
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Towards a complete software stack to
integrate Quantum Key Distribution in a
cloud environment
IGNAZIO PEDONE, ANDREA ATZENI, DANIELE CANAVESE, AND ANTONIO LIOY, Member,
IEEE
Politecnico di Torino, Dip. Automatica e Informatica, Torino, Italy (e-mail: name.surname@polito.it)
Corresponding author: Ignazio Pedone (e-mail: ignazio.pedone@polito.it).

ABSTRACT The coming advent of Quantum Computing promises to jeopardize current communications
security, undermining the effectiveness of traditional public-key based cryptography. Different strategies
(Post-Quantum or Quantum Cryptography) have been proposed to address this problem. Many techniques
and algorithms based on quantum phenomena have been presented in recent years; the most relevant
example is the introduction of Quantum Key Distribution (QKD). This approach allows to exchange
cryptographic keys among parties and does not suffer from the development of quantum computation.
Problems arise when this technique has to be deployed and combined with modern distributed infras-
tructures that heavily depend on cloud and virtualisation paradigms. This paper addresses this issue by
presenting a new software stack that effortlessly introduces QKD in such environments and involves
a simulation tool for Quantum Key Distribution. This software stack allows for agnostic integration,
monitoring, and management of QKD, independent from a specific vendor or technology. Furthermore,
a QKD simulator is presented, designed, and tested. This latter contribution is suitable as a low-level
testing device, as an independent software module to check QKD protocols, and as a testbed to identify
future practical enhancements.

INDEX TERMS Quantum Cryptography, QKD, Quantum Communication, Softwarised Infrastructures

I. INTRODUCTION

Quantum Computing (QC) is a ground-breaking field that
promises to solve problems otherwise impossible to tackle
with classical computation. This holds for many scien-
tific fields such as physics, chemistry, molecular biology,
and computer science. However, some applications of QC
introduce potential threats for IT systems. The primary
concern is security, and in particular classical cryptographic
algorithms. Some widely used public-key algorithms are
endangered from QC advent, since this new paradigm can
solve cryptographic problems in polynomial time.

Traditional public-key cryptographic techniques are used
as a fundamental security pillar in modern IT infrastruc-
tures that are increasingly becoming “Softwarised infrastruc-
tures”, an umbrella term used to indicate Cloud Computing,
Network Functions Virtualisation (NFV) technologies, Edge
or Fog Computing, and Internet of Things (IoT). Since
the strength of these crypto-systems is at risk, the use of
quantum-resistant cryptographic techniques in cloud envi-

ronments is a desirable feature today, but it will become
a vital requirement in the not-so-distant future. In fact,
quantum threats appear consistent in the next 10-15 years1.
Over the past decades, several approaches have been

proposed to address the potential fall of the classical asym-
metric algorithms. The more effective are Post-quantum
Cryptography (PQC) and Quantum Cryptography. The first
relies on new classical algorithms that shall be designed
to be quantum-resistant and replace the current public-key
ones. Some examples are SPHINCS+2 and Dilithium3 for
digital signatures, and NTRU4 for key exchange. These
algorithms have been submitted to the National Institute of
Standards and Technology (NIST) PQC challenge5 for re-
placing and standardising the new quantum-resistant public-

1https://globalriskinstitute.org/download/quantum-threat-timeline-repor
t-2020/.

2https://sphincs.org.
3https://pq-crystals.org/dilithium/index.shtml.
4https://ntru.org.
5https://csrc.nist.gov/projects/post-quantum-cryptography.

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

key cryptographic algorithms. The second approach lever-
ages Quantum Cryptography. In particular, Quantum Key
Distribution (QKD). This technique is based on the no-
cloning theorem and – for specific protocols – on entan-
glement [1]. The main idea is to detect an eavesdropper on
the quantum channel when a key exchange takes place. In
this paper, we mostly rely on this technique, even though
we also use PQC to support specific tasks – mostly as a
complement rather than an alternative.

The recent literature focuses on the simulation of Quan-
tum Networks and quantum protocols. In addition, recent ap-
proaches underline the importance of integrating quantum-
based technology within modern infrastructures. In partic-
ular, the European Telecommunications Standards Institute
(ETSI) is working on defining clear specifications on how
to build quantum devices, design QKD networks, and even
implement standard APIs to facilitate the interconnection
among devices coming from different vendors. However,
the integration efforts in a softwarised infrastructure have
been so far made mostly as high-level analyses, i.e. without
considering real infrastructures or technologies that could
fit the goal. Moreover, the standards are quite general, not
envisioning consistent optimizations that could be adopted
within the scope of modern infrastructures.

To fill such a gap, this paper discusses the integration
of QKD in a softwarised infrastructures scenario, a chal-
lenging perspective considering the new constraints and
requirements (i.e., a dedicated quantum channel, single-
photon sources, public authenticated classical channel). We
started from the ETSI GS QKD specifications [2] keeping
compliance with the ETSI standard in terms of software
interfaces. We devoted a significant effort to address the
issues of designing and implementing a complete software
stack for efficient QKD integration in modern infrastructure.
In particular, we introduced the abstraction of the QKD
devices up to a centralized Key Server to serve as an
interface for security applications.

This paper also contributes to a framework to simulate
QKD networks, towards a scalable and flexible simulation
platform for QKD that enhances the testing of QKD proto-
cols. We present a practical implementation suggesting tech-
nologies, such as Docker6 containers, that could easily fit
current cloud-native infrastructures facilitating the adoption
of this kind of key distribution systems.

Adopting the aforementioned technologies as building
blocks for a distributed simulation platform for QKD, we
show that this can be integrated with the software stack and
thus can be easily available. This allows experimenting on
the different quantum simulation technologies to verify if
they could fit different use cases.

Setting aside the design and implementation of the current
version of both software stack and simulator, we aim at lay-
ing the basis for the evolution of these two parts separately.
Therefore, we mainly propose a framework that we can

6https://www.docker.com

evolve: for the software stack in extending coordination and
routing functionalities among QKD network nodes; for the
simulator to simulate complex Quantum Networks beyond
QKD in an efficient and distributed approach.
To summarise, the main contribution of this work is the

design and implementation of this software stack that could
easily be integrated with modern infrastructures and lever-
ages a cloud-native approach for development. This software
stack allows the integration, monitoring, and management of
many QKD systems within the infrastructure regardless of
the specific vendor and technology. In addition, we designed
and implemented a QKD simulator that could serve both as
a low-level testing device and as an independent software
module to test QKD protocols. In the end, we analysed a
testing scenario in which we reproduce the exchange among
two different nodes using the aforementioned QKD simula-
tor. In this scenario, we also tested the performance of our
simulation platform and proposed possible enhancement.
We report in the following the remaining structure of the

paper. Section II provides a background on the technologies
that we adopted and widely used in this paper. Section III
discusses the threat model of a softwarised infrastructure
mainly according to secure communications. Section IV de-
scribes the high-level architecture of our solution. Section V
presents the implementation of the QKD module. Section VI
describes the Quantum Key Server. Section VII provides fur-
ther details about our QKD simulator. Section VIII explains
the results of our testing and validation process. Section IX
presents some work related to Quantum Networks, QKD,
and quantum technologies in softwarised infrastructures.
Section X discusses the achievements presented in this
paper and possible future work. Finally, the appendices
contain a description of the BB84 and E91 QKD protocols
(Appendix A), our framework’s APIs (Appendix B) and
illustrates our software stack’s complete workflow showing
further details on the interaction among different compo-
nents (Appendix C).

II. BACKGROUND
To completely understand this work’s essence, we provide
an overview of QKD, softwarised infrastructures and ETSI
QKD GS specifications.

A. QUANTUM KEY DISTRIBUTION (QKD)
Quantum communication and quantum networks are topics
of utmost importance for the future of the Internet and
classical communication. Several papers [3], [4] show how a
Quantum Internet will work alongside the classical one over
the foreseeable future. The main idea is to leverage quantum
phenomena such as entanglement to design and implement
algorithms and protocols that do not have classical equiva-
lents.
Quantum Cryptography is a Quantum Communication

branch and involves algorithms and protocols that could be
applied, depending on the specific case, to protect either

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

quantum or classical communication. The most suitable
example is QKD.

This technique leverages quantum mechanical phenomena
to exchange keys among different parties with Information-
Theoretic Security [5]. QKD strongly relies on a quantum
channel that allows many peers to exchange qubits encoded
generally as photons. Beyond the quantum channel, QKD
protocols rely on a public authenticated classical channel to
exchange out-of-band information necessary to coordinate
peers during the exchange. Roughly speaking, there are
two main classes of QKD systems: discrete-variable QKD
(DV-QKD) and continuous-variable QKD (CV-QKD). In the
first type, encoding and decoding are performed leveraging
qubits or other quantum systems with finite-dimensional
Hilbert space. For this reason, it is also called qubit-based
QKD. In CV-QKD, instead, keys are encoded in quadratures
of the quantised electromagnetic field and decoded by
coherent detections [6]. This kind of detection is beneficial
in modern QKD implementations because it is compatible
with existing telecom equipment and shows high detection
efficiencies without the requirement to provide cooling [1].
This paper discusses only a subset of DV-QKD systems
for the simulator part since their implementation is more
straightforward with our current framework. In the future,
we aim to extend this work also to CV-QKD. Regarding
the software stack, that part is agnostic to the class of QKD
adopted; moreover, we see in that context the QKD as a
“black box”.

So far, many DV-QKD protocols, such as BB84, E91,
SARG04, BBM92, and COW [5], have been proposed. We
could classify them into distinct categories depending on
the adopted scheme: prepare-and-measure, entanglement-
based, and Measurement-device-independent QKD (MDI-
QKD). The first scheme involves only two actors (Alice and
Bob), one preparing the qubits sent to the second, which
performs the final measurements. The other two schemes
involve three modules: Alice, Bob, and Eve. Eve is a third-
party module used as an untrusted entangled-pairs sender in
entanglement-based protocols and an untrusted receiver in
MDI-QKD.

Appendix A presents two protocols falling in the two
first categories: BB84 (prepare-and-measure) and E91
(entanglement-based). In section VII, we show how we
implemented both protocols in our QKD simulator. We
chose these two protocols as they are the most employed for
basic experiments on QKD and serve as representatives for
two relevant QKD approaches. It is also worth mentioning
that companies such as ID Quantique7 and MagicQ8 already
commercialise devices that allow performing point-to-point
QKD (e.g., Clavis3).
The security definition for the QKD is available in [7], [8].

This is a composable security definition that is rigorously
stated and widely accepted. Several composable security

7https://www.idquantique.com
8https://www.magiqtech.com

proofs are available ([1], [5], [9], [10]) for both DV-QKD
and CV-QKD.
In order to work properly and to avoid Man-in-the-

Middle attacks, a QKD system requires an authenticated
classical channel to carry out the protocols. We can leverage
Information-Theoretic Security (ITS) authentication for this
channel with 2-universal hash functions [11]. Moreover,
we could adopt an efficient authentication scheme using �-
almost strongly universal hash functions. We could retrieve
the final security parameter � by the composability statement
of the respective security proofs of QKD and ITS authenti-
cation [12]. This parameter shows that the key is �-close to
the ideal one.
In the rest of the paper, we also introduce alternative

authentication mechanisms (sections VII and VIII). From
a practical perspective, these methods are more flexible in a
cloud environment scenario. From a security standpoint, this
comes at a price of a possible lower level of security. Thus,
while it is effective for simulation environments, before
using this protocol ensemble in a production environment,
their composition requires further studies and formal secu-
rity proofs to avoid the possible introduction of any security
flaws.
Besides the point-to-point QKD, where only two peers

share a quantum channel, some scenarios involve an en-
tire network, namely a QKD network. This ensemble of
nodes could exchange keys with each other, regardless
of their position within the network. Two main strategies
could be adopted to manage endpoints in a long-distance
scenario: using trusted or quantum repeaters. In the first
case, the assumption is to have intermediate trusted nodes
that leveraging point-to-point communications build a chain
that starts from the source and ends with the destination
endpoint. The second strategy involves the usage of quantum
repeaters based on entanglement swapping. This drops the
hypothesis of using trusted repeaters and allows secure end-
to-end exchanges. In this case, the endpoints verify the
presence of an eavesdropper without assumptions on the
repeaters.

