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ABSTRACT 

A short survey of the use of neural networks and statistical discriminants in 

high energy physics for recognition of heavy flavor jets is presented. After 

illustrating the various neural and statistical classifiers currently used, some 

assessment of their comparative performance for top and oottom jets is made. 
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Neural Networks (NN) are receiving increasing attention for recognition problems in 

High Energy Physics (REP), like t-quark [1-3] and b-quark [4] tagging with t, b -i' jets. 

Also of interest are other applications like e/1t discrimination for improved lepton tagging. 

Especially used are NN based on Learning Vector Quantization [5] to which Training Count. 

can be profitably added (LVQTC) [3,6] and Back-Propagation (BP) [7-9]. One should not 

forget more conventional statistical methods like the Fisher linear discriminant [10,11] and 

the Gaussian classifier [11]. 
To get some orientation, let me start with the simplest classifier: Fisher's linear 

discriminant [10,11]. As for all classifiers, one must frrst encode the event (or whatever 

objects one is classifying, e.g. jets) into a number of feature variables S1, S2, ... , Sn, which 

can be arranged into a vector, the pattern vector s. Thus, each event corresponds to a point s 

in the multidimensional pattern space. Let us consider a schematic 2-dimensional example: 

Fig. 1. When projecting the events onto the S1 axis, one gets two overlapping distributions in 

s1. When trying to discriminate the two classes by a cut in Slone gets penalized in efficiency 

and purity. The same holds true when projecting onto the S2 axis. But if one projects onto the 

Fisher axis shown in the figure, the two distributions get separated, and thus discrimination 

with 100% purity and efficiency is achieved. That is a dream situation, of course, but in a real 

case one can reduce the overlap between the two distributions to some minimal value in this 

way. The Fisher variable F, associated with the Fisher axis, is a linear combination of the 

feature variables Sh S2, ... , Sn, which can be determined by simple mathematics involving the 

the correlation (or covariance) matrices for the two distributions. The physical ingredient one 

is exploiting is the correlation between the variables within each class distribution. In the 

example considered, for each S2 bin S1 ranges over two distinct intervals for the two 

distributions. As the S2 bin moves, the populated S1 intervals change, which means that S1 is 

correlated to S2 within each distribution. The S1-S2 correlation turns out to be different within 

each distribution, and that is what is exploited in the discrimination. 

The Fisher classifier cannot be outperformed if the two distributions are gaussian and 

have the same correlation matrix, i.e. if they have the same shapes and just distinct centroids. 

In this case, its purity and efficiency of classification are only limited by the amount of 

overlap between the two distributions. If the two distributions have different correlation 

matrices, one can introduce a more general Gaussian classifier, that cannot be outperformed if 

the two distributions are gaussian [11]. For that, one considers the probability density 

functions corresponding to the gaussian approximations for the two distributions: 

p(s) =A exp{-¥s-<s»M-1(s-<s»} 

where M is the correlation matrix for the distribution and <s> is its centroid. The Gaussian 

classifier for a pattern s is given by the variable G = In(PA(s)/PB(S)). If G is positive, s is 
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classified as A, otherwise as B. The absolute magnitude of G gauges the reliability of the 

classification. If the two correlation matrices are equal, G identifies with the Fisher variable F 
apart from a constant term: G = F + In(AAIAB). 

If the distributions are not gaussian, in general the Gaussian classifier does not yield 

the best purity and efficiency which are in principle obtainable given the overlap between the 

two distributions (i.e. it no longer reaches the Bayesian limit). That is where Neural 
Networks come to help. 

As an illustration, let us consider the simple 2-dimensional example of Fig. 2, with 

the two distributions being uniform within the regions they cover. The outer distribution (B) 

is quite far from gaussian. The Gaussian classifier gives a bad performance in this case. 

Let us see how a NN like L VQTC (5,3,6] handles the problem. With this NN 

architecture neurons can be associated with vectors, or points, in pattern space. Their 

positions are fixed by a training procedure in which a sequence of patterns of known class 

s(t), t =1, 2,3 ... is presented. For each pattern s(t), one corrects the position of the neuron 

closest to it, me, by moving it closer to the pattern if the two belong to the same class, or 

moving it away from it if they belong to different classes: 

mc(t+ 1) = me(t) + o.+(t) (s(t)-me(t)] if me and s belong to the same class 
me(t+1) =me(t) - a..(t) (s(t)-me(t)] ifme and s belong to different classes 

~(t) and CL(t) are positive learning parameters decreasing with t. During training the number 

of times each neuron is corrected by patterns of the various classes is counted. From that the 

neuron purity can be calculated, i.e. the fraction of times the neuron is corrected by patterns 

of its own class. The classification of a pattern s of unknown class is made by simply 

assigning the pattern to the class of its closest neuron. The purity of the classification can be 

estimated by the purity of the neuron providing the classification. For the problem of Fig. 2, 

100% purity and efficiency of classification can be achieved with 1 neuron of class A and 16 

neurons of class B. Their positions in Fig. 2 are those resulting from training. 

