
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3124746, IEEE
Access

 

  

Recreating Fingerprint Images by Convolutional 
Neural Network Autoencoder Architecture 
Sergio Saponara1, Abdussalam Elhanashi1, and Qinghe Zheng2 
1Dip. Ingegneria dell’Informazione, University of Pisa, Italy  
2School of Information Science and Engineering, Shandong University, China  

Corresponding author: Sergio Saponara (sergio.saponara@unipi.it). 

This work  was supported   by MIUR-Dipartimento di Eccellenza Crosslab Project at university of Pisa. 

ABSTRACT Fingerprint recognition systems have been applied widely to adopt accurate and reliable 
biometric identification between individuals. Deep learning, especially Convolutional Neural Network 
(CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several 
approaches have been applied to reconstruct fingerprint images. However, these algorithms encountered 
problems with various overlapping patterns and poor quality on the images. In this work, a convolutional 
neural network autoencoder has been used to reconstruct fingerprint images. An autoencoder is a technique, 
which is able to replicate data in the images. The advantage of convolutional neural networks makes it suitable 
for feature extraction. Four datasets of fingerprint images have been used to prove the robustness of the 
proposed architecture. The dataset of fingerprint images has been collected from various real resources. These 
datasets include a fingerprint verification competition (FVC) database, which has been distorted. The 
proposed approach has been assessed by calculating the mean square error between the reconstructed and the 
original features. The trained architecture was tested and compared to the other state-of-the-art methods. The 
achieved experimental results show that the proposed solution is suitable for recreating a complex context of 
fingerprinting images. 

INDEX TERMS Fingerprint images, Convolution Neural Networks, Autoencoder, Feature extraction, 
System identification. 

I. INTRODUCTION 
Nowadays, biometric technology has been widely used 

in various authentication occasions in industrial and 
everyday life applications, including mobile payment [1], 
security verification [2], smart home [3] and so on. The 
system that can recognize humans is designed using the 
physical characteristics (e.g., fingerprint [4] and retina [5]) 
or behavioral characteristics like voice [6] and gait [7]. 
Among them, fingerprints are the most widely used 
biometric, with the property of uniqueness, invariability, and 
high security. Moreover, the acquisition of fingerprints is 
convenient, which makes fingerprint identification 
technology widely used in embedded applications. 

With the continuous upgrading of chip manufacturing 
and other processes, the collection area of the fingerprint 
collector has become smaller, so that the area of the collected 
fingerprint image is correspondingly reduced, and the 
fingerprint image is easily destroyed. Due to the influence of 
fingerprints themselves (dry, wet, dirty, cocoon, scars, etc.) 
and various collection equipment (dirty collection head, low-
resolution, signal transmission noise, etc.), there are a lot of 

low-quality fingerprint images in actual fingerprint 
recognition. In general, we are faced with challenges in terms 
of poor image quality, unclear texture, nonlinear distortion, 
matching methods, and public potential fingerprint databases 
[8]. High computational efficiency [9][10] is also a key 
requirement for the application of fingerprint-related 
techniques for mobile devices. Furthermore, complicated 
overlapping patterns will also lead to low quality fingerprint 
images, which seriously affects the accuracy of the automatic 
fingerprint identification system [11]. 

Specifically, low quality fingerprint images can lead to 
the following problems: 
 A large number of pseudo feature points cause serious 

interference to the recognition system. 
 The loss of true feature points leads to mis-training of 

the recognition model. 
 Due to the complex changes in the perspective and 

posture of the object between different images, it may 
lead to inaccurate estimation of position and movement 
direction of the feature points in low-quality images, 
resulting in a large deviation from the real result. 
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Since many fingerprint recognition algorithms [12, 13, 
14] rely on minutiae features, the minutiae of small-area 
fingerprint images cannot support the algorithm for 
differential matching. Therefore, the restoration of low-
quality fingerprint images is an urgent problem to be solved 
during the process of fingerprint recognition and matching. 

In recent years, many researchers have conducted in-
depth research on fingerprint enhancement or recovery 
technology. Fingerprint image recovery can be divided into 
two categories: spatial domain enhancement and frequency 
domain enhancement. Spatial domain enhancement methods 
include the directional filtering [15], Gabor filtering [16], 
and partial differential equation filtering [17]. The frequency 
domain enhancement methods consist mainly of Fourier 
domain enhancement [18], short-time Fourier transform 
enhancement [19], wavelet transform enhancement [20], 
discrete cosine transform enhancement [21] and so on. 