B. QISKIT
Qiskit9 is a Python framework that allows to work with
quantum computers in terms of quantum circuit simulations,
algorithms, and pulses. This framework allows to both
simulate quantum circuits locally or submit jobs to IBM
Q backends10. The main Qiskit elements are:

∙ Terra: this is the basis for all the other Qiskit compo-
nents. It provides a layer for developing quantum pro-
grams by means of quantum circuits or pulses, a module
for circuit optimization also according to specific device
constrains, and interfaces to both facilitate the end-
user experience and to access to diverse backends for
simulation or execution on real devices.

9https://qiskit.org.
10https://www.ibm.com/quantum-computing/.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

∙ Aer: it provides an high-level performance quantum
circuit simulator which could be used to simulate the
circuits compiled using Terra. This is useful to quickly
test and verify the functionalities of the designed quan-
tum circuits. It also contains configurable noise models
to perform realistic noisy simulations of the errors
occurring on real devices.

∙ Ignis: it is a module which aims at providing tools for
better characterize errors and run circuits in presence
of noise. It has been designed for working on quantum
error correction codes.

∙ Aqua: this is a module which contains algorithms that
could be used in different domains (e.g., AI, Chemistry,
finance). This module allows to analyze the benefits
of using quantum computing in the respective domains
and build on top the proposed algorithms customized
solutions.

This framework is mainly adopted for simulating quantum
algorithms and circuits. In our case we could leverage
a quantum circuit representation of the QKD phases for
simulation purposes.
C. ETSI QKD GS
The ETSI has a specific working group for the standardisa-
tion of QKD technologies: ETSI GS QKD11. The related
standards collect many specifications regarding hardware
devices and software interfaces needed to implement QKD
systems and networks. Here a list of the specifications of
interest for this paper:

∙ ETSI GS QKD 004: this specification on “Applica-
tion Interface” [13] defines a standard API to interact
with QKD devices. Moreover, a preliminary high-level
architectural view of a QKD network site is provided.

∙ ETSI GS QKD 014: the “Protocol and data format of
REST-based key delivery API” [2] specification defines
a standard REST API that could be used by high-
level security applications to request keys to a Key
Management Entity (KME). The latter is a software
layer between the security applications and the QKD
devices. The KME within a specific QKD network
site manages key exchanges and coordinates with other
KMEs within the same network.

D. SOFTWARISED INFRASTRUCTURES
The expression “softwarised infrastructures” indicates all
modern infrastructures that strongly rely on virtualisation
technologies and allow the adoption of paradigms such as
Cloud, Edge, and fog computing, NFV, and IoT. Nowadays,
many virtualisation technologies are adopted depending on
the specific use case and the service model that has to be
offered.

A recent trend in application development proposes to
divide them into smaller components, namely microservices.
These microservices could be deployed using lightweight

11https://www.etsi.org/committee/qkd

virtualisation technologies such as Docker, Podman12, or
cri-o13 that run them in isolated environments called con-
tainers. Containers and the related application components
can communicate with each other using a TCP/IP network.
We refer to the applications running on such environments
as cloud-native. To deploy and manage containers, an or-
chestration container platform (e.g., Kubernetes14) is usually
adopted.

Regardless of the virtualisation technology, applications
running on infrastructures may require exchanging crypto-
graphic keys for different security protocols. Simple exam-
ples could be Transport Layer Security (TLS) for building
a secure channel among two applications or Internet Key
Exchange (IKE) in the scope of Virtual Private Networks
(VPNs). As they may rely on RSA and Diffie-Hellman (DH)
for the key exchange, TLS and IKE could be compromised
by the advent of Quantum Computing and, in particular,
Shor’s algorithm.

III. THREAT MODEL
Most public-key cryptographic (PKC) schemes are based on
the assumption that some mathematical problems are com-
putationally intractable for present computers (e.g. prime
number factorisation in RSA). Quantum computers (QCs)
break this assumption, making such problems “easy”, i.e.
reduce the mathematical problems to polynomial complexity
(for example, RSA can be attacked by exploiting Shor’s
algorithm). Less groundbreaking, but still a significant risk-
incrementor for symmetric-key cryptography, is the QCs
capability to investigate a 2n large solution space in 2(n∕2)
steps.

A softwarised infrastructure is composed of many virtu-
alisation actors and agile deployment components (e.g. hy-
pervisors, orchestrator, containers) that interact in a complex
manner and can be the target of attacks (both in terms of
single components and the communication channels among
them). A large amount of mitigations to those attacks is
based on authentication and confidentiality countermea-
sures, often based directly or indirectly on PKC and public-
key infrastructure (PKI). Assuming that QC is available,
no softwarised infrastructure can longer rely on traditional
PKC since private keys based on standard algorithms would
become vulnerable and insecure. The core point of the QKD
is to provide Information-Theoretic Security to the process
of key distribution, allowing robust security even after the
advent of practical Quantum Computers.

For the inner nature of QC, a QKD based on quan-
tum cryptography is particularly prone to Denial-of-Service
(DoS) attacks. If an exchanged key exhibits an error rate
above a specific threshold over an ideal channel, this shows
an eavesdropping attempt. A robust security strategy is
to discard the key and re-do the exchange. Thus, for an

12https://podman.io
13https://cri-o.io
14https://kubernetes.io

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

attacker would be sufficient to “read” the exchange to deny
the service. While some amount of DoS possibility is
accepted in almost any real case (e.g. any local wireless
communication can be drastically reduced by pretty cheap
and easy to buy WiFi jammers), a robust architecture must
address this aspect by appropriate countermeasures, e.g. the
presence of Intrusion Detection and Prevention systems to
identify and isolate the attack source.

Even if the adoption of QKD provides in principle
Information-Theoretic Security, implementations can violate
theoretical assumptions; thus, many developed QKD sys-
tems suffer security flaws. The architecture we propose is
agnostic to the practical realisation of the Quantum devices.
So, while we do not discuss real device problems, we advise
that theoretical key strength must be supported by robust
security implementations. In particular, a large body of
literature exists to analyse real device weaknesses, as well as
how to manage practical imperfections to remove physical
side channels [5].

Apart from the core threat to the involved cryptography,
a softwarised infrastructure still suffers from usual key
management and use issues. Typical key weaknesses involve
scarce entropy (the key is not long enough and/or has been
generated by a poor RNG), inappropriate re-use, both in
terms of use in multiple scenarios and encrypting a large
amount of data (since it jeopardises forward secrecy and
increases brute-force attacks and key-relevant information
leakage likelihood), insecure storage (obviously on Hard
disk but even in device RAM, since in the absence of
countermeasures even central memory could be accessed
with well know vulnerabilities like, for example, Heartbleed
and Spectre).

We assume in our solution the presence of either a
True Random Number Generator (TRNG) or a Quantum
Random Number Generator (QRNG) able to provide random
numbers with a high source of entropy. As in the previous
point, a practical implementation of these modules may
suffer security flaws, but this is out of the scope of our
research.

Key re-use in our architecture is treated flexibly. Since
we propose different options, according to the scenarios, an
appropriate security policy should be implied, guaranteeing
an appropriate lifetime for the derived keys, as it happens
in nowadays organisations. OSs and applications may suffer
from implementation flaws, but again this is out of the scope
of our investigation.

Even if robust QKD is involved, a key might still be
compromised (e.g. due to an implementation defect), so a
procedure to destroy it (i.e., securely delete the key and its
traces beyond recoverability) should be available. This last
aspect can be challenging since it conflicts with the need of
logging the key lifecycle to identify possible breaches and
apply revoking and destruction options, as well as forensics
investigations. The adoption of QKD for generating the
master secret to derive cryptographic keys does not change
this aspect, which is a matter of the adopted organisational

policies.
Finally, to counter insecure access to the key store, Key

access must be limited on a need-to-use basis, comple-
mented by separation-of-role based access control (e.g.,
an entity that uses a key should not be the entity that
stores that key). Key recoverability after accidental loss must
be assured through secure backup and recovery solutions
in place. Best practice suggests internal custody of keys
(or service at a provable similar security level), managed
by central key storage technology. This key aspect in our
architecture is managed by the Quantum Key Server, a
flexible component that can adopt different configuration
to adhere to organisational security policies, such as log
level and adopted QKD protocols, and is flexible enough to
exploit different existing secure secret manager (like Vault,
in the concrete testbed described in this article).
IV. QKD SOFTWARE STACK HIGH-LEVEL
ARCHITECTURE
The main goal of our architecture is to facilitate the adoption
of QKD in software infrastructures (e.g., cloud environ-
ments). Developing the software stack depicted in Figure
1 brings this purpose closer. In particular, the problem of
exchanging keys among two cloud instances or services is
mapped in four logical layers and components:

∙ QKD device: this represents the QKD physical device
capable of running QKD protocols on a real or simu-
lated quantum channel. Since we designed and imple-
mented a simulator for QKD that could be integrated
into our software stack, this paper also refers to the
previous level as “QKD simulator”.

∙ QKD Module (QKDM): this level is an abstraction of
the low-level QKD device and it provides a standard in-
terface to interact with different apparatuses. Regardless
of the technology used to implement the QKD, addi-
tional functionalities are provided to monitor, manage
and use the underlying devices.

∙ Quantum Key Server (QKS): at this level, the QKD
management across different nodes takes place. In par-
ticular, coordination is required among different QKSs
to establish the key exchange process among distributed
infrastructures. QKS provides an interface to high-level
security applications that require cryptographic keys
and selects the best path to follow in scenarios where
there are several nodes between the two endpoints of
the key exchange.

∙ Security Application Entity (SAE): this is the higher
level and represents the security applications willing to
use the QKD for specific purposes (i.e., to set up a
VPN).

This architectural framework is compliant with the ETSI
specifications [2].
Let us consider a point-to-point QKD connection; two

infrastructures may be equipped, as in Figure 1, with QKD
devices that are able to exchange keys at a specific rate.
Those devices have to share a quantum and a classical

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. QKD software stack architecture.

authenticated channel to carry out a QKD protocol. In our
architecture, the QKD device (or Simulator) identifies the
physical system and the QKDM an abstraction for operating
it.

If we switch to a more complex scenario, where a
complete QKD network is in place, then we need to manage
several aspects regarding the coordination of this network.
Moreover, we must provide mechanisms to efficiently store
the exchanged keys, routing functionalities to allow the
exchange among each possible SAE combination, and moni-
toring mechanisms to log relevant events of the QKD-system
life-cycle. Here comes into play the QKS. Each infrastruc-
ture shall expose at least one QKS, which represents the
central management unit of the QKD systems.

