool which asymptotically estimate the state of a
nonlinear system from a drift observability property. Such an observer has been already used
for the insulin estimate [5], where a modi¯ed version of the Minimal Model [1, 10, 9] had been
adopted.
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2. Single-kernel delay models

This section is devoted to present a family of single-kernel distributed-delay di®erential models
for the glucose-insulin homeostasis, [8] (the name of the system parameters are the same adopted
in [8] where also their meaning is explained):

_G(t) =¡ b1G(t)¡ b4I(t)G(t) + b7;
_I(t) =¡ b2I(t) + b6

Z 1

0

!(s)G(t¡ s)ds; (2.1)

with initial conditions

G(t) ´ Gb 8t 2 (¡1; 0); G(0) = Gb + b0
I(t) ´ Ib 8t 2 (¡1; 0); I(0) = Ib + b3b0:

(2.2)

The weight function !(t) is a non negative square integrable function de¯ned on IR+ = [0;1)
such that: Z 1

0

!(t)dt = 1;

Z 1

0

t!(t)dt < +1: (2.3)

The ¯nite quantity ¢a =
R1
0
t!(t)dt has the meaning of an average time delay.

Equation (2.1a) refers to the glucose kinetics: the ¯rst term models the constant rate sponta-
neous glucose decay, the second term models the insulin-dependent glucose disappearance rate,
while the third term is necessary in order to have an asymptotic decay to the basal glycemia
level. Equation (2.1b) describes the variation of the insulin plasma concentration as a function
of two terms: the ¯rst models the insulin catabolism (constant rate insulin decay), the second
models the pancreatic insulin secretion as an integral function of the past glycemia. Physiolog-
ically, the delay integral kernel of equation (2.1b) accounts for the sensitivity of the pancreas to
the concentration of blood glucose: the pancreas output insulin at a given instant is proportional
to a suitably weighted average of the past blood glucose concentrations. A liver ¯rst-pass e®ect
is taken into account in the second of equations (2.2), where an instantaneous insulin release at
time 0 is assumed, proportional to the equivalent concentration of the glucose bolus b0.

Seven parameters are present in the model (2.1a)-(2.2) (from b0 to b7, b5 is missing). However,
there are only ¯ve free parameters. Assuming the subject at equilibrium (G(t)7! Gb, I(t)7! Ib)
for a su±cient long time (t7! +1), the following two conditions are obtained from equations
(2.1a-b)

0 = ¡b1Gb ¡ b4IbGb + b7
0 = ¡b2Ib + b6Gb:

(2.4)

Taking b0, b1, b2, b3, b4 as free parameters, b6 and b7 are given by:

b6 = b2
Ib
Gb
; b7 = b1Gb + b4IbGb: (2.5)

As far as what concern the weighting function !(t) in the integral in equation (2.1), its shape
characterizes the choice of the model according to the features of individuals to whom it is
related. For instance, normal individuals, showing a prompt and appropriate insulin response
to hyperglycemic stimuli, will likely have a promptly rising and falling ! curve. NIDDM (Non
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Insulin Dependent Diabetes Mellitus) subjects, presenting a sustained insulin response to mod-
erately hyperglycemic stimuli, will likely have persistently elevated ! for long times in the past;
while IDDM subjects, with almost absent pancreatic response to circulating glucose, will show
! small for long times.

These examples suggest to choose for the kernel ! a class of functions that is °exible enough:
! should be suitably parameterized to give the possibility of distinguishing between patient
populations (the correct values of the parameters for a given individual should be obtained
through experimental parameter identi¯cation). The requirement for !(t) to be nonnegative
and square-integrable over [0;1) implies asymptotic decay to zero. Moreover, the shape of !(t)
should be such to give zero weight to recent glucose concentration measurements and maximum
weight to measurements at a given delay ¢m. This implies that !(0) = 0, then !(t) increases
to reach a maximum in t = ¢m, and then asymptotically decreases to zero. In this work, the
following shape is chosen for !:

!(t) = °2te¡°t; (2.6)

identi¯ed uniquely by its parameter °. The maximum of °2te¡°t is at ¢m = 1=°, while the
average delay is ¢a = 2=°.