Fingerprint images present unique texture features, 
which are essentially two-dimensional non-stationary signals. 
The commonly used median filters or low-pass filters in the 
image processing can reduce the noise and distortion in the 
image, but their effect is not ideal because they uniformly 
process all the pixels indiscriminately. The key to Gabor 
filtering is how to get the ridge period accurately and quickly, 
otherwise the filtered fingerprint image will appear empty 
[22]. Therefore, a good fingerprint reconstruction algorithm 
can adaptively use the local frequency information and the 
ridge direction information to enhance the ridge and valley 
structure, to better distinguish the ridge and valley. 
       At present, deep learning [23] has been widely used in 
image processing and other fields. Thanks to the efficient 
fitting capability of massive parameters, it can usually well 
capture the data distribution structure and the characteristics 
of the data itself. However, it is difficult to apply typical deep 
learning models directly to image reconstruction, especially 
for fingerprint images with high requirements for detail 
capture. This means that traditional deep learning models are 
difficult to generalize well under various conditions. On the 
other hand, the reasoning speed of a typical deep learning 
model may be difficult to meet the real-time requirements of 
practical applications. In this situation, it is critical to 
develop a lightweight neural network model that can capture 
fingerprint features. 
 
The main contribution and motivation of this work are: 
 Analysis using two different autoencoders (sparse, and 

convolutional neural network models) on fingerprint 
classification to examine their robustness for extracting 
complex context features, which can improve 
fingerprint recognition.  

 Large number of experiments performed, using large 
scale of fingerprint dataset, aiming to obtain further 
insights into the performance of CNN autoencoder on 
different datasets with varied fingerprint features. 

 Utilization of light-weight neural network architectures 
to perform competitive classification accuracy with few 
parameters for the fingerprint recognition on the images, 

while having less computation costs than the existing 
pre-trained neural network architectures.  
In this paper, a convolutional neural network (CNN) 

Autoencoder is used to reconstruct fingerprint images. We 
will explore the effectiveness on light-weight CNN 
architecture on replication the complex fingerprint features 
from the images in comparison to the other deep learning 
models, and the state of art methods. In this research, we will 
explain how the CNN autoencoder will be built, and the 
objectiveness of learning fingerprint features representation 
of input data from the images into the output data.  

Hereafter, the paper is organized as follows: Section I 
and Section II deal with an introduction and related work. 
Section III presents deep learning for image reconstruction. 
Section IV explores the methodology and discusses the 
global architecture. Section V shows the results and 
discussion. Conclusions and other experimental targets are 
drawn in Section VI. 

 
II. RELATED WORK 

In this section, we present the related work of 
fingerprint image recovery and identification from the 
following two respects: the traditional scheme based on 
filtering, and the deep learning scheme based on feature 
description. 

 A. FILTERING BASED TRADITIONAL SCHEMES 
Chakraborty and Rao [24] proposed the fingerprint 

image enhancement method based on adaptive filtering in 
frequency domain. The histogram equalization process is 
performed on the fingerprint image after Gabor filtering, and 
the enhancement effect of the original fingerprint image can 
be obtained. In view of the high computational complexity 
of Gabor filter, Chen et al. [16] proposed to decompose the 
unrotated two-dimensional Gabor filter into one-dimensional 
band-pass Gabor filter and 1D low-pass Gabor filter. Chen et 
al. [17] improved the second-order oriented partial 
differential equations (PDE) model for fingerprint image 
restoration, which can connect broken fingerprint ridges, fill 
in the holes of the fingerprint image, smooth irregular ridges, 
and eliminate some annoying small flaws. Mei et al. [18] 
proposed to use curve area transformation in the Fourier 
domain, find the curve area and map it to a two-dimensional 
array, and design a filter to restore the fingerprint image 
based on the frequency image of the curve areas. Ghafoor et 
al. [19] proposed a frequency distortion elimination and 
enhancement method based on short-time Fourier transform 
analysis (STFT) and local adaptive context filtering and 
verified the superiority of the algorithm through a large 
number of experiments. In fact, the spatial and temporal 
resolution of STFT cannot be considered at the same time, 
which can be solved well by wavelet transform or wavelet 
packet transform. Moreover, the performance improvement 
of hyper-parametric optimization of STFT can also be 
further discussed, such as Fourier number, sampling 
frequency, window length, etc. Aiming at the problems of 
cracks, scars, dry skin, poor contrast between ridges and 
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valleys in low-quality fingerprint images, Bidishaw et al. [20] 
proposed an effective two-stage block enhancement scheme, 
learning in the space and frequency domain of the basic 
image. Liu et al. [21] proposed a method to reconstruct the 
fingerprint orientation field using weighted discrete cosine 
transform. Ding et al. [22] used the classification dictionary 
learning to enhance fingerprint image based on spectral 
diffusion. Although many schemes based on filtering have 
been proposed for fingerprint image restoration, they still 
have the problem that the accuracy and efficiency are 
difficult to meet at the same time. 