SAEs running on top of the infrastructure can only see the
QKS as a component, which from their perspective provides
QKD-as-a-Service. They are able, in fact, to exchange
quantum keys with all the other peers within the QKD
network.

The underlying QKD network topology can vary based
on low-level infrastructural choices. Two typical adopted
schemes are switched QKD and trusted repeater networks
[14]. In a switched QKD network, we typically find an
SDN controller dynamically adjusting the paths among the
endpoints (QKD devices). As an alternative, a network with
trusted repeaters creates a chain of intermediate trusted
nodes that must be traversed to perform the exchange.
Regardless of the topology, the assumption is that every
device leverages a quantum and a classical channel to carry
out the QKD protocol.

If physical devices support more than one connection at
a time (i.e., multiple quantum channels), then we could
associate more than one QKDM to the same device. The

basic idea is to have an abstraction where a QKDM pair
identifies a single keystream over a quantum channel. Those
keystreams and QKDMs can be efficiently operated by a
QKS in charge of deciding when a key exchange has to
start, stop, and keys must be retrieved to the higher-level
applications.
We identified two primary interfaces in our architecture:

the Northbound Interface and the Southbound Interface.
These allow, in turn, SAEs-QKS and QKS-QKDMs com-
munication.
In sections V, VI, and VII, we provide a more detailed

description of the software stack’s subcomponents. In Ap-
pendix C, we describe in details the interaction among
them.

A. SCENARIOS

This section clarifies the potential applications of our soft-
ware stack as well as the assumptions and limitations of the
current solution. Our software stack is currently composed
of a set of Docker containers deployable on a software
infrastructure through Docker Compose. As a matter of
fact, our software is a lightweight cloud-native application
that could be deployed even on minimal infrastructures
(i.e., edge-, fog- computing and IoT scenarios). This allows
within that infrastructure to manage QKD as a cloud ser-
vice, requiring keys on-demand (from a security application
perspective).
Clearly, the end-user of this service is a SAE inside the

infrastructure. Likely, a security application requires the
keys derived from the QKD to set up a secure channel
with another SAE in the same QKD network. This process
may leverage protocols such as TLS and IKE [15]. These
protocols must be adapted to be enhanced by QKD, and

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

our solution could simplify this process by providing a
manageable way to access the keys. Even in this case, the
arbitrary mixture of these protocols with QKD must be
carefully handled from a security point of view (section II).

An even more suitable use case is integrating our software
stack in Infrastructure-as-a-Service (IaaS) platforms such as
OpenStack15 or container orchestrator such as Kubernetes.
As in the OpenStack case, this type of platform already
manages secrets, keys, and certificates leveraging some of
its specific services (e.g., Barbican16). In addition, utilities
such as VPN-as-a-Service are available in the scope of
OpenStack to create site-to-site VPN with other data centres.
These utilities are integrated with Barbican to simplify the
management of the cryptographic material required by the
protocols (e.g., IKE).

A reasonable idea could be to integrate our software stack
in the scope of these platforms and provide a way for those
utilities to leverage QKD-exchanged keys directly. This kind
of integration is feasible and straightforward due to the
simplicity and modularity of our architecture.

The assumptions and the limitations of the current soft-
ware, such as the available authentication mechanisms, are
described in the following Sections V, VI, and VII.

In the end, our solution allows for various integrations and
usages regardless of the size of the infrastructure and the
specific context as long as we are in the scope of software
infrastructures.

V. QKD MODULE
Along with this section we start describing the high-level
software stack for the QKD integration in a softwarised
infrastructure. The QKD module is an abstraction within an
infrastructure aiming at providing a standard communication
method with quantum devices. As we will see in section VII,
the QKD node is the entity that maps within our solution
the physical device (or simulator) that enables the QKD low-
level exchange (e.g., ID Quantique Clavis3). In our paper,
we use the QKD simulator to provide a complete solution
without relying on physical devices. The role of the QKD
Module is to act as a wrapper for the QKD node, exposing
the standard API compliant to the ETSI QKD standard [13],
and providing high-level functionalities to the upper layers
such as retrieving a key exchanged with low-level devices. In
our solution, the particular implementation and the vendor-
specific devices adopted do not change the interaction
between the QKS and the QKDM. In the following, we
have a description of the APIs that shall be exposed, and the
methods that have to be implemented/overridden to provides
the functionalities expected from the quantum devices. We
implemented a template of QKDM according to this strategy
and provided a GitHub repository17 that could be forked to
implement a new QKDM for a specific device. The idea is

15https://www.openstack.org
16https://wiki.openstack.org/wiki/Barbican
17https://github.com/ignaziopedone/qkd-module.

that each device or simulator has its own QKDM, but the
effort to implement it consists of overriding a few methods
that we describe in the following. QKDM has been designed
following modern cloud-native paradigms for developing
applications and the Docker container technology. This
simplifies the integration of QKDM component within the
scope of cloud-native infrastructures (e.g., Kubernetes). A
complete description of the QKDM APIs is available in
appendix B-A.
A. ARCHITECTURE
As depicted in Figure 2, the QKDM architecture is com-
posed of four different submodules: QKD node, Key man-
ager, Sync interface, and Southbound interface. In this ar-
chitecture, we also integrated the quantum device simulation
part, which in Figure 1 is indicated as the QKD simulator.
This provides a complete understanding of how the QKDM
could interact with the underlying components.
The QKD node represents the quantum device. In this

paper, this component is precisely the one described in sec-
tion VII and includes a core component for QKD protocol
simulation as well as a REST API interface to communicate
with the other QKD nodes during the exchange (i.e., for
the key sifting process). In a real use case scenario, the
communication among devices and the implementation of
the protocols strictly depend on the adopted technology. In
that case, we could treat the QKD node as a black box with
a provided interface.
The core component of the QKDM is the Key Manager,

which is in charge of mapping the requests coming from
the Southbound Interface to the instructions for the QKD
node. It is also in charge of managing keys coming from the
exchange process, typically relying on resources provided by
the QKS (e.g., Vault in section VI).
The Southbound Interface is in charge of providing the

communication among QKS and QKDM. This interface
exposes the REST APIs proposed by the ETSI GS QKD
004 [13], especially the first three in table 3.
In the end, the Sync Interface is a set of REST APIs for

the synchronization among different QKDM during the key
exchange.
VI. QUANTUM KEY SERVER
As described in section V, QKDM is an independent com-
ponent capable of managing the process of key exchange
within a node. In principle, an infrastructural node only
requires this module for integrating point-to-point QKD.
Indeed, in our solution and besides the exchange process,
the QKDM can store the collected keys in a specific secret
engine provided by Hashicorp Vault. The only requirement
is for a SAE to have access to this engine and get a new
key.
Unfortunately, this might not work in complex infras-

tructures where different SAEs requires sharing QKD keys
exchanged with one or more different destinations. Because
of this, a software layer is required between SAEs and

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. QKD module architecture.

QKDMs allowing to centralise the management of the
exchange process, the key storage, the destination discovery,
and the evaluation of the shortest path to reach them. This
module is the QKS.

ETSI [2] focuses on the final security applications and
foresees a strict binding among two SAEs belonging on two
different nodes. This means that once a key exchange is
required and communication among two QKDM takes place,
a key stream is created and only the two involved SAEs
could access it to get keys. The role of the Key Server is
to facilitate this binding and managing the start and stop of
the key exchange process.

Considering the complexity of softwarised infrastructures
and their requirements in term of flexibility, our solution
adopts a different approach. Even if we maintain most of
the logic regarding the interactions among the entities, the
interfaces and part of the data model, we change to some
extent the role of the Key Server and design our QKS.

Our QKS acts similarly to a SAE in the sense that it is the
one in charge of deciding whether or not a specific stream
should be created and is the conceptual final “endpoint” of
all key exchanges towards the node, albeit it is still in charge
of the management of the exchange and the coordination
with the other QKSs. In our solution, the QKS is a sort of
middleware, which collects all the keys coming from all the
destinations and provides them to all the registered SAEs,
regardless of the binding that could happen between two
specific SAEs. This allows to continuously exchange keys
among QKDM point-to-point connections over the QKD
networks and potentially use those keys for each SAE-to-
SAE pairs over the same physical link. This is a relevant
advantage for a virtualised scenario in which keys could be
easily delivered among different virtual instances.

QKS has also been designed as a cloud-native applica-
tion, which could be efficiently integrated into a modern
infrastructure scenario. The interaction with the QKDM is

FIGURE 3. Quantum Key Server architecture.

pivotal. Indeed, QKS could support different QKD modules
that shall register to it before starting any task. It is also the
case of the SAEs that must be authenticated and authorised
before accessing the key server and request any key. Further
details on the interaction among all the components are in
appendix C. In the following, we describe the architecture
of the QKS.

A. ARCHITECTURE
As depicted in Figure 3, the architecture of QKS is com-
posed of three interfaces and four main components as
follows:

∙ Northbound interface: this is the interface towards the
SAEs and provides these with an extended version of
the ETSI API to query the QKS. This is mainly involved
in the process of requesting keys from the SAEs.

∙ Southbound interface: this is the interface that allows
the communication between the QKS and the QKDM.
As reported in section V, this interface is mainly im-
plemented on QKDM side. Nevertheless, this interface
is bi-directional and also QKS exposes some calls to
serve the QKDM.

∙ External interface: this interface serves as a synchro-
nisation interface among QKSs. It is pivotal for sharing
information such as the KSID and routing information.

∙ QKD manager: this is the core component in charge
of providing all the core functionalities such as serv-
ing Northbound Interface requests or registering new
QKDMs. This is also involved in the process of key
aggregation to serve multiple keys of an arbitrary length
to the upper layer.

∙ Keycloak18 (IAM): this is an additional component
that is useful in scenarios where the number of SAEs

18https://www.keycloak.org
8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and QKDM is large. Keycloak provides IAM function-
alities that allow to authenticate and authorize SAEs
and QKDMs. This is useful for both Northbound and
Southbound Interfaces and could be easily extended for
the External Interface as well.

∙ Vault19 (secret mgmt): this is a secret management
tool by Hashicorp which provides a flexible and scal-
able way for managing secrets. This tool allows the
creation of separated secret engines (one for each
QKDM), where the keys could be stored.

∙ Database: this component is used to store information
regarding the whole QKD exchange process, the regis-
tered QKDMs, and the QKD protocols supported.

For the authentication and the authorisation of the South-
bound and Northbound interfaces, we use Keycloak and
OpenID connect. For the interaction among different QKSs
we have not implemented those mechanisms yet. We could
easily extend the Keycloak solution also in the case of
the External Interface. The point is that, in a “quantum
scenario”, the communication over a secure channel within a
QKD network should be protected with a quantum-resistant
set of algorithms and protocols. Thus it is not just a matter
of authentication and authorisation, but we aim at building
quantum-resistant secure channels among them. We ex-
plored different possibilities that we would like to integrate
with our solution. The first that we considered is to integrate
post-quantum algorithms, such as SPHINCS+ and NTRU, to
build a secure TLS channel among QKSs. In addition, the
authorisation part could still be performed using Keycloak.
Another solution that we have lies in adopting TLS-PSK,
which could be used in combination with the QKD keys
already generated at the lower level. This envisions the QKS
acting as a special SAE and able to require specific keys for
the communication with other QKSs.