In a BP net (7] the relevant neurons are not associated with points but rather with 

hyperplanes in pattern space. For the 2-dimensional problem of Fig. 2, the hyperplanes 

become just straight lines. In such a net, neurons are arranged in successive layers, the 

excitations of neurons in a layer being determined by the excitations of neurons in the 

previous layer, Fig. 3 (hence the name of Multi-Layered Perceptron more correctly used for 

such a net, the term Back-Propagation referring more properly to the type of training 

algorithm used). The excitations of neurons in the input layer (L=O), one for each pattern 

component, are directly given by the values of the corresponding pattern components. The 

excitation xi(L=l) of a neuron in the next hidden layer is determined by feeding the value of 

the linear expression ai = Lk (l)ik Sk + 9i into a saturating transfer function: xi(L=l) = g(ai), 
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e.g. g(ai) = tanh(ai). ai can be visualized as the distance of the pattern from a straight line (a 

hyperplane in the general case), whose orientation and position are determined by the 

"weight't parameters COile and the "bias" term 9i associated with the neuron. Several hidden 

layers may be included, but one has been found to be enough in most HEP applications. The 

last, output, layer may consist of several neurons, but one is enough if the classes are just 2. 

Its excitation is determined by iterating the procedure used to calculate the excitations of the 

hidden neurons. The value of the net is due to the existence of a training algorithm (BP) 

which starting from the discrepancies of the output excitations with respect to the desired 

(target) results for each training pattern (of known class) corrects the net parameters (weights 

and bias terms) so as to achieve minimum output discrepancies at the end of training. There is 

no guarantee, though, that the minimum obtained is an "absolute" minimum. For our 

example, 100% purity and efficiency of classification are achieved on an independent test set 

of patterns by using 3 hidden neurons, represented by the 3 straight lines in Fig. 2, and an 

output excitation given by x(L=2) =tanh(1.5 ti xi(L=l) + 4.5) (the distance metric from the 

hidden neurons lines is 4.5 times the Euclidean metric). A pattern is classified as A if x(L=2) 

< 0.5, otherwise as B. 
The example helps to illustrate some important differences in the usage of L VQTC and 

BP nets. 
BP requires a relatively limited number of parameters and thus training statistics can 

be kept small. The cpu time required for training is typically long, since when correcting 

positions of hyperplanes describing hidden neurons to better accommodate patterns in a given 

region of pattern space, far away patterns can easily get penalized. Optimization must thus be 

handled globally, going through the whole training set. The purity/efficiency trade-off in 

classification can be controlled by cuts on the output excitation. 

LVQTC requires comparatively many more parameters, and therefore the training 

statistics must be much larger than in BP. The hoped for reward is a higher degree of purity 

in classification. The cpu training time is typically short, since in order to better accommodate 

patterns in a region one must correct only neurons in that region, without affecting 

classification performance for far away patterns. The purity/efficiency trade-off can be 

controlled by cuts in the neuron purity. 

Dedicated hardware implementations of BP and L VQTC (e.g. for triggers) also have 

distinct requirements. BP needs vectorization and a realization of the non-linear transfer 

function. L VQTC can profit of massive parallelism of vector processors, the winner-takes-all 

step being implemented by a few cycles of a neural net with lateral inhibitions. 

The relative performances of BP and L VQTC largely depend on the problem at hand. 

The two-spirals problem of Fig. 4 provides a classification example that, while trivial for 

L VQTC, has found no solution to date with standard BP [12]. Only a solution with a 
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modified feed-forward net has been found, in which each unit receives incoming connections 

from every unit in every earlier layer, not just from the immediately preceding layer [13]. 

A typical field of application of statistical and NN classifiers is provided by the 

discrimination of top and bottom jets, originated by t and b quarks decaying into anything 

(Le. without a rate-reducing lepton tagging). In [2] it has been shown that for ti: events 

produced at the Fermilab Tevatron collider one can get a ratio signallbackground := 1.5 with a 

residual cr(ti:) := 2 pb, for mt = 100 GeV, by using Fisher's discrimination after some 

preliminary cuts. The utilization of L VQTC [3] or of BP does not improve on this result. 

During the last year a substantial number of contributions have appeared on the 

utilization of NN's for discriminating b jets at LEP [4]. In Fig. 5 the results for the purity 

versus efficiency curve are compared. Efficiency is defined as the fraction of actual b jets 

recognized as b, purity as the fraction of jets recognized as b which are actually b. All 

calculations in the figure have been done with BP and with the JETSET [14] event generator 

(entries containing the ALEPH and DELPlfl tags include the simulation of the corresponding 

experimental apparatuses, see [4,16] for references). Since the calculations differ only for the 

input variables used, one can appreciate the dependence on their choice from this comparison. 

In all cases presented, no information on leptons and on the impact parameters of b 

secondaries is included. Apart from some unlucky options, in the relevant high purity (> 0.6) 

region there is an essential coincidence of results obtained using quite different variables, 

which suggests that there is little room for improvement within the domain of jet or event 

shape variables. Needless to say, the selection of variables is essentially empirical, with some 

guidance obtainable from statistical tests like, e.g., the magnitudes of Fisher vector 

components with respect to their statistical errors. Besides the discriminating power, there are 

other considerations entering the selection, like: i) simplicity of calculation from the detector 

output for on-line triggering applications, ii) stability with respect to apparatus effects, to 

make event simulation easier, iii) portability to other processes and/or energies which, e.g., 

makes jet variables preferable to event variables. 