Yoon et al. [11] studied the multi-layer statistical model 
and covariates of fingerprint matching (similarity) score 
analysis and showed that the quality difference between two 
fingerprints compared will greatly affect the time stability of 
the fingerprint identification accuracy. To solve the problem 
of the lack of minutiae features in the fingerprint area, 
Deshpande et al. [12] proposed the latent minutiae similarity 
(LMS) algorithm and the clustering latent minutia pattern 
(CLMP) algorithm, which achieved the best results on 
multiple datasets. Wang et al. [13] proposed Fin Privacy, a 
privacy protection mechanism for fingerprint recognition, 
which injected Laplace noises into the singular values of the 
approximate singular matrix, thereby weighing privacy and 
utility. Cao and Jain [14] fused the comparison scores 
between the potential fingerprints based on the three 
templates and the reference fingerprints and retrieves a short 
candidate list from the reference database. By designing the 
enhancement and the orientation deconvolution branch, an 
end-to-end deep learning model named FingerNet [25] is 
proposed for potential fingerprint enhancement. To extend 
the fingerprint matching technology, A. Manickam et al. [26] 
proposed the use of Scale Invariant Feature Transform (SIFT) 
to enhance and match potential fingerprints. Cao et al. [27] 
proposed an end-to-end latent fingerprint search system, 
which consisted of an automatic region of interest (ROI) 
cropping, latent image preprocessing, feature extraction, 
feature comparison, and an output candidate list. 

Compared with the filtering method, the method of 
convolutional neural network autoencoder proposed in this 
paper uses statistic knowledge to realize the optimization and 
application of parametric model, which can adapt to complex 
situations without prior information. With the increase of the 
amount of available data, the method based on deep learning 
has obvious advantages, which benefits from the self-
organization of implicit knowledge in the training process. 

B. FEATURE DESCRIPTION BASED DEEP LEARNING 
SCHEMES 

Taking defect fingerprints as the object, Wang et al. [28] 
proposed an improved fingerprint recognition method based 
on deep CNN with point features. The experimental results 
show the superiority of deep learning over kernel principal 
component analysis (KPCA) and k-nearest neighbor (KNN). 
Aiming at the problems of fingerprint rotation, scaling, 
damage, Wang et al. [29] proposed a robust fingerprint 
recognition method based on CNN, which is not only fast but 

also has a high ability to resist abnormal degradation. A deep 
learning based unique affine Fourier moment matching 
(AFMM) method [30] is proposed to match and fuse the 
scores obtained from three different fingerprint features to 
deal with local and global linear distortion. Pandya et al. [31] 
proposed a new deep learning architecture for fingerprint 
recognition, which achieved 98.21% classification accuracy 
with only a loss of 0.9. Li [32] empirically proved that the 
improved CNN recognition method has fewer iterations 
during the training process and the training error is also small; 
when identifying unknown fingerprints, the improved CNN 
method has a lower false recognition rate and rejection rate. 

Deep CNNs can learn discriminative features from 
original fingerprint images instead of explicit feature 
extraction, which makes them attractive in fingerprint 
identification. Zia et al. [33] used the uncertainty of a 
Bayesian model to reduce the number of false positives of 
fingerprints to improve identification efficiency. After 
obtaining the number of quality improvement processes 
needed for fingerprint images, the deep CNN model 
combined with batch normalization technology was used 
[34]. Peralta et al. [35] proposed a method that combined 
image processing with a CNN classifier for fingerprint 
identification, avoiding the necessity of explicit feature 
extraction. Aiming at the problem that the traditional 
fingerprint recognition algorithm relies too much on the 
details of fingerprint and the recognition performance is 
limited in mobile devices, Zeng et al. [36] proposed a local 
fingerprint recognition method based on deep learning. By 
improving the structure of CNN, two loss functions are 
optimized, and the identification performance of fingerprint 
image is improved. 

Although deep learning has shown great advantages in 
the pattern recognition field, it still faces many challenges. 
One is that how researchers can know that a model still has 
a good generalization ability for scenes that have never 
appeared before [37]. Another difficulty is how to make 
better use of small-scale training data [38] and multi-model 
data [39]. The processing method during data transmission 
may also affect the data [40]. 

The proposed lightweight convolutional autoencoder 
structure is different from the traditional autoencoder or 
convolutional neural network. It can reduce the parameter 
scale while ensuring the feature extraction ability and data 
representation function, which is conducive to improve the 
reasoning speed of the model in the process of practical 
application. 

 
III.    DEEP LEARNING FOR IMAGING RECONSTRUCTION 

A. DEEP LEARNING FOR FEATURE EXTRACTION 
The diffusion of deep learning technologies has paved 

the way for extracting the features automatically. Several 
methods were presented to compress data in the images into 
a lower dimension effectively without a significant loss of 
data. The enhancements in deep learning for feature 
extraction are the foundation of remarkable success in 
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computer vision. Sun et al. [41] explored face recognition 
with deep learning. This approach is applied to the CNN in 
order to reduce the dimension of specific regions of the input 
images, and to obtain a series of deep learning IDs, which 
are combined together. Deep learning models have been 
applied as supervised and unsupervised end-to-end 
regression, and classification algorithms. However, they can 
be used for feature extraction, and combined with machine 
learning to treat input complex data efficiently without the 
requirement of time consuming, poor feature extraction from 
the images.  