Even the communication within the infrastructure, among
the different layers (i.e., QKS vs QKDM) has to be pro-
tected. According to ETSI GS QKD 014 [2] that communi-
cation could rely on the classical TLS v1.2 as a minimum re-
quirement. We disagree on this, envisioning that in quantum
scenario also the communication within the infrastructure
should be protected with quantum-resistant approaches. In
addition, it is not mandatory that the QKS has to be deployed
on the same physical node as the quantum device, and
this leaves room for other attack strategies. Our idea is to
integrate within the infrastructure a secure communication
mechanism based on post-quantum cryptography in order to
completely overcome the aforementioned issue.

In Appendix C, we clarify other aspects regarding the
interaction among all the components of our solution. The
QKS’s code is available on GitHub20. This implementation
is completely based on a cloud-native approach and lever-
ages Docker technologies. Each subcomponent has been
modelled as a separate Docker container. To provide an

19https://www.vaultproject.io
20https://github.com/ignaziopedone/qkd-keyserver

effortless deployment, we additionally defined a Docker
Compose21 descriptor. In the end, we also describe the QKS
APIs in appendix B-B.

VII. QKD SIMULATOR
To consistently test our solution and provide a different
approach to the simulation of QKD protocols, we designed
and implemented the QKD simulator described in the
following. The current version of this software is at its
early stages and provides the minimum functionalities for
testing two QKD protocols: BB84 and E91. Even though
the low-level simulation part has to be enhanced, our design
principles allow to extend and scale our simulator providing
all the required capabilities to become a full-fledged QKD
simulator. In principle, it could also be extended to simulate
protocols beyond QKD in the broader field of Quantum
Networks.
The high-level QKD simulator architecture is depicted

in Figure 4. All components have been designed as in-
dependent Docker containers. This allows them to run in
lightweight virtual instances and communicate over classical
TCP/IP networks with the others. Using Docker technology
as Container Runtime Interface (CRI) provides an effortless
way to scale the simulation across different infrastructural
nodes. Thinking of this solution as being deployed on a
Kubernetes cluster quickly arranges a way to test complex
QKD network scenarios.
The main QKD simulator components are:
∙ QKD node: this is the component that models the QKD
device. In the QKD scope, this is one of the parties
involved in the key exchange (e.g., Alice, Bob). The
QKD node is equipped with all the software capable of
simulating the qubit encoding as well as the operation
on the quantum states. It provides mechanisms to
serialise qubit-related data and communicate with the
other components over a TCP/IP network.

∙ Quantum channel and Eve: this entity is a particular
QKD node, which includes the same underlying soft-
ware for the quantum simulation, but it is designed to
reproduce the specific effects of certain entities acting
on a quantum channel (e.g., noise, eavesdroppers). It
acts on the qubits encoded by QKD nodes leveraging
the specifically chosen representation.

∙ Entanglement pairs generator: the latter provides
pairs of qubits that are maximally entangled and still
compliant to the chosen representation. This is useful
within the scope of entanglement-based protocols.

∙ QKD Simulator Manager: this manager implements
a central management unit that collects data about the
simulation and gives a handy interface for triggering
protocol simulations or configuring QKD nodes. Both
command-line and graphic interfaces have been pro-
vided, even though they are at their early stages.

21https://github.com/docker/compose
VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

To replicate quantum phenomena and develop the under-
lying software to simulate qubit encoding, manipulation and
measurement, we use Qiskit (section II). The basic idea is to
leverage State Vectors (SVs) for the qubit encoding process
and Quantum Circuits (QCs) to simulate the evolution of
these SVs following the interaction among Alice, Bob, and
Eve. In our scope, the first two act as parties involved in
the key exchange and the last one acts as an eavesdropper
on the quantum channel. Regardless of the specifically
selected protocol, we discuss some aspects of our simulation
platform. Afterwards, we present the implementation of both
BB84 and E91 protocols.

The first interesting common aspect concerns the qubit
encoding. In particular, we used the Statevector class
to create an ensemble of qubits. This class allows to initialise
the qubit vector with specific values (e.g., |00000⟩), provides
a method to evolve its state according to a supplied quantum
circuit, and a method to measure the final state. These are
three macro operations required to simulate all we need for
QKD protocols.

Another crucial feature is each component’s ability to
communicate over a TCP/IP network for exchanging quan-
tum and classical data. The idea is to serialise SVs objects
and send them over a classical network, using HTTP at
the application level. For this purpose, the pickle Python
module for object serialisation has been used. Once an
SV object has been serialised, we could embed it into the
body of an HTTP request and send it to another entity
within a QKD network. This process applies to all the
communication that require quantum bits exchange within
our simulated network. In our solution, we leverage Flask22
web servers to expose REST-based API that could be used
to communicate among peers. The use of HTTP and Flask
web service is not mandatory and could be easily changed
in the future, making room for a custom application-level
protocol.

As depicted in Figure 4, all the communication among
parties are mediated - see Alice and Bob - by an entity rep-
resenting both the quantum channel and a possible attacker.
This is because, directly on a TCP/IP network, we can
neither simulate the quantum effects acting on transmission
nor manipulate the qubits as an attacker over a quantum
channel. Because of this, we proposed a new entity - Quan-
tum Channel and Eve - that could apply those effects on
quantum bits. Undoubtedly, this strategy could be extended
by adding different intermediate nodes between Alice and
Bob and make them affecting the qubits arbitrarily. The
only capability that both QKD nodes and these “special
nodes” have to share is a standard communication method
leveraging an identical qubit representation.

In Section II, we claim that, regardless of the protocol
that we adopt, we do need a public classical channel to
exchange additional information during the QKD process.
This channel has to be authenticated, and the technique that

22https://flask.palletsprojects.com/en/2.0.x/

we use to perform this task should be flexible and scalable
to fit real distributed use case scenarios. We proposed and
implemented two different strategies: using SPHINCS+, a
post-quantum algorithm, or AES with Galois/Counter Mode
(AES-GCM) authenticated encryption. The first solution
requires signing the messages exchanged over the public
channel. This is a highly flexible approach since it does not
require pre-shared secrets among Alice and Bob, but only
to know the public key of the counterpart. Some efforts are
going towards a new “Post-Quantum PKI” which involves
post-quantum X.509 certificates, giving a scalable solution
to the authentication problem. The downsides are that it
still relies on computational assumptions and post-quantum
algorithms - including SPHINCS+ - are not standardised
yet. Fortunately, the authentication has to be granted only
during the QKD exchange process, meaning that no sensitive
information about the key could be extracted from data
stolen from the public channel, and no attack could be
performed using that information aftermath.
The second option involves the usage of an encrypted and

authenticated channel through AES-GCM. This could be
done using a pre-shared key between the parties that could
be rotated using a portion of the key exchanged during the
QKD process. Under the assumption of adopting a certain
key length, this solution is also quantum-resistant, but it
needs initial pre-shared secrets and a priori knowledge of
those secrets among parties. In addition, this solution is
vulnerable to DoS attacks. Indeed, if an attacker makes the
exchange process continuously fail, the parties will consume
all the pre-shared key material, leading to a denial of service.
This could be mitigated by a fallback strategy in which,
when that happens, instead of using a pre-shared key, a new
secret could be obtained by using public-key cryptography.
The QKD simulator manager is in charge of monitoring

and managing the key exchange process. Exposing both a
CLI and a GUI, this module is able to trigger the exchange
process between parties, set the parameters of this exchange
(e.g., protocol, key length, eavesdropper presence) and show
the simulation results. In principle, this component could
be used as an orchestrator for the whole reproduced QKD
network. This means it could potentially add new nodes and
configure them. The current version is still at an early stage
and only allows to manage Alice and Bob’s exchange with
the two supported protocol. Nevertheless, considering the
adopted technologies, the simulator manager’s improvement
towards those features is not too ambitious.
A QRNG simulation module has been included within

the QKD node. This allows reproducing the generation of
random bits for the key to be exchanged. The module has a
straightforward implementation consisting of a circuit acting
on a quantum register that is initialised to |0⟩. Applying a
set of Hadamard gates to this register (H⊗n), where n is
the number of qubits, the evolution of the circuit results in
n qubits in the state (|0⟩ + |1⟩)∕

√

2 = |+⟩. If we measure
all these qubits in the computational basis, we get either 0
or 1 with a 50% probability: we obtained the QRNG. Since

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. QKD simulator high-level architecture.

this module consistently affects the whole system in terms
of performance, we also foresaw an option that allows using
a classical pseudo-random number generator.

The last global consideration is according to the extension
of our simulator to support other protocols. The current
version of our software provides the abstract QKD class with
the following methods that could be overridden:

∙ begin: this initialise the connection among two QKD
nodes;

∙ exchangeKey: this starts the key exchange;
∙ end: this closes the connection among the nodes.
Maintaining all the features regarding the communication

and the underlying Qiskit framework, it is possible to create
a new version of our simulator that support other protocols
simply overriding those methods.

Moreover, we are not even tied to the framework that
we use for the simulation. Indeed, we could also extend
the QKD node to support various frameworks, for instance,
using the ones cited in section IX. Afterwards, depending
on the protocol and the simulation requirements, it is possi-
ble to leverage the most suitable libraries for the specific
implementation. For the sake of simplicity, we provided
a Docker image on Docker Hub23 with all the current
underlying software required by the QKD node. This image
could be used to deploy several QKD nodes and run the
code related to the specific protocol simulation. Extending
the simulator adopting other frameworks could be achieved
by extending this Docker image. On a side note, it is
reasonable to leverage diverse orchestration platforms for
deploying that image and creating an arbitrary simulated
QKD network. For this specific purpose, we automated our
solution’s deployment using Docker Compose. The QKD

23on hub.docker.com: ignaziopedone/qkd:simulator-1.2

simulator’s code and documentation are available on GitHub
24.

A. BB84 IMPLEMENTATION
In appendix A, we give a general description of the BB84
protocol. Now we discuss how it is possible to implement
it with Qiskit. We assume that the architecture is the one
depicted in Figure 4 and Alice and Bob are the parties
wishing to perform the QKD. To simulate both quantum
channel and Eve’s attack, all traffic has to pass through
the container that applies those effects. Each container has
a single interface on the overlay network provided by the
Container Runtime Interface. The two types of traffic - for
both public and quantum channel - reach this interface when
two nodes need to communicate.
Starting from these assumptions, a key exchange could

start when one of the parties (assume Alice) requires it.
The first phase requires that Alice generates two sequences
of random numbers: one corresponding to the bits of the
key to be exchanged, the other one to the sequence of bases
in which we could measure those bits. In order to encode
those bits in quantum bits, we need to prepare an array of
Statevectors in the correct bases. A first consideration is that
the number of bits required for a key (e.g., 256, 4096) is
consistently larger than the number of qubits manageable
in a Qiskit register. Because of this, we implemented a
mechanism to manage an arbitrary number of bits iterating
the quantum operations required in the process according to
the size of the qubit register available in Qiskit. Moreover,
we tested different register sizes (section VIII), and we
chose the one that better fit according to the performance.
Nevertheless, it is possible to change this dimension in the

24https://github.com/ignaziopedone/qkd-sim.
VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

simulator settings. Assuming that we are using a 5-qubit
register and the key is of the same size, the BB84 scenario
could be described by Figure 5.

FIGURE 5. BB84 quantum circuit with 5-qubit register.

