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We apply the methods of Chiral Perturbation Theory to the analysis of the first moments of the Generalized
Parton Distributions in a Nucleon, usually known as generalized form factors. These quantities are currently
also under investigation in Lattice QCD analyses of baryon structure, providing simulation results at large
quark masses to be extrapolated to the "real world" via Chiral Effective Field Theory. We have performed
a leading-one-loop calculation in the covariant framework of Baryon Chiral Perturbation Theory (BChPT),
predicting both the momentum and the quark-mass dependence for all the vector and axial (generalized)
form factors. In particular we discuss the results for the limit of vanishing four-momentum transfer where
the GPD-moments reduce to the well known moments of Parton Distribution Functions (PDFs). We fit our
results to available lattice QCD data, extrapolating down to the physical point. We conclude by presenting
outstanding results from a combined fit to different GPDs-moments.

1 Introduction

In this paper we discuss the findings of references [1] and [2] where the generalized form factors of the
nucleon were analyzed in the framework of covariant Baryon Chiral Perturbation Theory (BChPT). In stan-
dard SU(2) BChPT the results for form factors typically depend on two variables, the momentum transfer
squared and the quark-mass and on a number of low energy constants (LECs). In this work we study
the quark-mass dependence of the isoscalar- and isovector-vector as well as the isovector-axial general-
ized form factor A2,0(t) at zero momentum transfer and predict the physical value of those quantities by
determining previously unknown LECs by a fit of the BChPT results to lattice QCD data.

Working in twist-2 approximation, the parity-even part of the structure of the nucleon is encoded via
two Generalized Parton Distribution functions (GPDs) Hq(x, ξ, t) and Eq(x, ξ, t) [3].
Moments of GPDs can be interpreted much easier and are connected to well-established hadron structure
observables. E.g. the zero-th order (Mellin-) moments in the variable x correspond to the contribution of
quark q to the well known Dirac and Pauli form factors F1(t), F2(t) of the nucleon:

∫ 1

−1

dx x0 Hq(x, ξ, t) = F q
1 (t) ,

∫ 1

−1

dxx0 Eq(x, ξ, t) = F q
2 (t). (1)

Our aim is the application of the methods of ChPT to the analysis of the first moments in x of these nucleon
GPDs
∫ 1

−1

dxx Hq(x, ξ, t) = Aq
2,0(t) + (−2ξ)2Cq

2,0(t) ,

∫ 1

−1

dxx Eq(x, ξ, t) = Bq
2,0(t)− (−2ξ)2Cq

2,0(t), (2)

where one encounters three generalized form factors Aq
2,0(t), Bq

2,0(t), Cq
2,0(t) of the nucleon for each

quark flavor q. For the case of 2 light flavours the generalized isoscalar (u+d) and isovector (u-d) form
factors have been already studied in a series of papers at leading-one-loop order in the non-relativistic
framework of Heavy Baryon ChPT (HBChPT) [4]. We will provide the first analysis of these generalized
form factors utilizing the methods of covariant BChPT for 2 light flavors [5]. Our BChPT formalism [6]
makes use of a variant of Infrared Regularization [7] for the loop diagrams and is constructed in such a way
that we exactly reproduce the corresponding HBChPT result of the same chiral order in the limit of small
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Fig. 1: Loop diagrams contributing to the first moments of the GPDs of a nucleon at leading-one-loop order in BChPT.
The solid and dashed lines represent nucleon and pion propagators respectively. The solid dot denotes a coupling to an
external tensor field.

pion masses. For the complete analytical expressions of the discussed results and a detailed description of
the formalism used for the calculation we refer to [1] and [2].

2 The Generalized Form Factors of the Nucleon in ChPT

In ChPT one can direcly access the isoscalar (s) and isovector (v) contribution to the generalized form
factors of the nucleon by evaluating the following matrix elements [3]:

i〈p′|qγ{µ←→D ν} q|p〉u+d = (3)

u(p′)
[

As
2,0(∆

2)γ{µpν} −
Bs

2,0(∆2)
2MN

∆αiσα{µpν} +
Cs

2,0(∆2)
MN

∆{µ∆ν}

]
1
2

u(p),

(4)

i〈p′|qγ{µ←→D ν} q|p〉u−d = (5)

u(p′)
[

Av
2,0(∆

2)γ{µpν} −
Bv

2,0(∆
2)

2MN
∆αiσα{µpν} +

Cv
2,0(∆

2)
MN

∆{µ∆ν}

]
τa

2
u(p).