B. ARTIFICIAL NEURAL NETWORK 
An artificial neural network (ANN) is the principle of 

deep learning technologies. ANN are the brain since they are 
applied by combining several simple units, which are called 
as neurons. ANN models have been improved during the 
years. More complex architectures, called CNNs, have been 
deployed in several applications, thanks to their 
achievements in computer visions. CNNs exploit a 
multilayer structure which are different from hidden neurons. 
An ANN provides approximation function which can be 
defined by the following equation Eq [1]:  

                                        y = f’*’(x,0)                               (1) 

Where f is the complex arbitrary continuous function, which; 
parameterized by a set of coefficients [42]. The 
establishment of the predictive model requires an estimation 
for several parameters that approximate the targeted output. 
This can be achieved by minimizing the parameters of cost 
function for regression and cross-entropy for image 
classification. Gradient-descent based algorithm is utilized, 
based on backpropagation algorithm [43].   

C. AUTOENCODERS 
Autoencoders are models where the algorithm is trained 

to replicate its own input in an unsupervised way [44]. 
Autoencoders apply a symmetric structure which includes 
three main components (encoder, decoder, latent 
representation), see Figure 1. An encoder part that 
compresses the input into a low-dimensional representation 
that contains the context of data. The second part is a decoder, 
which is trained to reconstruct the features which were 
extracted by the encoder. Latent representation is one 
component of the autoencoder, which extracts the relevant 
information by compressing the information, which traverses 
the neural network, forcing the learnt information 
compression of input data from the encoder part. The latent 
space reduces the dimension and compresses the complexity 
of the data through a bottleneck.  

 

 
FIGURE 1.  Structure of simple autoencoder.  
 

The latent space is determined by X, and visible (data) 
space by 𝛾  assuming they are real valued with 
dimensionality J and K respectively. The parameters of the 
autoencoder are optimized jointly in the encoder, and the 
decoder over the least-squares reconstruction cost. This 
behavior is formalized in Eq [2]  
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In Eq [2] the encoder is represented by ф, the decoder is 
defined by ψ.  fk (.) is the kth output value of f (.),  𝑎𝑟𝑔𝑚𝑖𝑛

 
 

represents for argument of the minimum, and given N is the 
amount of data. The model is equivalent to the component’s 
analysis when f, and g are linear. However, the non-linear 
functions empower for a more robust non-linear mapping. 
Therefore. Sigmoid function is used as activation function 
across hidden units. It is a useful property for image data, 
which makes the learning process more stable for the model.   
          Recently, autoencoders have become more widely 
used for learning generative data. The objective of 
autoencoders is to capture the most important features in the 
data. There are different kinds of autoencoders which aim to 
achieve different kinds of applications, which are described 
as the following: 

1. UNDERCOMPLETE AUTOENCODER 
This architecture has a three-layer net, i.e., a neural 

network with hidden layers. The input and the output are the 
same, and it reconstructs its input to the output by using an 
Adam optimizer and mean squared error loose function 
(MSE). The aim of this model is to minimize the loose 
function by penalizing the g(f(x)) for being varied from its 
input (x). This autoencoder does not require regularization as 
it maximizes the probability of data instead of copying the 
input to the output. 

2. SPARSE AUTOENCODER (SAE) 
This is a simple autoencoder and is easy to construct. 

This model has hidden nodes more than the input nodes. The 
important features are recognized from the given data. 
Sparsity constraint is used in this model in the hidden layers. 
This is to prevent the output layers from copying the input 
data. The hidden layers in this architecture are set at a 
minimum value to confirm the activation value for the 
sparsity constraint which is determined as p, and the penalty 
function is used to prevent 𝜌𝑗 variation from the value of p. 
Kullback-Leibler variation is used as the cost function of the 
penalty, determined in Eq [3]. 

           𝐾𝐿 (𝜌 ∥  𝜌𝑗) =  𝜌 ln
ఘ

ఘ௝
+ (1 − 𝜌) ln

ଵିఘ

ଵିఘ௝
                    (3) 

where 𝜌𝑗  is not diverging from the parameter p, the 
Kullback-Leibler value is 0, if not, the Kullback-Leibler 
value will rise with the divergence.  
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3. STACKED DENOISING AUTOENCODER (SDAE) 
Stacked models are neural networks with multiple 

layers of sparse autoencoders. In this model, more hidden 
layers are used, which helps to reduce high dimensional data 
into a smaller code representing important features from the 
input data. Each hidden layer in this model is more compact 
than the last hidden layer. Input corruption is used only in 
this architecture for initial denoising. It helps to learn the 
important features from the input data, and once the mapping 
function f(θ) has learnt, for further layers. the uncorrupted 
layer is utilized from the previous layers.  