In order to solve the state estimation problem, a ¯rst order di®erential system has to be
achieved from (2.1a-b). Such a purpose is obtained by suitably de¯ning the extended state
component:

´(t) =

Z 1

0

!(s)G(t¡ s)ds =
Z t

¡1
!(t¡ ¿)G(¿ )d¿ (2.7)

with ¿ = t¡ s. Then:
_́(t) = !(0)G(t) +

Z t

¡1

d!(t¡ ¿)
dt

G(¿)d¿: (2.8)

According to (2.6) !(0) = 0, so that:

_́(t) =

Z t

¡1

d!(t¡ ¿)
dt

G(¿)d¿: (2.9)

Since:
d!(t)

dt
= ¡°!(t) + °2e¡°t (2:10)

it follows:

_́(t) = ¡°´(t) + °2
Z t

¡1
e¡°(t¡¿)G(¿)d¿: (2.11)

By de¯ning a further state component

»(t) =

Z t

¡1
e¡°(t¡¿)G(¿)d¿ (2.12)

with:
_»(t) = ¡°»(t) +G(t): (2.13)

equation (2.11) becomes:

_́(t) = ¡°´(t) + °2»(t): (2:14)



6.

Finally, according to the positions:

x(t) =

2664
x1(t)
x2(t)
x3(t)
x4(t)

3775 =
2664
G(t)
I(t)
´(t)
»(t)

3775 2 IR4 (2.15)

the following system is obtained:

_x1(t) = ¡b1x1(t)¡ b4x2(t)x1(t) + (b1 + b4Ib)Gb;
_x2(t) = ¡b2x2(t) + b2 Ib

Gb
x3(t);

_x3(t) = ¡°x3(t) + °2x4(t);
_x4(t) = ¡°x4(t) + x1(t);

(2.16)

with the initial conditions:

x1(t) ´ Gb 8t < 0; x1(0) = Gb + b0

x2(t) ´ Ib 8t < 0; x2(0) = Ib + b3b0
(2.17)

and x3(0) = Gb, x4(0) = Gb=°, in that:

x3(0) =

Z 0

¡1
!(¡¿)G(¿)d¿ = Gb

Z 0

¡1
!(¡¿)d¿

x4(0) =

Z 0

¡1
e°¿G(¿)d¿ = Gb

Z 0

¡1
e°¿d¿

(2.18)

Assuming that the measurements are just blood glucose concentration, the output equation is
simply:

y(t) = x1(t): (2.19)
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3. Double-kernel delay model

In the present section a double-kernel distributed-delay model is investigated, which di®ers from
model (2.1a-b) only in the equation describing the time course of blood glucose concentration,
where a delay kernel is also present. Retaining the same names for the parameters used in the
previous section, the model equations are the following:

_G(t) =¡ b1G(t)¡ b4G(t)
Z 1

0

!I(s)I(t¡ s)ds+ b7

_I(t) =¡ b2I(t) + b6
Z 1

0

!G(s)G(t¡ s)ds;
(3.1)

with the same initial conditions stated in (2.2a-b). Note that a subscript has been added to the
weighting functions ! to distinguish between glucose and insulin kinetics. The properties of the
two kernels !I and !G are similar; in particular conditions (2.3) are both true. That means,
a unique equilibrium point (Gb; Ib) exists for model (3.1a-b), satisfying the same conditions of
(2.4), from which (2.5) are straightforward. Physiological considerations, analogous to those
made for the kernel !(t) in (2.1a), suggest the following forms for the two kernels in (3.1a-b)

!I(t) = °
2
I te

¡°It; !G(t) = °
2
Gte

¡°Gt: (3.2)

In this work the assumption that !G(t) ´ !I(t) ´ !(t) as in (2.6) is considered, that means
°I = °G = °, according to (3.2). By introducing the following further state components as in
(2.7)-(2.12):