(6)

The brackets {. . .} denote the completely symmetrized and traceless combination of all indices in an
operator. u (u) is a Dirac spinor of the incoming (outgoing) nucleon of mass MN , for which the quark
matrix-element is evaluated.

From a powercounting analysis we find that the Feynman diagrams contributing to the first moments of
GPDs of a nucleon at leading-one-loop order [O(p2)] in covariant ChPT are the ones depicted in Fig.1.
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3 Analysis of the results for A
(v,s)
2,0 (t = 0)

In this section we present an analysis of the generalized isovector- and isoscalar-vector form factors Av,s
2,0(t)

in the forward limit t → 0. The details of the ChPT calculation as well as a complete analysis of the form
factors Bv,s

2,0(t), Cv,s
2,0 (t) and their connection to the spin physics sector can be found in ref[1, 2].

In the forward limit t → 0 the generalized form factors As,v
2,0(t = 0) can be understood as moments of

the ordinary Parton Distribution Functions (PDFs) q(x), q̄(x) [3]:

〈x〉u±d = As,v
2,0(t = 0) =

∫ 1

0

dxx (q(x) + q̄(x))u±d . (7)

Experimental results are available for 〈x〉 in proton- and “neutron-” targets, from which one can estimate
the isoscalar and isovector quark contributions at the physical point [8] at a regularization scale µ. We
choose µ = 2 GeV for our comparisons with phenomenology.

For the PDF-moment Av
2,0(t = 0) we obtain to O(p2) in BChPT

Av
2,0(0) .= 〈x〉u−d

= av
2,0 +

av
2,0m

2
π

(4πFπ)2

{
− (3g2

A + 1) log
m2

π

λ2
− 2g2

A + g2
A

m2
π

M2
0

(
1 + 3 log

m2
π

M2
0

)

−1
2
g2

A

m4
π

M4
0

log
m2

π

M2
0

+ g2
A

mπ√
4M2

0 −m2
π

(
14− 8

m2
π

M2
0

+
m4

π

M4
0

)
arccos

(
mπ

2M0

)}

+
∆av

2,0gAm2
π

3(4πFπ)2

{
2

m2
π

M2
0

(
1 + 3 log

m2
π

M2
0

)
− m4

π

M4
0

log
m2

π

M2
0

+
2mπ(4M2

0 −m2
π)

3
2

M4
0

× arccos
(

mπ

2M0

)}
+ 4m2

π

c
(r)
8 (λ)
M2

0

+O(p3).

Most LECs in this expression are well known from analyses of chiral extrapolation functions [9]. However,
the sizes of av

2,0, ∆av
2,0 and c

(r)
8 (λ) are only poorly known at this point. The coupling ∆av

2,0 is related to
the spin-dependent analogue of the mean momentum fraction, namely 〈∆x〉u−d (see Section 4 and [2]). In
a first fit (Fit I) to lattice data we constrain ∆av

2,0 from the phenomenological value of 〈∆x〉phen.
u−d ≈ 0.21

and perform a 2-parameter fit with the couplings av
2,0, c

(r)
8 (1GeV) at the regularization scale λ = 1 GeV.

We fit to the LHPC lattice data for this quantity as given in ref.[10], including lattice data up to effective
pion masses of mπ ≈ 600 MeV. The resulting values for the fit parameters together with their statistical
errors are given in table 1 and the resulting chiral extrapolation function is shown as the solid line in the
left hand side of Fig.2. The extrapolation curve tends towards smaller values for small quark-masses, but
does not quite reach the phenomenological value at the physical point, which is not included in the fit.
Since BChPT is based on a systematic perturbative expansion, it does not only provide us with the result
at a certain order, but also allows for an estimate of possible higher order effects. From dimensional
analysis we know that the leading chiral contribution to 〈x〉u−d beyond our calculation takes the form
O(p3) ∼ δA

m3
π

Λ2
χM0

+ .... Constraining δA between values−1, . . . , +1 (the natural scale of all couplings in
the observables considered here is below 1) and repeating the fit with this uncertainty term included leads
to the grey band indicated in Fig.2. As one can see the phenomenological value for 〈x〉u−d lies well within
that band of possible next-order corrections, giving us no indication that something may be inconsistent
with the large values for 〈x〉u−d typically found in lattice QCD simulations for large quark-masses.