4-CONVOLUTIONAL NEURAL NETWORK 
AUTOENCODER 

CNN model is one of deep learning approach, which 
becomes one of state-of-art for computer vision application 
due to its significant advantages [45]. Feature learning is one 
of the advantages of CNN, which it can learn and extract 
important features. CNN can also learn from a large number 
of datasets due to its deep architecture. Feature extraction is 
a crucial issue for pattern recognition, and it is a difficult 
issue since it depends on the type from the given data [46]. 
Features are required as representatives for the images. CNN 
is a deep learning model for feature extraction, which 
provides self-learning layers.  The rationale behind the 
convolutional neural autoencoder is that the images could be 
compressed to simple vector, which could be decoded to 
recreate the original image. The element in the encoder 
vector does not mean to encode one feature. Since there are 
millions of parameters in the decoding network, the 
combination can encode and create a massive number of 
features. Therefore, convolutional neural autoencoder is 
implemented to perform unsupervised learning for feature 
extraction and dimension reduction. As small features are 
projected to a lower dimension, the distance between the 
vectors is significantly faster to compute. 

A convolutional autoencoder has a structure similar to 
CNN. It has the same basic components that includes 
convolutional filters and pooling layers. However, there is 
difference in the structure of the architecture that both input 
and output nodes have the same dimension. In regard to this, 
the reconstructed data can be compared to the input data. The 
difference between the input data and the reconstructed data 
can be considered as an algorithm function for the 
autoencoder thus the learning process is not dependent on the 
labelled data. A CNN autoencoder is a kind of unsupervised 
learning architecture. Convolutional neural network (CNN) 
is a family of deep learning models, which has one or more 
convolutional layers. It is mainly used for imaging 
processing and feature extraction from the images. 
Convolutional autoencoder use convolution operator to 
encode the input features and replicate them in the output 
with the minimum reconstruction error. Convolutional 
autoencoder operation includes m convolutional kernels, and 
the output layer m feature map. The input feature map is 
produced from the input layer, n represents the number of 
input channels. The latent representation for convolutional 
autoencoder of k-th feature map in the encoder is defined by 

Eq [4] where σ represents the activation function and * is the 
two dimensional convolutional. The reconstruction in the 
decoder is defined by using the following formula see Eq [5], 
where c represents the bias per the input channel, and H 
represents the latent feature maps. 

                        ℎ௞ =  𝜎 (𝑥 ∗  𝑊௞ + 𝑏௞)                             (4) 

                    𝑦 =  𝜎 (∑ ℎ௞ ∗ 𝑊௞෪
௞ఢு + 𝑐)                           (5) 

CNNs architecture is well-suited for recognition of the 
objects in the images. To optimize the performance of CNN 
architecture for a specific application scenario, we need to 
train, and fine-tune this architecture effectively. Therefore, 
starting from trained CNN architecture, new data are fed 
containing unknown classes. Once the network is in place, a 
new task can be carried out such as fingerprint classification 
in our case. 

 IV. METHODOLOGY 

A. DATASET DESCRIPTION 
Fingerprint image datasets were collected from 

different resources. In this research, we used four different 
datasets to assess the effectiveness of autoencoders for 
replicating the given input data from fingerprint images to 
their output. These images were detached from the real 
identity of the individuals and were acquired from different 
scanners, sensors, and inked devices. The datasets are 
described as the following: 

Dataset I  
This dataset has 250 images with size of 200 × 200 

pixels. These images were acquired by using the fingerprint 
device, Digital persona model (4500) reader which were 
taken from students and faculty staff at YCCE College [47].  

Dataset II 
This dataset is made up of 250 images with size of 153 

× 185 pixels. These images were also collected using the 
same fingerprint (Digital persona model (4500) reader) 
device from individuals and members at YCCE College [48]. 

Dataset III  
This dataset was collected from database of  Sokoto 

Coventry Fingerprint Dataset (SOCOFing). It is designed for 
academic research purposes. This dataset is comprised of 
6,000 fingerprint images, belonging to 600 African subjects. 
It consists of specific features and attributes for both genders, 
hand, and finger names as well as synthetically modified 
versions with three different levels of alteration for central 
rotation, obliteration, and z-cut by utilizing the STRANGE 
framework. STRANGE toolbox is a novel approach for   
generation of realistic synthetic alterations on the images of 
fingerprint. These alterations were performed using simple, 
medium, and advanced parameter settings in the STRANGE 
toolbox over 500dbi resolution images. The resolution of 
these images is 96 × 103 pixels. The images of this dataset 
were collected by using a scanner, Hamster plus 
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(HSDU03PTM). This dataset is categorized into three levels 
of alteration difficulties: easy, medium, and hard [49]. 