In practice, we start with a quantum register initialised to
|00000⟩ in the computational basis (z-basis). We could use
as a basis either the computational basis or the Hadamard
basis (x-basis). These bases are conjugate; namely, if we
encode a qubit in z-basis and then perform a measurement
in x-basis, we get a 50% chance to have either 0 or 1 and
vice versa. According to BB84, we need four different states.
Since all the qubits within a register are initialised to 0, if a
1 is required than the corresponding bit should be flipped.
To perform this operation, we could use an X gate where
we need a 1. Afterwards, we need to decide if we want
to encode employing the computational or Hadamard basis.
By default, we work with the computational basis, so to
change this behaviour, we need to apply a Hadamard gate
(H gate) where the change of basis has to occur. The result
of this process (performed by Alice) is shown in Figure 5
according to the first four qubits:

∙ q0 encodes a 1 in x-basis;
∙ q1 encodes a 0 in x-basis;
∙ q2 encodes a 0 in z-basis;
∙ q3 encodes a 1 in z-basis.
Once the qubits have been correctly encoded in the chosen

bases, Alice sends the corresponding SVs to Bob. This
is possible by means of serialisation process. Afterwards,
Bob could choose which bases he will use to measure the
qubits and perform this action. As you may notice, the
choice regarding the bases depends on whether we apply the
Hadamard gate. So if both Alice and Bob make the same
choice, they will have a consistent qubit, otherwise, there
will be an error with a probability of 1∕4. This is exactly
the principle that allows the detection of an eavesdropper
(Eve). In our case, we introduce Eve, and the presence of a
Hadamard gate indicates that she has chosen a wrong basis.
There are different approaches to simulate BB84. One of
them is to apply the basis as in the Alice and Bob case and
measure the resulting state. Then it is possible to proceed

with Bob’s measurements. In our solution, we assume that
when Eve chooses the same basis as Alice, we do not apply
the H gate, otherwise, we do. This allows having the same
result for BB84.
After the qubit exchange process, Alice and Bob start the

Key Sifting process. They share their choices in terms of
bases and exclude from the key the qubits where the basis
does not match. In practice, according to Figure 5 only q1and q3 are left. In the first case, Eve chooses the same basis,
so no error is expected from Bob’s side. This means that
we can not detect Eve. In the second case, Eve chooses a
wrong basis and then we have a 50% chance to detect her
action.
The overall process could be repeated using the same

register until we get all the qubits we need for the key. In
section VIII, we discuss the intercept-resend attack and we
show the results of its simulation.
The following steps involve the QBER estimation. This

process could be done right after Alice and Bob publish a
subset of bits within the key (in our case, half of them).
QBER is the metric that allows us to establish Eve’s pres-
ence. In literature [16], the classical threshold is the value of
11%. In practice, it depends on the key distillation process:
for instance, adopting Advantage Distillation techniques
enhances the performance up to 20%, as reported in [17].
In our case, we do not take into account non-idealities and
quantum channel noise yet. Thus, the only error introduced
is by Eve. If we assume that all the qubits of the key
have been attacked independently of each other, then QBER
should be around 25%. This threshold has to be calculated
according to the PA technique adopted. In a real scenario, we
have both quantum channel noise and Eve, so as we discuss
in appendix A, we need error correction code to correct the
bits flipped due to the noisy channel and also a technique to
reduce the quantity of information gained by Eve. We have
not implemented error correction and privacy amplification
yet, but we are working on the integration in our prototype
of the Cascade protocol [18] for error correction and PA
techniques based on Toeplitz universal hash functions [19].
The general workflow already includes these two steps that
have to be executed right after the QBER estimation.

B. E91 IMPLEMENTATION
The implementation of the E91 protocol is also at its early
stage. We took inspiration from Qiskit community25 to im-
plement this one. According to the architecture, we provided
another module to perform the entanglement pair generation.
As depicted in Figure 6, we obtain a singlet state (maximally
entangled) initialising q0 and q1 to |1⟩, applying a Hadamard
gate to the first qubit, and employing a controlled NOT
gate (C-NOT) controlled by the first qubit and applied
to the second one. This gives us the state described by
the Equation 1. After this phase, the representation of the

25https://github.com/qiskit-community/qiskit-community-
tutorials/tree/master/awards/teach_me_qiskit_2018/e91_qkd

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

entangled pair is sent to the quantum channel. Here we
perform all the quantum operations without sending any
qubits to Alice and Bob. At this stage, we used this strategy
to simplify the entanglement simulation.

FIGURE 6. E91 quantum circuit.

For next releases we are working on a more effective
solution. When the entangled pair representation reach the
quantum channel, the latter performs the measurement ac-
cording random choices provided by Alice and Bob nodes.
The measurement choices for E91 are described in ap-
pendix A. Alice could choose among three different choices
(Aj) and the same goes for Bob (Bj). In Figure 7 we have
the implementation of these measurements as a circuit. In
particular:

∙ Alice: q0 (�a3 = 90°), q1 (�a1 = 0°), q2 (�a2 = 45°);
∙ Bob: q0 (�b2 = 90°), q2 (�b1 = 45°), q3 (�b3 = 135°).
Eve could perform the exact measurements on both Alice

and Bob’s branches. In Figure 6 we did not add the
measurement part regarding Eve, but it is implied.

After the measurement part, we divide the bits into two
groups as described in appendix A: one for the key and one
for the CHSH inequality verification. We calculate the value
described in Equation 4, using also Equation 3 and 2. If the
value is close to the correlation (anti-correlation) expected,
then we keep the key, otherwise, we drop it.

FIGURE 7. E91 Alice and Bob’s possible measurements.

VIII. TESTING
For testing purposes, we developed a testbed following the
schema depicted in Figure 1. Here are the details of the
environment:

∙ two bare-metal nodes equipped with an Intel Core i5-
5300U CPU @ 2.30 GHz, 16GB of RAM, and an
Ubuntu 20.04 LTS server Linux distribution;

∙ Docker Engine CE v20.10.1 - API v1.41, Docker Com-
pose v1.27.4, and our software stack integrated with the
QKD node component of the simulator (all installed on
both nodes).

For functional testing, we performed with success the
following operations:
1) plug-and-play installation of the whole environment

with Docker Compose;
2) registration of the QKD nodes to the respective QKSs;
3) start the key exchange process among the two nodes

(through the QKSs);
4) installation of two SAEs - one on each node - and

testing of get_key and get_key_with_id
methods for key of different lengths (e.g., 256, 1024,
4096 bits).

5) repeat tests (2) and (3) with different protocols (e.g.,
BB84, E91) and public channel protections (e.g.,
SPHINCS+, AES-GCM)

No major flaws have been identified during the functional
testing.
As quantitative tests, we investigated the performance

of the QKD simulator. We relied on two typical metrics
for a QKD system: QBER and throughput (bit-rate) of the
exchanged keys.
The first test in Figure 8 analyses the differences in using

various quantum register lengths in Qiskit. In section VII,
we show how quantum registers are used to support the
simulation of the QKD and the possibility to set an arbitrary
length in our solution. The test shows that, varying the
number of qubits from 1 to 10, the performances are nearly
the same with a pick when we choose a 5-qubit register.
Because of this, we adopted this length for the other tests.
Nevertheless, there is no significant enhancement in picking
a specific length value. Quite the opposite the case of a
length greater than 10. Indeed, in this case, the performances
collapse due to the limit of qubits that we could simulate
on our host. IBM Q26 allows to simulate on their servers up
to 32 qubits and also to execute the job on actual quantum
devices up to 65 physical qubits and a quantum volume of
128. On our machine, as in the case of a regular laptop, we
barely reach a 12 qubits simulation. In this case, the key
exchanged was composed of 4096 bits.
Using the same number of qubits within a quantum

register, we then tested, varying the length of the key, the
time needed for a complete key exchange. We analysed the
following four scenarios:

∙ using the QRNG and SPHINCS+;
∙ using only SPHINCS+;
∙ using only AES-GCM;
∙ using no protection on public channel and no QRNG
(baseline).

26See https://www.ibm.com/quantum-computing/.
VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

qubits (#)

tim
e(

s)

100

200

300

400

500

thr
ou
gh
pu
t(b

ps)
FIGURE 8. Time for a 4096 bits key exchange depending on the qubit register
length.

TABLE 1. BB84 key exchange rate and time

SCENARIO BIT-RATE (BPS) EXCHANGE TIME (S)
Baseline 440.43 9.30
AES-GCM only 419.67 9.76
SPHINCS+ only 338.79 12.09
QRNG + SPHINCS+ 24.75 82.78

As we depicted in Figure 10, the global trend is for the
bit-rate to grow as the key length increases. This stops when
we reach the maximum in terms of throughput, according
to our system. In our case, the maxima with respect to the
different scenarios are provided in Table 1.

The first three maxima were reached at the key length
of 4096 bits. Going further and increasing the key length
gave no more growth in terms of bit rate. The last maximum
was reached at 2048 bits, even though the saturation started
around 512 bits.

Further consideration on Figure 10 are related to the
comparison among the different case scenario. Using a
QRNG simulation is resource consuming, and the impact
on the performance is clear looking at the blue line with
the squared marker in Figure 10. For this reason, we do not
proceed in showing further tests on this case scenario.

The other three lines are comparable. As we can see,
the black line (with the circular marker) is the baseline.
In that case, we got rid of all the overheads introduced by
the authentication process and the QRNG. Adding to this
baseline, the encryption and the authentication of the public
channel with AES-GCM we have no consistent overhead.
The red line with the diamond marker is really close to
the black one. This is clear starting from a key length of
1024; indeed, until that threshold, the variance of the time
needed for the quantum operations is mixed up with the
other variables. In the case we only use SPHINCS+ (green
line with the triangular marker) instead, as we expected, it

0 512 1,024 2,048 4,096
2

4

6

8

10

12

14

key length (# bits)

tim
e(

s)

SPHINCS+
AES-GCM
baseline

FIGURE 9. BB84 key exchange time depending on the key length.

introduces a significant overhead compared to AES-GCM.
Indeed, this post-quantum algorithm according to the variant
we used (SHAKE256-128f) introduces an average overhead
for signing and verifying in turn of 275 ms and 11 ms.
All the values have been evaluated as average over 100

iterations of a key exchange of a specific size. We also
provided a vision of the same graph according to the time
instead of the throughput in Figure 9. In this case, we left out
the case of the QRNG, for the reasons we mentioned before.
It is worth mentioning that most of the values depicted in
Table 1 are comparable with real devices currently available
on the market. In particular, if we refer to ID Qauntique
Clavis27 we could notice that the secret key rate is 1.4 kbps,
which is close to the throughput of our simulator.
In the end, we also implemented an intercept-resend

attack scenario on the BB84 protocol. According to Figure 4,
all the traffic (related to Alice and Bob’s communication)
pass through Eve’s node, which is capable of measuring
an arbitrary quantity of qubits before they reach Bob’s
node. Once Eve measures a quantum bit, he could introduce
(section VII) an error related to that bit with a probability of
1∕4. This happens because he has to choose random bases,
as in the Alice and Bob’s cases.
Moreover, this type of attacks could be more sophisticated

than that in [5]. There are three types of attacks in theory:
individual, collective, and coherent. The intercept-resend is
an individual attack, which is the simplest type where each
qubit is attacked independently. The other types are more
sophisticated and involve the preparation of ancilla qubits
for the interaction with the target qubits either to perform a
collective measurement on them or to entangle the ancillas
and then perform the measurements. These processes allow
Eve to retrieve more information than the previous case.
Today’s technologies do not allow to perform collective and
coherent attacks since they require quantum memories.