As stated in the Introduction, the covariant BChPT scheme used in this analysis is able to reproduce
exactly the corresponding non-relativistic HBChPT result at the same order by the appropriate truncation in
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Fig. 2: Left panel. Fit I of the O(p2) result of Eq.(3.2) to the LHPC lattice data of ref.[10]. Right panel. Fit II of the
O(p2) BChPT result of Eq.(3.2) to the LHPC lattice data of ref.[10] and to the physical point (solid line). The dashed
curve shown corresponds to O(p2) result in the HBChPT truncation.

1/(16π2F 2
πM0). In order to also compare the O(p2) HBChPT result of refs.[11] with the O(p2) covariant

BChPT result of Eq.(8) we perform a second fit (Fit II): We fit the covariant expression for 〈x〉u−d of
Eq.(8) again to the LHPC lattice data and we constrain the coupling ∆av

2,0 in such a way, that the resulting
chiral extrapolation curve reproduces the phenomenological value of 〈x〉phen.

u−d = 0.160±0.006 [8] exactly
for physical quark masses. The parameter values for this Fit II are again given in table 1, whereas the
resulting chiral extrapolation is shown as the solid line in the right hand side of Fig.2. We would like to
emphasize that the curve looks very reasonable, connecting the physical point with the lattice data of the
LHPC collaboration in a smooth fashion. For the comparison with HBChPT we now utilize the very same
values for av

2,0 and c
(r)
8 of Fit II. The resulting curve based on the O(p2) HBChPT truncation is shown as

the dashed curve in Fig.2. One observes that this leading-one-loop HBChPT expression agrees with the
covariant result between the chiral limit and the physical point, but is not able to extrapolate on towards
the lattice data.

We therefore conclude that the smooth extrapolation behaviour of the covariant O(p2) BChPT expres-
sion for 〈x〉u−d of Eq.(8) between the chiral limit and the region of present lattice QCD data is due to an

infinite tower of
(

mπ

M0

)n

terms.

The same analysis can also be performed for the isoscalar generalized form factor As
2,0(t) which in the

forward limit reduces to As
2,0(0) = 〈x〉u+d. Fig.3 shows a 2-parameter fit of the O(p2) covariant BChPT

results for this observable [1] to LHPC and QCDSF data of reference [10] and [12]. We want to stress that
the experimental value of the quantity 〈x〉u+d is not included in the fit. As the plot shows, the obtained
chiral extrapolation curve is very satisfying, consistently linking the lattice data at large quark-masses with
the phenomenological value. In contrast, the correspondent result in the heavy baryon limit represented

Table 1: Values of the couplings resulting from the two fits to the LHPC lattice data for 〈x〉u−d [1]. The errors shown
are only statistical and do neither include uncertainties from possible higher order corrections in ChEFT nor from
systematic uncertainties connected with the lattice simulation.

av
2,0 ∆av

2,0 cr
8(1GeV)

Fit I (4 points - 2 parameter) 0.157 ± 0.006 0.210 (fixed) -0.283 ± 0.011
Fit II (6+1 points - 3 parameter) 0.141 ± 0.0057 0.144 ± 0.034 -0.213 ± 0.03
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Fig. 3: Two-parameters Fit of theO(p2) BChPT result of ref.[1] to the LHPC lattice data of ref.[10] and to the QCDSF
data of ref.[12]. We obtain as

20 = 0.513±0.006 and c9 = −0.064±0.005 as values for the free parameters. The band
shown indicate estimate of higher order possible corrections. The dashed line correspond to the respective HBChPT
results at this order.

by the dashed line in Fig.3 not even allows for an interpolation between the presently available lattice data
and results from experiments.

4 Combined fit

We have extended the analysis to the first moments of the axial GPDs H̃q(x, ξ, t) and Ẽq(x, ξ, t)
∫ 1

−1

dx x H̃q(x, ξ, t) = Ãq
2,0(t) ,

∫ 1

−1

dxx Ẽq(x, ξ, t) = B̃q
2,0(t). (8)

Again, in the limit of vanishing four-momentum transfer the isovector form factor Ãv
2,0(t → 0) is directly

connected to the spin dependent analogue of the mean momentum fraction 〈∆x〉u−d

Ãv
2,0(0) = 〈∆x〉u−d =

∫ 1

0
dx x (q↓(x)− q↑(x))

∣∣
u−d

(9)

= ∆av
2,0 +O(p2)

where ∆av
2,0 corresponds to the chiral limit value of 〈∆x〉u−d.