Dataset IV 
This dataset consists of 320 images with different sizes 

of images. These images were collected from fingerprint 
verification competition database (FVC2004). In FVC2004, 
we have four databases DB1, DB2, DB3, and DB4 based on 
the type of the scanner used for acquiring the fingerprint and 
image size [50]. This dataset has lesser quality for pattern 
features of fingerprint in comparison to the other datasets. 
FVC2004 dataset is considered state of the art and the most 
challenging database due to its perturbations and complex 
context features in the fingerprint images. These images 
were mainly designed for training and evaluating deep 
learning models for pattern recognition purposes. Figure 2 
below, shows some samples from four datasets of fingerprint 
images. 

 

FIGURE 2. Samples for fingerprint images from 4 datasets. 

B. DEEP LEARNING MODELS 
In the experiments, we used the sparse and 

convolutional neural autoencoders to obtain the recreated 
fingerprint images with the best replication to prove the 
effectiveness of those autoencoders for fingerprint feature 
recreation.  
1. SPARSE AUTOENCODER 

We started the experiments with the Sparse autoencoder 
with the pre-processing activities. The images were split into 
80% for training, and 20% for testing for each dataset. The 
pre-processing has been performed on both training and 
testing data for each dataset. The image of each dataset was 
rescaled into 100 × 100 pixels (width and height) for all 
datasets, and we eliminated the blank space around the 
fingerprint image itself. This was done in order to achieve an 
equal number of tiles while cropping the fingerprint images.  

We also applied different filters to the image to enhance 
the sparse autoencoder model’s understanding of the 
structure. We converted the images into grayscale whereas 
the pattern features of the fingerprints present as a black 
color, and the background of the images show as white. This 
is to improve and achieve a binary image for extracting the 
features. This process minimizes the distortion and the 

variableness in the fingerprint images, with an outcome of 
the extraction of beneficial data which also introduces 
specific artifact features that can affect the stages of pre-
processing. As per the requirement of this model, it is 
important to train and test the architecture with small images, 
therefore we performed the process of cropping, dividing 
each image into the tiles, and reassembling these tiles in the 
form of a reconstructed image. We performed the copping of 
each single image and created tiles with different sizes (50 × 
50, 25 × 25, 20 × 20, and 10 × 10) of pixels to examine the 
sparse autoencoder architecture with more than one scenario. 
This pre-processing has been carried by the imaging 
processing toolbox. Figure 3 shows the pre-processing 
workflow to prepare fingerprint images to train and test the 
sparse autoencoder model. 

 

 
FIGURE 3.  The pre-processing workflow to prepare the Fingerprint 
images to be trained and tested with the Sparse autoencoder. 

 
The Sparse autoencoder has been designed which 

includes an input layer (encoder), an output layer (decoder) 
and the latent representation (hidden units), see Figure 4. We 
set the number of hidden units in the laten representation 
with 50 neurons. We selected the transfer function for 
encoder and decoder for this architecture. For encoder part, 
we chose the linear satlin, and for decoder part, we selected 
the linear function purlin. Table 1 shows the best 
hyperparameter selected and used in the training stage. L2 
regularization is utilized for training the architecture to 
overcome overfitting problems. The sparse autoencoder has 
been trained with four datasets with various sizes of cropped 
images into tiles with various pixels sizes (50 × 50, 25 × 25, 
20 × 20, and 10 × 10). This is to examine and analyze the 
performance of the sparse autoencoder by comparing the 
loose function among different sizes of cropped tiles. Our 
aim was to have the latent representation of the input learnt 
features of fingerprints from the images by the SAE model 
and obtain the most minimum mean square error value 
(MSE), which can be determined as the average of the square 
for the variation between the predicted and the original 
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values. MSE is an essential algorithm, corresponding with 
the produced value of mean square error loss. We carried out 
the training process for the sparse autoencoder and as we can 
see in Figure 5, the learning curve of the sparse autoencoder 
enhanced where the size of the cropped tiles is reduced, we 
achieved the best learning curve for the architecture with a 
cropped tile size of 10 × 10 pixels. 

 
FIGURE 4.  Structure of the Sparse Autoencoder (SAE). 

TABLE 1. Training Hyper-Parameters for Sparse autoencoder. 

Parameter Method 
Number of Epochs 1000 
L2 Regularization 0.007 

Number of neurons 50 
Decoder Transfer Function Purline 
Encoder Transfer Function Satlin 

Sparsity regularization 0.05 

 

 
FIGURE 5.  Training performance for the sparse autoencoder (SAE) with 
different sizes for cropped tiles of fingerprint images: A) Tile size (50 × 
50), B) Tile size (25 × 25), C) Tile size (20 × 20) and D) Tile size (10 × 10). 

