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Free Electron Lasers (FELs) are certainly among the most interesting devices, belonging
to the realm of coherent radiation sources. These lasers are now widely used all over the
world and are the highest performing in terms of brilliance, monochromaticity, coherence,
directionality and polarization control.

Despite their undoubted success and reliability as experimental devices, their wider
use is still hampered by their size and cost, which require large laboratories and significant
financial efforts.

It would be therefore desirable to develop more compact and economical FELs with,
e.g., higher repetition rates and larger average brightness.

A future prospect, pursued by many worldwide research institutions, would be to
build FEL facilities in the VUV-X region, using compact accelerators and shorter
undulator sections.

Within this context, the most natural solutions are those of designing high gradient
accelerating devices, capable of providing high-quality electron beams and non-standard
undulator lines.

Both solutions might concur with the reduction in either the size or the cost, but
although these are the most obvious, they are not the only ones.

“Alternative” undulator lines should be studied to prevent the use of hundred meters
of magnetic devices, necessary to provide the saturation length, in standard FEL archi-
tecture. However other solutions can be adopted, including a combination of non-linear
harmonic generation, seeding, hybrid devices, coupled oscillators amplifier systems, etc.

This Special Issue is devoted to “non-conventional” FEL architectures and describes
different strategies, which have been proposed in the past and examines both the underly-
ing physics and the different aspects of the relevant design, with particular reference to
feasibility and relevant performance.

The ideas and the proposals described here have reached some level of maturation and
can be employed in the near or middle future as the paradigm for the design of compact
FEL architectures.

The Special Issue contains nine contributions which can be grouped into the
following topics:

(A) Discussion of FELdevices based on the design of wave undulators.

Wave undulators are undulating devices provided by electromagnetic waves aimed at
reducing the size of the undulator line.

In particular, in [1], the design of a CARM-type microwave source is described along
with the relevant use for the operation of FEL devices. In [2], an FEL design employing
a recirculated electromagnetic undulator provided by a high-power laser in a resonator
cavity is described in detail.

(B) Design of combinations of seeding and non-linear harmonic devices.
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Ref. [3] deals with the design of an FEL device driven by the e-beam from a Super-
Conducting and producing tunable radiation from 100 to 2 micrometers. Ref. [4] describes
the use of two beam energies’ harmonic generation and self-seeding schemes. The theo-
retical aspects and design formulae for SASE/higher order harmonic FEL are described
in [5].

(C) Hybrid and oscillator/amplifier devices

The article in [6] focuses on the possibility of coupling different emission mecha-
nisms (Cerenkov, Smith–Purcell, etc.) to provide a high-performance, small-size FEL-type
devices. High-repetition-rate X-ray FELs are described in [7,8] within the context oscil-
lator/amplifier architectures. Ref. [9] describes an accurate modelling of the coupling of
low/high-gain undulators.
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