It is of interest to study the dependence of the results on the discrimination technique 

used and, most important of all, on the event generator used for the simulation of jets. 

We consider two event generators for this sake: i) COJETS, in which fragmentation is 

handled by an independent jet fragmentation model, with jet-mass phase-space effects taken 

into account, and parton-coherence left out; ii) JETSET, with its elaborate string model for 

fragmentation and with parton coherence effects included. Both event generators give 

acceptable fits to the relevant e+e- data [16]. They mainly differ by the degree of dynamical 

correlations, which is higher in JETSET. For the comparison, the ·17 jet calorimetric variables 

of [17] are used, whose results for JETSET and BP are reported in Fig. 5. Fig. 6 shows the 

purity versus efficiency results obtained with the various classifiers and using the same event 

generator for training and testing. Fig. 7 does the same, but using different event generators 
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for training and testing. From Fig. 6 it appears that, independently of the differences among 

the various classifiers, according to JETSET b jets are easier to recognize than what one 

expects with COJETS. That remains true when the event generator used for training is 

changed, Fig. 7. Comparing Fig. 6 and 7, it also appears that COJETS b jets are better 

recognized after JETSET training, apart from the case of the Gaussian classifier (maybe 

because of its critical use of the correlation matrix). To appreciate this point more 

conveniently, Fig. 8 compares the Fisher's discriminant results for all possible event 

generator combinations for training and testing. In their globality, these results can be 

rationalized by concluding that COJETS and JETSET contain the same type of correlations 

for b jets, but that the latter are more pronounced in JETSET. In this connection, Fig. 9 is 

meant to help us realize that, e.g., it is easier to discriminate geometric figures (both ideal and 

fuzzy ones) by training our eye on ideal examples of them than by doing the training on fuzzy 

ones. SA larger difference between band non-b jets in JETSET is also supported by 

estimates of the volumes V and linear dimensions L of the corresponding distributions in 

pattern space, which one can get from the square roots of the determinants and traces of the 

associated correlation matrices. One has Vb / V non-b =7.20 for COJETS and =12.56 for 

JETSET, 4/ Lnon-b =1.18 for COJETS and =1.26 for JETSET. I.e., the b distribution is 

more spread out than the non-b distribution, the difference being larger in JETSET than in 

COJETS. From LVQTC one can also estimate the overlap between the two distributions 

using the neuron training counters. Defining the overlap as W =2 V lflVnon-b / (Vb+Vnon-b)' 

one gets W =0.432 for COJETS and W =0.412 for JETSET, i.e. less overlap for JETSET. 

As to the relative performances of the various classifiers, one can observe that there 

are not dramatical differences among them for the problem at hand. When looking at the 

various combinations of event generators for training and testing, relative performances 

fluctuate with no clear trend favoring one classifier over the other. The simplest of them, the 

Fisher discriminant, appears to do an adequate job in all cases, without need to use neural 

nets. 

In conclusion, for b jets: 

i) Jet shape variables can be usefully exploited for b jet tagging. Used alone or in combination 

with lepton and/or impact parameter information they substantially improve statistics for b jet 

recognition (among other possibilities, one can loosen lepton isolation criteria and impact 

parameter cuts). One does not need sophisticated choices for them: simple jet calorimetric 

variables, which are stable towards apparatus effects, do the job. 

ii) It is not necessary to use a complex discrimination technique to handle b jet tagging. A 

conventional Fisher's discriminant is adequate, with all the advantages offered by its simple 

to reproduce parametrization and its computing speed, which is especially interesting for 
possible on-line applications. 
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iii) More attention should be paid to the systematic errors associated with the event generators 

uses for the simulation. One should remember that existing generators have been largely 

tuned to data for single variable distributions, and are left essentially untested for the 

correlations they contain, which represent a crucial ingredient in jet classification. Most of the 

results for b jet tagging by neural nets presented up to now have ignored this point by using 

just one event generator. Because of the model dependence of the way jet fragmentation is 

handled, event generators with as different as possible fragmentation schemes should be used 

(compatibly with an acceptable reproduction of existing data). 
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Fig. 2 - Classification example illustrating the way L VQTC and BP neural nets work. 
Circles represent L VQTC neurons. Straight lines represent BP hidden neurons. 
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Fig. 3 - Architecture of the BP net used for the example of Fig. 2. 
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BOTTOM DISCRIMINATION AT LEP 
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shape variables. . 
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Fig. 6 _ Purity versus efficiecy results for b jets at LEP using the same event generator, 
COJETS or JETSET, for training and testing. 
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Fig. 7 - Purity versus efficiency results for b jets at LEP using different event generators 
(COJETS, JETSET) for training and testing. 
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Fig. 9 _Simple example meant to illustrate that by training on ideal cases one 
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