 

Furthermore, we performed the measurement for the 
values of the mean square error, and we assessed the best 
value when the sparse autoencoder has been trained with 
cropped tiles size of 10 × 10 pixels, see Table 2. 

TABLE 2.  The measured values for mean square error (MSE) for sparse 
autoencoder with different sizes of cropped tiles during training 
process. 

Image size Size of each cropped image (Tile) mseError 
100 x 100 50 x 50 0.069 
100 x 100 25 x 25 0.061 
100 x 100 20 x 20 0.053 
100 x 100 10 x 10 0.028 

2. CONVOLUTIONAL NEURAL NETWORK 
AUTOENCODER (THE PROPOSED ARCHITECTURE) 

In this section, we will discuss the experiments for 
recreating the fingerprint images with the CNN autoencoder. 
As part of preprocessing, the images of four datasets are with 
pixel values ranging from 0 – 255. These images are resized 
into 224 × 224 pixels. These 224 × 224 images are converted 
into matrix 224 ×224 ×1. This is to account the requirement 
to feed the input data into the convolutional neural network 
input layer. The images have been randomly split into 70% 
for training, 20% for validation, and 10% for testing the 
model for each dataset. It is important to partition the data to 
generalize the model and reduce the chances of overfitting. 
The proposed approach includes a set of convolutional and 
max pooling layers, see Figure 6.  

 
FIGURE 6.  Structure of CNN Autoencoder. 

We constructed the CNN architecture with 11 layers. 
This light-weight architecture is established with a low 
number of CNN layers to account the requirement of IoT and 
low-cost embedded devices in terms of power consumption 
and memory usage. The convolutional layers were used to 
map the features from the input images. The filter size has 
been set to [3 × 3]. This size is commonly used for the CNNs 
models. These filters determine the height and the width of 
the regions in which the neural network connect to the input. 
Max pooling layers were utilized in this model to down-
sample the images into small regions. The filter size for 
stride has been set in these layers with [2 × 2]. The CNN 
autoencoder will be split into two parts, which are encoder, 
and decoder. The first part (encoder) will include the first 
layer with 32 filters, second layer with 64 filters, and the final 
layer with 128 filters. The second part (decoder) will include 
the first layer with 128 filters, second layer with 64 filters, 
and the final layer with 32 filters. Hyper-parameters have 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3124746, IEEE
Access

 

  

been set to optimize the training of the CNN autoencoder, 
see Table 3. We trained the CNN autoencoder with a number 
of epochs which were set with 1000 for each dataset. These 
epochs will determine the duration for the training time that 
the algorithm will work throughout the training dataset.  L2 
regularization has been fine-tuned with 0.005. We set the 
batch size with 128 for training the model. Figure 7 shows 
the training and validation loose curves for the CNN 
autoencoder throughout all four datasets.  

 
FIGURE 7.  Training and validation loose curves for a CNN autoencoder 
throughout all four datasets of fingerprint images. 
  

TABLE 3. Training Hyper-Parameters for CNN autoencoder 

Parameter Method 
Number of Epochs 1000 

Batch size 128 
L2 regularization 0.005 

Number of channels 1 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
We demonstrated the predictions of fingerprint features 

on the four testing datasets with a sparse autoencoder, and 
the proposed CNN autoencoder. The variation for the 
performance achieved by the two investigated architectures 
were evaluated as the classification type and database varied. 
The mean square error (MSE) has been utilized to calculate 
the error between the estimated fingerprint features and the 
original fingerprint features. We used the MSE formula in 
Eq [6] because it is the most common estimator of image 
quality measurement metric. It is a full reference metric to 
calculate the differences in pixel values between the input 
and output images to evaluate the accuracy for autoencoders.  
                         𝑀𝑆𝐸 =  

ଵ

௡
 ∑ (𝑌௜ − 𝑌෠)ଶ௡

௜ୀଵ                                (6) 

In Eq [6] MSE represents the mean square error, n is the 
number of data points, 𝑌௜ represents the observed value and 

𝑌෠ represents the predicted value. According to the results 
from these experiments on the testing datasets, the mean 
square error (MSE) for sparse autoencoder has been 
improved by manual enhancement of the fingerprint images 
during the pre-processing activities. It showed that the 
process of cropping the images increased the learning 
capability for sparse autoencoder, allowing fast training time 
and enhanced the performance for the architecture. The CNN 
autoencoder achieved very good results for recreating the 
fingerprint features. The proposed algorithm showed better 
performance in comparison to the sparse autoencoder among 
four datasets, see Figure 8 A & B, and Table 4. It is observed 
that the features with complex patterns in the original 
fingerprint images produced the best latent representation in 
the recreated images by this model, which minimized the 
MSE error. Moreover, the proposed approach eliminated 
overfitting problems and any possible data leakage in the 
reconstructed images.  