27https://www.idquantique.com/quantum-safe-security/products/clavis3-
qkd-platform-rd/

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 512 1,024 2,048 4,096
0
50
100
150
200
250
300
350
400
450
500
550
600

key length (# bits)

bit
rat

e(
bp
s)

QRNG + SPHINCS+
SPHINCS+
AES-GCM
baseline

FIGURE 10. BB84 key exchange bit rate depending on the key length.

Returning to the intercept-resend attack, an attacker could
decide to perform partial measurements as well as to mea-
sure all bits at once instead of doing that independently. We
explored the primary case in which Eve either measure all
qubits or a subset of them but always independently to each
other.

In a real case scenario, the error introduced by the attacker
could be tolerable, since with some PA techniques, we could
reach the threshold of 11% for the QBER until we need to
drop the key. This allows to reach better performances in
term of bit-rate, and works well on very noisy quantum
channels.

Setting aside the importance of the QBER, in Figure 11
we analyse the variation of the QBER as a function of the
number of the attacked qubits. This operation has been per-
formed for an exchange of an 8192-bit key. In particular, we
consider our ideal scenario in which there is no noise over
the quantum channel, and Eve attack an arbitrary number of
qubits. As the number of qubits attacked (measured) by Eve
increases, the QBER grows. We plotted all the data that we
retrieved from our experiment and calculated the regression
line, which shows accordingly to the theory that the QBER
linearly grows. More specifically, if we zoom on the frame
within the picture, we could see that the more we get closer
to attack all the qubits, the closer we get to a 25% QBER
value. This is the theoretical value for this type of attack
in a situation where non-idealities are not in place. This
shows how this first version of our simulator and the attack
implemented work as expected.
IX. RELATED WORK
The literature on Quantum Computing and Quantum Com-
munication has been particularly prolific in recent years.
Indeed, a study published by Elsevier28 highlights that
publication in these fields have been steeply increasing since

28See https://www.elsevier.com/solutions/scopus/who-uses-scopus/rese
arch-and-development/quantum-computing-report.

2015. Among those publications, several works address this
paper’s issues; therefore, we report in the following some
of the most captivating ones. We divide the papers into two
groups: one addressing the integration of the QKD and the
other the simulation.
The first group of papers discusses the integration of

QKD in softwarised infrastructure scenarios. In [20], the
authors present an interesting perspective from a telecom-
munication provider’s point of view. They describe how,
leveraging Software-defined networking (SDN), QKD can
be deployed in modern infrastructures and provide insightful
thoughts on real use case scenarios. The authors of [21]
provide a solution for integrating QKD in an NFV scenario
using SDN-controlled optical switches. Their work mainly
focuses on the quantum channel’s reconfiguration (using the
programmable switches) rather than the key management
within the infrastructure. Lopez et al. [22] demonstrate a
practical QKD integration over a standard telecommunica-
tion network leveraging SDN. Finally, the authors of [23]
present the SDQaaS framework. This framework endeavours
to implement a QKD-as-a-Service (QaaS) approach, where
the QaaS functions are developed within an SDN controller.
Essentially, QaaS is a pattern that allows sharing of QKD
services among different users. All these works leverage
SDN for decoupling the control and management plane from
the data plane (i.e., forwarding of the keys) within QKD net-
works. This is a valid strategy that allows dynamic changes
in a QKD network, exploiting the available quantum chan-
nels effectively. Our solution is different because it focuses
on the software stack that is required within an infrastructure
to provide security applications with quantum keys. This is
achieved by developing a cloud-native application that could
run directly on the target infrastructure and do not require
the adoption of the SDN paradigm. Nevertheless, according
to the specific use case, SDN could still be adopted to
optimize the usage of the quantum channel as discussed in
[21] and to centralize the management of all QKD nodes.
Moreover, it is possible to extend our solution by adopting
a Software-defined QKD (SD-QKD) approach described in
[24]. This implies that our QKS has to interoperate with
an SDN controller (i.e., by means of an SDN agent within
the infrastructure), which shall control the QKD modules.
The latter adjusts the configuration of the modules according
to the key exchange requests and retains information about
the applications involved. So far, we believe that a more
straightforward solution could be easily adopted in limited
infrastructures and for diverse use cases. Nevertheless, our
solution could be extended to support SD-QKD.
The second group of papers targets the topic of quantum

simulation. Several works ([25], [26]) directly focus on
simulating QKD protocols such as BB84 and B92. These
works aim at capturing the peculiarities of the specific pro-
tocols, taking into account the non-idealities of the practical
implementations. The aforementioned works also provide a
framework to simulate a key exchange. Comparisons with
real testbeds have been provided to show the consistency

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000
0

5

10

15

20

25

attacked qubits (#)

QB
ER

(%
)

FIGURE 11. BB84 intercept-resend attack: QBER estimation.

of their solutions. Our approach, on the contrary, is more
general and aims to reproduce quantum nodes that can
communicate over a simulated QKD network, regardless of
the type of protocols involved. In this sense, our approach
is not tied to a specific technology or framework, but its
goal is to provide a scalable framework that is adaptable to
different use case scenarios.

Finally, several works address the problem of Quantum
Network simulation ([27]–[30]). These works try to match
some proposed abstracted quantum network architectures (
[3], [31]) and simulate a Quantum Internet scenario with
several quantum nodes. This is a difficult task since there
is no standard or agreement on the evolution of these
networks. One of the most recent and consistent approach
is NetSquid [30]. This is a generic discrete-event based
platform for simulating all the aspect of quantum networks
and modular quantum computing systems: ranging from the
physical to the application level. The authors of [30] also
provide evidence of processing nodes based on NV centres
in diamond and repeaters based on atomic ensembles. In this
case, their solutions are more generic than the one proposed
with the QKD simulators and focus on the quantum network
protocols needed for building a Quantum Internet rather
than Quantum Cryptography. In this sense, our solution is
different because it aims at simulating QKD networks and
providing a tool for testing QKD in real infrastructures. This
does not exclude the possibility of evolving our solution in
a more generic simulator which could also leverage some
of those frameworks to simulate Quantum Networks using
specific technologies (e.g., NV centres in diamond).

X. CONCLUSION
This paper describes a complete software stack for integrat-
ing QKD in softwarised infrastructures. The main contribu-
tions lie in a straightforward design and implementation of
a QKS, which could be easily integrated into several kinds

of infrastructure, and the development of a QKD simulator
that could reproduce both BB84 and E91 protocols. These
software components could efficiently be extended since
they have been implemented using cloud-native technologies
and according to the requirements of modern distributed
infrastructures. Experimenting on both QKD and Quantum
Computing frameworks and contributing to architectures
and protocols related to Quantum Networks are of utmost
importance for improving the state of the art of quantum
technologies. This paper gives a different perspective on
how to design and build software components that could
enhance the adoption of quantum technologies.
As future work, it is possible to separately work on both

the software stack for the QKD integration and the QKD
simulation platform. This because the QKD simulator could
evolve into something much more effective if extended to the
case of the Quantum Networks and the Quantum Internet.
We aim at building a scalable and flexible simulation
platform where quantum nodes are independent entities that
could be programmed to act as quantum devices. In this
scenario, the communication over a TCP/IP network could
serve as a mean of communication among them, and yet
special nodes - as the case of the quantum channel - could
reproduce non-idealities of the real case scenarios. Our next
step will be to integrate within our framework the simulation
of a noisy channel.
Regarding the work on the software stack, it could be

improved by integrating a scenario in which the commu-
nication within the QKD network is extended beyond the
point-to-point connections. Here trusted repeaters could be
considered, and according to the ETSI standard, a real use
case scenario could be implemented. In this case, routing
mechanisms could be integrated at the QKS level, and tests
on real infrastructures could be performed.
So far, two other research interests have arisen: the first

regarding the error correction and privacy amplification
16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

techniques and the second according to the authentication of
the public channel. It would be interesting to integrate within
the simulator protocols to implement the key distillation
process. Moreover, this integration could provide a complete
testing framework for QKD protocols. The authentication
of the public channel could be achieved with several tech-
niques. We show in section VII our approach. Nevertheless,
the problem is far from being completely solved. In fact,
the authentication mechanisms, especially when it comes
to softwarised infrastructures, need to be flexible. Because
of this, further studies are required to find an optimal
solution to both preserve the security of the protocol and
the flexibility of the QKD network. Also, for the secure
communication with the QKS a standard approach has to
be found, and it should be quantum-resistant.

.
APPENDIX A QKD PROTOCOLS
In this appendix we provide a description of two QKD
protocols that we investigated in our work: BB84 and E91.
A. BB84
The BB84 protocol is a prepare and measure protocol
which Bennett and Brassard describe in [32]. We provide a
synthetic overview of the protocol starting from the Table 2.

BB84 deeply relies on the no-cloning theorem: an eaves-
dropper on the quantum channel could be detected when
he measures one or many qubits since he introduces errors.
BB84 could be divided into two principal phases: a quantum
phase and a classical phase.

During the first phase, the idea is to encode a train of
qubits starting from a random sequence of bits representing
the classical key and a random sequence of bases that could
be used to measure those qubits in a specific reference
frame. This operation is performed by the sender (Alice),
who chooses both bits and bases and encodes them in a
sequence of qubits. Afterwards, she sends those qubits to
Bob over the quantum channel. Once Bob receives the
qubits, he chooses another random string of bases and
measures Alice’s qubits with these bases.

According to Table 2 (Quantum Channel), we see that
the chosen bases are either “Rectilinear” (R) or “Diagonal”
(D). This convention comes from a real use case related
to the linear polarization of photons, which is traditionally
used to implement QKD. Rectilinear means that we use
the basis of vertical (↕) and horizontal (↔), corresponding
in turn to the polarization angles of 0° and 90°. Diagonal
means that we use the basis of (⤢) and (⤡), corresponding
in turn to the polarization angles of 45° and 135°. The
four possible encoded states in BB84 are: ↔ and ⤢ for
0 in Rectilinear and Diagonal bases, and ↕ and ⤡ for 1
in Rectilinear and Diagonal bases. Bob, measuring Alice’s
qubits with his bases, produces a classical key string that is
a raw version of the final key.

After the quantum phase, there is a classical phase in
which Alice and Bob have to share information regarding the

chosen bases. This allows cancelling the bits corresponding
to the bases that do not match. This process is called Key
Sifting. Without considering non-idealities (e.g., quantum
noisy channel), the key retrieved from this process holds if
we demonstrate that no eavesdropper measured qubits on the
channel. The basic idea is that, as in Bob’s case, Eve has to
choose random bases and measure all the qubits she wants
during the exchange introducing an error on each qubit
with probability 25% (see section VIII for further details).
This refers to a simple intercept-resend attack; clearly, it is
possible to perform more sophisticated attacks varying the
error probability. In the simplest scenario without noise, we
could drop every key that contains at least one wrong bit.
In a real scenario with non-idealities, this does not hold.
As in the Eve’s case, a noisy channel introduces an error
that could be estimated as Quantum Bit Error rate (QBER).
As a solution, it is possible to combine Error Correction
(EC) and Privacy Amplification (PA) techniques to, on the
one hand, correct potential error within the final key, and
on the other hand, reduce the quantity of information that
Eve could gain from the key at the expenses of several bits
of the key. The metric that we use to establish whether
or not a key is valid is the QBER itself. The state of the
art techniques allows reaching 11% of QBER, even more
with advantage distillation. This means that a key has to be
dropped if it exceeds this error rate. Clearly, EC and PA
have to be applied after the QBER estimation. This allows
avoiding the correction of error introduced by Eve as they
depended on the quantum channel. The role of EC is clear.
PA, instead, serves the decisive purpose of increasing the
number of valid keys during the exchange: even if a subset
of qubits has been measured by Eve, we could keep the
key as long as the quantity of information gained by her is
limited.
The final step in which we apply both EC and PA is

known as Key Distillation. After this classical phase, the
exchange process is completed, and Alice and Bob could
use the final key.