´G(t) =

Z 1

0

!(s)I(t¡ s)ds;

»G(t) =

Z t

¡1
e¡°(t¡s)I(s)ds;

´I(t) =

Z 1

0

!(s)G(t¡ s)ds;

»I(t) =

Z t

¡1
e¡°(t¡s)I(s)ds;

(3:3)

the following 6-th order nonlinear system is obtained:

_x1(t) =¡ b1x1(t)¡ b4x1(t)x3(t) + (b1 + b4Ib)Gb;
_x2(t) =¡ b2x2(t) + b2 Ib

Gb
x5(t);

_x3(t) =¡ °x3(t) + °2x4(t);
_x4(t) =¡ °x4(t) + x2(t);
_x5(t) =¡ °x5(t) + °2x6(t);
_x6(t) =¡ °x6(t) + x1(t);

(3.4)

where it has been posed:

x(t) =

26666664

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

37777775 =
26666664

G(t)
I(t)
´G(t)
»G(t)
´I(t)
»I(t)

37777775 2 IR
6: (3:5)
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The initial conditions for x1, x2 are the same as in (2.17a-b); the initial conditions for the other
state components are:

x3(0) = Ib; x4(0) = Ib=°;

x5(0) = Gb; x6(0) = Gb=°;
(3:6)

as it easily comes according to (2.18a-b). The output equation is still (2.19).

4. State observers for nonlinear systems

In this section the observer for nonlinear systems presented in [3] is applied to (2.16a-d) and
to (3.4a-f) with (2.19) as available measurements. Note that both the models are stationary
autonomous nonlinear systems, that means they are described by the following equations:

_x(t) = f
¡
x(t)

¢
; x(0) = x0;

y(t) = h
¡
x(t)

¢ (4.1)

where x(t) 2 IRn is the state vector, y(t) 2 IR is the scalar output (glucose measurements). f; h
are analytical vector ¯eld, with h(x) = x1.
The observer presented in [3] is a dynamic system with the following structure (identity

observer):

_̂x(t) = f
¡
x̂(t)

¢
+H

¡
x̂(t)

¢³
y(t)¡ h¡x̂(t)¢´: (4.2)

The design of the observer gain H(¢) is fundamental to ensure the exponential decay to zero
of the observation error e(t) = x(t) ¡ x̂(t). The construction of H(¢) according to the theory
presented in [3] is illustrated below. First, the de¯nition of repeated Lie derivatives is reported
for the easy of the reader:

L0fh(x) = h(x)

Lsfh(x) =
@Ls¡1f h(x)

@x
f(x):

(4.3)

The following de¯nition formalizes a necessary condition for the construction of the observer
and for its convergence:

De¯nition 4.1. [3] A system of the type (4.1) is said to be drift observable in − µ IRn if
the observability map de¯ned as

©(x) =

266664
L0fh(x)

L1fh(x)
...

Ln¡1f h(x)

377775 (4:4)

is a di®eomorphism in an open set that contains or coincides with −.

Note that the drift-observability ensures that the Jacobian @©(x)=@x of the observabilty map
is nonsingular in −.

De¯nition 4.2. [3] A system of the type (4.1) is said to be uniformly Lipschitz drift-
observable (ULDO) in a set − µ IRn if it is drift-observable in − and both the maps ©, ©¡1
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are uniformly Lipschitz in − and ©(−) respectively. If − ´ IRn, the system is said globally-
ULDO (GULDO).

Theorem 4.3. [3] Assume that a system of the type (4.1) is GULDO and, moreover, that the
function

Lnfh
¡
©¡1(z)

¢
; (4.5)

is uniformly Lipschitz in IRn. Consider the observer (4.2) with H
¡
x̂(t)

¢
given by:

H
¡
x̂(t)

¢
= Q¡1

¡
x̂(t)

¢
K (4:6)

with Q
¡
x̂(t)

¢
the Jacobian of the observability map ©(x)

Q
¡
x̂(t)

¢
=
@©(x)

@x
(4:7)

Then, for any ® > 0, there exists a choice for the gain vectorK such that for any initial condition
of the original system x0 and of the observer x̂0 the observation error e(t) = x(t)¡ x̂(t) has an
exponential decay to zero at rate ®:

ke(t)k ·Me¡®tke(0)k (4:8)

for some M > 0.