Looking at the O(p2) BChPT expression for 〈∆x〉u−d [2] one can easily observe that each isovector
moment (〈x〉u−d and 〈∆x〉u−d) depends on 3 unknown parameters: 2 couplings (av

2,0, ∆av
2,0) and one

counterterm. As the same couplings contribute in both moments, it is hoped that a simultaneous fit of
our BChPT results to the lattice data of ref.[10] can considerably reduce the statistical errors. As one can
see from Fig.4, the results of this procedure are pretty outstanding, given that the values at the physical
pion mass were not included in the fit! The chiral curvature in both observables naturally bends down to
the phenomenological value for lighter quark masses, leading to a very satisfactory extrapolation curve.
The extrapolated values at the physical pion mass together with the ones known from phenomenology are
reported in table 2. As one can easily see, the obtained BChPT values from our O(p2) leading-one-loop
analysis are clearly consistent with the experimental ones!

We would like to stress that this efficient cross-talk between the ChPT results for 〈x〉u−d and 〈∆x〉u−d

occurs only in the covariant framework, while in the non-relativistic approach both observables are com-
pletely independent at this order.

We conclude that combined fits of several observables characterized by a common subset of ChEFT
couplings are the winning strategy towards the most reliable chiral extrapolations of lattice QCD results.
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Table 2: The phenomenological values for the observables 〈x〉u−d and 〈∆x〉u−d, together with the extrapolated values
obtained from the combined fit shown in fig.4.

〈x〉u−d 〈∆x〉u−d

PHENOMENOLOGY 0.16± 0.006[8] 0.21± 0.025 [13]
EXTRAPOLATED VALUES AT mphys

π 0.16± 0.01 0.19± 0.01
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Fig. 4: Combined FIT of the O(p2) results of ref. [2] to the lattice data of ref. [10]. Note that the phenomenological
values at physical pion mass were not included in the fit. The bands shown indicate estimate of higher order possible
corrections.

References
[1] M. Dorati, T. A. Gail and T. R. Hemmert, Nuclear Physics A798, 96 (2008).
[2] M. Dorati, The structure of the nucleon by electromagnetic probes in Chiral Effective Field Theory (PhD Thesis,

University of Pavia, 2008).
[3] X. Ji, Journal of Physics G24 1181 (1998) and Annual Review of Nuclear and Particle Science 54, 413 (2003);

M. Diehl, Physics Reports 388, 41 (2003); A.V. Belitsky and A. V. Radyushkin, Physics Reports 418, 1 (2005).
[4] J.-W. Chen and X. Ji, Physical Review Letters 88, 052003 (2002); A. V. Belitsky and X. Ji, Physics Letters B538,

289 2002; S. Ando, J.-W. Chen and C.-W. Kao, Physical Review D74, 094013 (2006); M. Diehl, A. Manashov
and A. Schäfer, European Physical Journal A29, 315 (2006) and European Physical Journal, A31, 335 (2007).

[5] J. Gasser, M. Sainio, and A. Svarc, Nuclear Physics B307, 779 (1988).
[6] T. A. Gail and T. R. Hemmert, in Proceedings of ECT* Workshop “lattice QCD, ChPT and Hadron Phenomenol-

ogy”, Trento, Italy, 2-6 Oct 2006, hep-ph/0611072 and T. A. Gail (PhD Thesis, Technical University of
Munich, 2007).

[7] T. Becher and H. Leutwyler, European Physical Journal C9, 643 (1999).
[8] see http://www-spires.dur.ac.uk/hepdata/pdf3.html
[9] M. Procura, T. R. Hemmert and W. Weise, Physical Review D69, 034505, (2004); QCDSF-UKQCD Collabora-

tion (A. Ali Khan et al.), Nuclear Physics, B689, 175 (2004); V. Bernard, T. R. Hemmert and U.-G. Meißner,
Physics Letters B622, 141 (2005); M. Procura, B. U. Musch, T. Wollenweber, T. R. Hemmert and W. Weise,
Physical Review D73, 114510 (2006).

[10] LHPC Collaboration (P. Hägler et al.), Physical Review D77, 094502 (2008).
[11] D. Arndt and M. J. Savage, Nuclear Physics A697, 429 (2002); J.-W. Chen and X. Ji, Physics Letters B523, 107

(2001).
[12] QCDSF Collaboration (M. Göckeler et al.), Physical Review Letters 92, 042002 (2004) and Nuclear Physics

Proceeding Supplements,128, 203 (2004).
[13] J. Bluemlein and H. Bottcher, Nuclear Physics B636, 225 (2002).

© 2008 Università degli Studi di Pavia