B. E91
E91 proposed by Artur Ekert [33] is an entanglement-based
protocol. The idea is to leverage a source that emits pairs
of spin-1/2 particles in a singlet state:

� = 1
√

2
(|↑A↓B⟩ − |↓A↑B⟩) (1)

These particles are maximally entangled and anti-
correlated. This means that if particle A is in the state
|0⟩ then particle B shall be in the state |1⟩ and vice
versa. This coordination is beyond any classical equivalent:
when a measurement is applied to one of the particles,
even if they are far away from each other, the other will
assume the opposite state. After the generation phase, one
of the entangled particles is sent to Alice and the other
one to Bob over a quantum channel. Once qubits have been

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. BB84 protocol steps. (source: [32])

QUANTUM CHANNEL
Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1
random sending bases D R D R R R R R D D R D D D R
photons Alice sends ⤢ ↕ ⤡ ↔ ↕ ↕ ↔ ↔ ⤡ ⤢ ↕ ⤡ ⤢ ⤢ ↕
random receiving bases R D D R R D D R D R D D D D R
bits as received by Bob 1 1 1 0 0 0 1 1 1 0 1
PUBLIC AUTH CLASSICAL CHANNEL
Bob reports bases of received bits R D R D D R R D D D R
Alice says which bases were correct ✓ ✓ ✓ ✓ ✓ ✓

presumably shared information (if no eavesdrop) 1 1 0 1 0 1
Bob reveals some key bits at random 1 0
Alice confirms them ✓ ✓

FINAL KEY
remaining shared secret bits 1 0 1 1

received from the parties, they are measured according bases
represented by unit vectors ai and bj(i, j = 1, 2, 3). Given an
x-y-z reference frame, suppose the particles travel according
the z direction, than ai and bj lie on the x-y plane and could
be described, starting from the x axis, by the following
angles: on Alice’s side {�a1 = 0°, �a2 = 45°, �a3 = 90°},
on Bob’s side {�b1 = 45°, �b2 = 90°, �b3 = 135°}.
Superscripts a, b are related in turn to Alice and Bob’s

analysers. Alice and Bob shall randomly choose the orien-
tation angle of the measure with a 1∕3 chance to pick up a
specific value.

The quantity related to the Eq. 2 is the correlation of the
measurements performed by Alice and Bob according to the
bases ai and bj .

E(ai, bj) =P++(ai, bj) + P−−(ai, bj)
− P+−(ai, bj) − P−+(ai, bj)

(2)

The value P±±(ai, bj) is the joint probability of getting a
±1 (+1 for |0⟩, -1 for |1⟩) along ai and bj .When compatible bases are chosen (same orientation),
as in the case of (a2, b1) and (a3.b2), we have the total
anticorrelation of the results: E(a2, a1) = E(a3, b2) = −1.
In the other cases, we could define the quantity (3), which is
the sum of all correlation coefficients when Alice and Bob
used different orientations. This is the correlation value used
in the CHSH inequality (one of Bell’s inequalities).

S = E(a1, b1) − E(a1, b3) + E(a3, b1) − E(a3, b3) (3)
In the specific case of maximally entangled particles,

according to quantum mechanics, this correlation value has
to be equal to (4), which is also known as Tsirelson’s bound.

S = −2
√

2 (4)
This violates the CHSH inequality (5), which provides

classical correlation boundaries. Violating this inequality
demonstrates that the system exhibits a quantum correlation;
in this case, the two particles are entangled.

|S| ≤ 2 (5)
Ekert also demonstrated that for every eavesdropping

strategy and direction of Eve’s measurements, the inequality
(6) holds. This inequality violates (4), thus demonstrating
that Bell’s inequalities could be used as a practical mean to
check the presence of an eavesdropper.

−
√

2 ≤ S ≤
√

2 (6)
Once measured and collected all the bit values, the next

step of the algorithm is to exchange information regarding
the measurement bases. That information could be used by
Alice and Bob to divide the obtained bits into two groups:
one with the results from compatible bases and another one
with all the other measurements. The first group is used as
the secret key, the second one for checking if the exchange
has been intercepted. According to (3), Alice and Bob could
calculate the correlation value and check if it is close to (4).
If (5) has been violated, then the key has to be rejected;
otherwise, we have a complete and successful key exchange.
APPENDIX B APIS
In the following paragraphs we present the web APIs of the
QKDM and QKS components.
A. QKDM APIS
In the following, we detail the APIs exposed by a QKDM.
We start from the Southbound Interface, which exposes
the ETSI compliant APIs (the ones in bold) and some
functionalities useful during the interaction with the QKS.
The first group of calls gives access to functionalities related
to the key exchange process, while the others serve as
utilities:

∙ /api/v1/qkdm/actions/open_connect:
this call reserves an association identified by a Key
Stream ID (KSID) among two different QKDMs. This
association represents a key stream between two QKD
modules and, as a consequence, two Quantum Key
Servers. Once this call is invoked, the key exchange

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Southbound interface API

API ACCESS METHOD ETSI’S METHOD NAME
/api/v1/qkdm/actions/open_connect POST open_connect
/api/v1/qkdm/actions/get_key POST get_key
/api/v1/qkdm/actions/close POST close
/api/v1/qkdm/actions/get_kids GET -
/api/v1/qkdm/available_keys GET -

process starts by means of the underlying QKD node
component.

∙ /api/v1/qkdm/actions/close: this call stops
the key exchange process, but the keys that have already
been exchanged are still available.

∙ /api/v1/qkdm/actions/get_key: this call
allows retrieving specific keys from a key stream using
the KSID and KIDs. The latter contains a collection
of identifiers associated with the keys (both KSID and
KIDs are defined as UUID_v4 on 128 bit).

∙ /api/v1/qkdm/actions/get_kids: this call
returns a set of KIDs associated with keys that could
compose many aggregate keys of different length. The
input parameters are KSID and key_info. The latter
contains information such as the number and the length
of the required keys. For the sake of simplicity, by
default, this module stores keys of the same length (e.g.,
128 bits). Because of this, we may want to aggregate
more keys to create a larger one.

∙ /api/v1/qkdm/available_keys: this call
retrieves information about the keys that are currently
available at the QKDM level.

∙ /api/v1/qkdm/actions/attach_to_serve
r: this call is available for an external management tool
to trigger the process of registration of the QKDM to
the QKS.

The Sync interface exposes instead the following API:
∙ /api/v1/qkdm/actions/stream_create:
this call is used after the open_connect to notify
the value of KSID to the peer QKDM.

∙ /api/v1/qkdm/actions/sync_KID: this
method is used to notify the KID associated to a fresh
generated key to the peer once the key exchange process
has terminated.

B. QKS APIS
According to the ETSI standard QKD 014 [2], the North-
bound Interface implements the communication between the
SAE and the QKS. The following API calls (table 4) have
been implemented; the bold ones are compliant with the
standard while the other ones are an extension:

∙ /api/v1/keys/{slave_SAE_ID}/status:
this call returns to the master SAE (the one which
starts the key exchange) the status of a specific slave
SAE (the target of a key exchange). In particular, it

retrieves information regarding the available keys to be
requested.

∙ /api/v1/keys/{slave_SAE_ID}/enc_keys:
it returns the single or multiple keys requested by the
master SAE for the communication to a specific slave
SAE. In this case, the QKS in charge of managing the
key exchange of the slave SAE shall be informed to
reserve those keys to its own SAE.

∙ /api/v1/keys/{master_SAE_ID}/dec_key
s: after receiving an Aggregate Key ID (AKID) from
the master SAE, the slave SAE could call this method
using that information to access the keys that have been
reserved by its QKS.

∙ /api/v1/preferences: this call returns the
current status of the preferences that have been set for
the QKS. These preferences involves global settings
regarding the Quantum Key Server, such as the log
level, the preferred QKD protocols, and the timeout for
the requests to other QKSs.

∙ /api/v1/preferences/{preference_ID}:
this call allows to change a specific QKS setting.

∙ /api/v1/information: this call could be used by
an administrator to retrieve specific info on the QKS
(e.g., QKD devices, log).

At the moment, the QKS “side” of the Southbound
Interface provides a single API call: /api/v1/qks/ac
tions/register. This call allows registering a new
QKDM to the QKS. The registration process involves the
exchange of all the information required by the QKS to
manage the specific QKDM. The registration also implies
giving the QKDM limited access to the Database and the
Vault resources.

In the end, we implemented the External Interface API.
This allows the communication among different QKSs. In
particular, we provide the following calls:

∙ /api/v1/saes/{slave_SAE_ID}: this call could
be used to query a specific QKS to check if a SAE is
reachable through it.

∙ /api/v1/kids/actions/reserve_key: this is
used to reserve a specific key for the communication
among two SAEs. Moreover, when a key has been
chosen by the master QKS, then we have to reserve
that key for the specific communication and make sure
that the slave QKS has not used it yet.

∙ /api/v1/keys/actions/send_KSID: this is an
VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4. Northbound interface API

API ACCESS METHOD ETSI’S METHOD NAME
/api/v1/keys/{slave_SAE_ID}/status GET get_status
/api/v1/keys/{slave_SAE_ID}/enc_keys POST get_key
/api/v1/keys/{master_SAE_ID}/dec_keys POST get_key_with_ID
/api/v1/preferences GET -
/api/v1/preferences/{preference_ID} PUT -
/api/v1/information GET -

utility call for supporting the key exchange among two
QKDMs. In particular, this call is used to forward the
KSID among two different QKSs.

APPENDIX C WORKFLOW
This appendix clarifies the interaction of all components
within our solution. Three different phases could be distin-
guished within our software stack’s operational workflow:
the QKD module registration, the initialisation of the key
exchange process, and the request of a single or multiple
keys from a SAE. Before describing each one of these
phases, we assume that a working system involves the
correct deployment of at least a pair of SAEs and the related
QKDMs and QKSs.

As depicted in Figure 12, we analyse these phases in a
scenario in which Alice and Bob are aiming at starting a key
exchange among their nodes, and Alice is the one opening
the connection and requiring a key to communicate with
Bob. The first phase (a) involves Alice and Bob’s QKDMs
registering themselves to the respective QKSs. In this
phase, each module has to use the register_module
call, providing information regarding the destinations that
it could reach and the QKD protocols that it supports.
Supplementary information could be added, such as the
current size of the key buffer and the technology used for
the key exchange. As a response, the QKS create a new
isolated user on the DB and a new separated secret engine
in Vault, returning the credentials to access both to the
QKDM. To perform this request, the QKD module has to
provide a token that has been generated using Keycloak.
This means that only the QKDMs that possess a valid token
could operate with the QKS. This process describes a new
physical device that is installed on a specific node and wants
to be integrated into the scope of the QKS.