The proof is in [3], where also weaker convergence conditions are given. The choice of the gain
vector K is strictly related to the desired rate of convergence ® and to the Lipschitz constant
of the function (4.5). In practice, the computation of K is made by choosing a set ¸ of n
eigenvalues

¸ = f¸1; ¢ ¢ ¢ ; ¸ng;
with ¸n < ¢ ¢ ¢ < ¸2 < ¸1 < ¡® < 0

(4:9)

and ¯nding K such to assign such to the matrix Ab ¡ KCb, where (Ab; Cb) is an observable
Brunowsky pair in IRn, i.e.

Ab =

26664
0 1 ¢ ¢ ¢ 0

0 0
. . .

...
...
. . .

. . . 1
0 ¢ ¢ ¢ 0 0

37775 ; Cb = [ 1 0 ¢ ¢ ¢ 0 ] ; (4:10)

(see also [2] for more details).
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5. Simulation results

Simulations have been presented for both the families of models concerning the glucose-insulin
homeostasis. In both cases, data are acquired according to the Intra Venous Glucose Tolerance
Test (IVGTT), an experimental procedure easy to perform, minimal invasive, yielding a rich
data set. It consists of an intra venous injection in a subject at rest of an impulsive amount
of glucose: then, the blood glucose and insulin concentrations are repeatedly sampled over a
typical period of three hours.
Below are reported a pair of signi¯cative simulations concerning the observer presented in

the previous section applied to both the single and double kernel delay models. In both cases,
parameters from b0 to b4 are taken from the ones estimated in [4], even if the models to whom
they are referred are slightly di®erent, because they maintain the same physiological meaning.
More in details, they are referred for a 25 years old man, height 170cm, body weight 66Kg,
basal glycemia Gb = 87mg/dl, basal insulinemia Ib = 37:9pM, with:

b0 = 311mg=dl; b1 = 1 ¢ 10¡4min¡1;
b2 = 0:2196min

¡1; b3 = 0:64pM=(mg=dl);

b4 = 3:73 ¢ 10¡4

so that, from (2.5), it comes:

b6 = 0:096min
¡1pM=(mg=dl);

b7 = 1:24(mg=dl)min
¡1
:

Parameter ° in both the models has been chosen equal to 0:2.
The eigenvalues used for the computation of K are:

¸ = ¡[10¡4 0:1 0:2 0:4]

for the single-kernel model and

¸ = ¡[10¡2 2 ¢ 10¡2 3 ¢ 10¡2 0:4 0:6 5]

Figures 5.1, 5.2 show the results of the numerical simulations concerning the measured and
estimated plasma insulin concentrations over a one hour time range.
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Fig. 5.1 - Observer applied to single-kernel model

Fig. 5.2 - Observer applied to double-kernel model
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5. Conclusion and future developments

Similarly to [5], in this work the problem of the state reconstruction, by applying the theory
of asymptotic state observation for nonlinear systems, has been explored for distributed-delay
kernel models of glucose-insulin homeostasis. The aim is the real-time monitoring of the plasma
insulin concentration using only measurements of blood glucose concentration.
An analytic methodology is introduced in order to recast the distributed-delay nonlinear mod-

els into a nonlinear systems without delay, in front of an increase of the state space dimension.
The availability of real-time data on the insulin concentration is a prerequisite for the devel-

opment of an arti¯cial pancreas controlling in real time the blood glucose level with optimum
insulin infusions from an in vivo pump. Finally, the main aspect, from a biomedical point of
view, of the future research is the clinical validation of the models used in this paper, based on
sets of real measurements of groups.
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