TABLE 4.  Performance of the CNN autoencoder vs Sparse autoencoder 
among all datasets. 

Model 
MSE 

Dataset I 
MSE 

Dataset II 
MSE 

Dataset III 
MSE 

Dataset IV 
CNN 

autoencoder 
0.0013 0.0015 0.0045 0.0048 

Sparse 
autoencoder 

0.023 0.026 0.033 0.07 

 

 
                                              (A) 

 
                                             (B) 
FIGURE 8.  The results for the reconstructed images by using (A) Sparse 
autoencoder (SAE), (B) CNN autoencoder on the testing sets for four 
datasets. 
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Further to our exploration, we performed the validation 
experiments on four testing datasets. This is to evaluate the 
fingerprint matching performance for the proposed model 
(CNN autoencoder) and sparse autoencoder among these 
datasets. We used cumulative match characteristics (CMC) 
as a performance evaluation between the reconstructed and 
the original features in the fingerprint images. Cumulative 
match characteristics is a metric used to assess the accuracy 
of   algorithms that produce scores of possible matches in the 
biometric systems. Throughout the results, the proposed 
approach achieved very good identification rate with 98.1% 
for Dataset I, 97% for Dataset II, 95.9% for Dataset III, and 
95.02% for Dataset IV, and overcomes sparse autoencoder 
identification accuracy, which was recorded at 92.3% for 
Dataset I, 90.01% for Dataset II, and 87.5% for Dataset III, 
and 70% for Dataset IV, see Figure 9 A & B.  

 
(A) 

 
(B) 

FIGURE 9.  Cumulative match characteristics (CMC) curves display 
fingerprint matching results. (A) CMC results by the proposed approach 
(CNN autoencoder) (B) CMC results by Sparse autoencoder  

 
This is to note that the proposed approach had better 

identification rate than sparse autoencoder on replicating the 
fingerprint features on Dataset IV which were collected from 
a fingerprint verification competition database (FVC2004). 
We compared the CNN autoencoder with other state-of-the-

art methods [51], [52], which used the same fingerprint 
images from FVC2004 database. It can be seen that the 
proposed reconstruction algorithm produced the highest 
accuracy compared to these state-of-the-art algorithms, see 
Table 5. Therefore, the proposed approach has been 
performed effectively on real-word images vs. sparse 
autoencoder, and other methodologies. Hence, the proposed 
CNN model can be used for fingerprint identification in 
several application fields. 

 
TABLE 5.  Performance of the proposed approach vs   state-of-the-art 
methods by using fingerprint images from FVC2004 database 

 

We measured the memory size for the proposed 
architecture, and sparse autoencoder, which are 1.257 MB. 
and 0.155 MB, respectively. This is the advantage of the 
proposed verses other pre-trained architectures such as 
SqueezeNet, Alexnet, Resnet50, and ShuffleNet. Figure 10 
shows the comparison of the CNN autoencoder vs. the sparse 
autoencoder, and other pre-trained models in terms of 
memory size. These models utilize large CNN layers which 
require a massive disk size for deployment on an embedded 
system, and IoT devices.  

 
FIGURE 10.  Comparison of the proposed approach (CNN autoencoder), 
and sparse autoencoder vs. other pre-trained models in terms of memory 
usage.   

VI. CONCLUSIONS AND OTHER EXPERIMENTAL 
TARGETS 

This work implements a novel approach for 
reconstructing fingerprint images based on CNN architecture. 
The CNN autoencoder is designed with an encoder and 
decoder, modelling the challenge of fingerprint image 
recreation by extracting the input image features, and 
replicating well-fined details in the output image. The 
proposed CNN autoencoder showed very good performance 
for replicating the fingerprint features from the images and 
overcomes the sparse autoencoder and other state of art 
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methodologies in terms of calculating the mean square error 
between the estimated and the original features. Indeed, 
analyzing the obtained experimental results, the 
convolutional autoencoder is the most suitable technique for 
recreating complex context fingerprint features as it   
improved and sharpened the fingerprint features on real-
world fingerprint images such as FVC2004 and SOCOFing 
databases. The measured memory size of the proposed CNN 
autoencoder is much lower than the state of art AI methods 
and this makes it suitable to run on low-cost embedded 
devices. Therefore, CNN autoencoder is viable option for 
biometric authentication and identification applications. 

 We foresee two different directions that can further 
enhance the performance of this model, one direction is to 
integrate the proposed approach within fingerprint scanners 
such as Lumidigm and Secugem sensors, which will give the 
final outcome on how the model performs in reconstructing 
the images. In addition to that, it could consider other data 
augmentation techniques using histogram-based operations 
and other geometric transformations to improve the mean 
square error value for the proposed approach. 
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