The previous phase enables the QKD module to operate
as an independent entity; that is, the key exchange process
could be performed - once started - without the intervention
of the Quantum Key Server, and the resulting keys could
be stored directly with a specific KID within the secret
engine. To optimise the usage of the dedicated channel,
this process of exchange could be continuous until the
key buffer is full. This should be unlikely, considering
multiple SAEs continuously requiring keys for their security
applications. To start the process, the QKS has to call -
in phase (b) - the open_connect on the QKD module.

This double-checks if the destination provided is reachable
and send a stream_create to the peer module, sending
information regarding the Quality-of-Service (refer to the
standard [2]) and a new KSID which identifies the stream
of key that will be exchanged among the QKDM pairs.
Afterwards, the module retrieves the KSID information to
the Quantum Key Server (Alice’s QKS in Figure 12), which
could propagate this information to the peer QKS on Bob’s
side. Once the latter receives this information, it could
perform the same process starting the open_connect.
After this, the QKD low-level devices (in our case, the QKD
nodes) start exchanging their keys, and once an exchange
is completed, the QKDMs store the fresh key in the secret
engine. This process heavily depends on the implementation
of the open_connect on both sides.
Moreover, other interactions (the calls presented in ap-

pendix B-A) are required to forward the information about
the KID to assign to the key. In our solution, we define
a parameter for the length of the individual keys at the
QKDM level. This allows to combine them to form keys
of arbitrary length. In a case with real devices, the length
of the exchanged keys could vary, and it is also possible to
work directly with longer streams. The QKDM abstraction
could also serve as an interface to customise the length of
resulting keys. We set this parameter to 128 bits for our
experiments.
Perhaps the most interesting phase is the last one (c),

in which we describe the SAE perspective and analyse
Alice and Bob’s request for a key. According to the ETSI
standard [2], the Security Application Entity could use the
get_key method to request a new key to the Quantum Key
Server. The slave SAE and the characteristics of the key
(key_info) have to be provided as parameters. In partic-
ular, information such as the key length and the number of
keys have to be supplied. Once the request reaches the QKS,
this latter asks for a collection of KIDs related to keys that
could be used to serve the request. If granted, those KIDs
are forwarded to the peer QKS with the reseve_key. The
receiver checks if also on its side those KIDs are available
and notify the result to the sender QKS. The idea is to
reserve those keys for the communication among the pair
of SAE. This mechanism replaces the strict binding of the
original version of the standard, which imposes a one-to-
one ratio among key streams and SAE pairs. Once we have
reserved those keys, the next step involves the standard

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. Workflow of the complete solution: a) registration phase; b) starting key exchange process; c) key request from a SAE and usage.

get_key to the QKDM to retrieve the actual keys and
forward them to the SAE level.

At this point, we have on both sides the right keys
reserved; we could proceed (as shown in [2]) to inform
the peer SAE of the correct AKID to use. This Aggregate
Key ID is pivotal because it allows retrieving the composed
key all at once. After this, the receiver (Bob’s SAE) shall
perform the symmetric process and retrieve the required
key with the method get_key_with_ID passing the
right AKID. Clearly, the same mechanism could be easily
extended working with different AKIDs. This means that a
SAE could ask for multiple keys at a time to get back a map
{AKID, key}.

ACKNOWLEDGMENT
We acknowledge Chiara Ruggeri, who received a M.Sc.
degree in computer engineering from Politecnico di Torino,
for her work.

REFERENCES
[1] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Col-

beck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani et al., “Advances in
quantum cryptography,” Advances in Optics and Photonics, vol. 12, no. 4,
pp. 1012–1236, 2020.

[2] “Quantum key distribution (qkd); protocol and data format of rest-
based key delivery api,” European Telecommunications Standards Institute
(ETSI), Tech. Rep., February 2019.

[3] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the
road ahead,” Science, vol. 362, pp. 1–9, October 2018.

[4] W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum net-
work protocol,” in 16th International Conference on Emerging Networking
Experiments and Technologies, Barcelona (Spain), December 1–4 2020,
pp. 1–16.

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[5] F. Xu, X. Ma, Q. Zhang et al., “Secure quantum key distribution with
realistic devices,” Reviews of Modern Physics, vol. 92, pp. 025 002–1–
025 002–60, May 2020.

[6] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph,
J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Reviews of
Modern Physics, vol. 84, no. 2, p. 621, 2012.

[7] R. Renner and R. König, “Universally composable privacy amplification
against quantum adversaries,” in Theory of Cryptography Conference.
Springer, 2005, pp. 407–425.

[8] R. Renner, “Phd thesis,” Ph.D. dissertation, Swiss Federal Inst. Technol.
Zürich, 2005.

[9] C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, “Continuous-
variable measurement-device-independent quantum key distribution:
Composable security against coherent attacks,” Physical Review A, vol. 97,
no. 5, p. 052327, 2018.

[10] V. Scarani and R. Renner, “Quantum cryptography with finite resources:
Unconditional security bound for discrete-variable protocols with one-way
postprocessing,” Physical review letters, vol. 100, no. 20, p. 200501, 2008.

[11] “Quantum key distribution (qkd); security proofs,” European Telecommu-
nications Standards Institute (ETSI), Tech. Rep., December 2010.

[12] B. Liu, B. Zhao, C. Wu, W. Yu, and I. You, “Efficient almost strongly
universal hash function for quantum key distribution,” in Information and
Communication Technology-EurAsia Conference. Springer, 2015, pp.
282–285.

[13] “Quantum key distribution (qkd); application interface,” European
Telecommunications Standards Institute (ETSI), Tech. Rep., August 2020.

[14] M. Mehic, M. Niemiec, S. Rass et al., “Quantum key distribution: a
networking perspective,” ACM Computing Surveys, vol. 53, pp. 1–41,
September 2020.

[15] “Quantum key distribution (qkd); use cases,” European Telecommunica-
tions Standards Institute (ETSI), Tech. Rep., June 2010.

[16] P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum
key distribution protocol,” Physical Review Letters, vol. 85, pp. 441–444,
July 2000.

[17] G. Murta, F. Rozpędek, J. Ribeiro et al., “Key rates for quantum key
distribution protocols with asymmetric noise,” Physical Review Letters,
vol. 101, pp. 062 321–1–062 321–10, June 2020.

[18] M. Toyran, M. Toyran, and S. Öztürk, “Optimized cascade protocol for
efficient information reconciliation in quantum key distribution systems,”
Quantum Info. Comput., vol. 18, no. 7–8, p. 553–578, Jun. 2018.

[19] B.-Y. Tang, B. Liu, Y.-P. Zhai, C.-Q. Wu, and W.-R. Yu, “High-speed and
large-scale privacy amplification scheme for quantum key distribution,”
Scientific Reports, vol. 9, 2019.

[20] V. López, A. Pastor, D. López et al., “Applying QKD to improve next-
generation network infrastructures,” in European Conference on Networks
and Communications, Valencia (Spain), June 18–21 2019, pp. 283–288.

[21] A. Aguado, E. Hugues-Salas, P. A. Haigh et al., “First experimental demon-
stration of secure nfv orchestration over an sdn-controlled optical network
with time-shared quantum key distribution resources,” in 42nd European
Conference onOptical Communication, Dusseldorf (Germany), September
18–22 2016, pp. 1–3.

[22] D. R. Lopez, V. Martin, V. Lopez, F. de la Iglesia, A. Pastor, H. Brunner,
A. Aguado, S. Bettelli, F. Fung, D. Hillerkuss et al., “Demonstration of
software defined network services utilizing quantum key distribution fully
integrated with standard telecommunication network,” Quantum Reports,
vol. 2, no. 3, pp. 453–458, 2020.

[23] Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “Sdqaas: software
defined networking for quantum key distribution as a service,” Optics
express, vol. 27, no. 5, pp. 6892–6909, 2019.

[24] “Quantum key distribution (qkd); control interface for software defined net-
works,” European Telecommunications Standards Institute (ETSI), Tech.
Rep., March 2021.

[25] R. Chatterjee, K. Joarder, S. Chatterjee et al., “qkdsim, a simulation
toolkit for quantum key distribution including imperfections: Performance
analysis and demonstration of the b92 protocol using heralded photons,”
Physical Review Applied, vol. 14, pp. 024 036–1–024 036–64, August
2020.

[26] L. O.Mailloux, J. D.Morris, M. R. Grimaila et al., “Amodeling framework
for studying quantum key distribution system implementation nonideali-
ties,” IEEE Access, vol. 3, pp. 110–130, February 2015.

[27] X.Wu, A. Kolar, J. Chung et al., “Sequence: A customizable discrete-event
simulator of quantum networks,” September 2020. [Online]. Available:
http://arxiv.org/abs/2009.12000v1

[28] S. Diadamo, J. Nötzel, B. Zanger, and M. M. Bese, “Qunetsim: A software
framework for quantum networks,” April 2020. [Online]. Available:
https://arxiv.org/abs/2003.06397

[29] A. Dahlberg and S. Wehner, “Simulaqron - a simulator for developing
quantum internet software,” Quantum Science and Technology, vol. 4, pp.
1–15, September 2018.

[30] T. Coopmans, R. Knegjens, A. Dahlberg et al., “Netsquid, a discrete-event
simulation platform for quantum networks,” January 2021. [Online].
Available: https://arxiv.org/abs/2010.12535

[31] R. Van Meter, Quantum networking, I. S. Pub., Ed., 2014.
[32] C. H. Bennett and G. Brassard, “Quantum cryptography: public key dis-

tribution and coin tossing,” Theoretical Computer Science, vol. 560, pp.
7–11, December 2014.

[33] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical
Review Letters, vol. 67, pp. 661–663, August 1991.

IGNAZIO PEDONE received a M.Sc. degree
in computer engineering from Politecnico di
Torino. He is currently pursuing the Ph.D. degree
in computer engineering and he is a member
of TORSEC Security Group at Politecnico di
Torino. His research interests include security of
network infrastructures, quantum computing and
cryptography, and trusted computing.

ANDREA ATZENI holds a MSc and a Ph.D. in
Computer Engineering, both from Politecnico di
Torino. He is currently Senior Research Fellow
and Adjunct Professor in the TORSEC Secu-
rity Group at the Politecnico di Torino. In last
twenty years he contributed to a number of large
scale European research projects under the FP5,
FP6, FP7, CIP and Horizon 2020 programmes,
addressing, among the others, the definition of
security requirements in multi-platform systems,

mobile security, modelisation of user expectation on security and privacy,
security specification, risk analysis and threat modeling for complex cross-
domain architectures, development of cross-domain usable security, digital
and cloud forensics, development and integration of cross-border eIdentity,
novel authentication mechanisms, malware analysis and modelling.

DANIELE CANAVESE received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino, in 2010 and 2016, re-
spectively. He is currently a Research Assistant
with the Politecnico di Torino. His research in-
terests include security management via machine
learning and inferential frameworks, software pro-
tection systems, public key cryptography, and
models for network analysis.

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102313, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ANTONIO LIOY , Full Professor of Cybersecu-
rity, received the M.Sc. in Electronic Engineering
and the Ph.D. in Computer Engineering from the
Politecnico di Torino, where he currently leads
the cybersecurity research group TORSEC. His
research interests include electronic identity, PKI,
trusted computing, and policy-based management
of large IT systems.

VOLUME 4, 2016 23

