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G. Lévai1, F. Cannata2 and A. Ventura3

1 Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)

P. O. Box 51, H-4001 Debrecen, Hungary
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Abstract. We construct an so(2,2) potential algebra and discuss how it is influenced
when PT symmetry is imposed on the potential. We illustrate the procedure with the
PT symmetric Scarf II potential.
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1. PT symmetry of potentials

With the introduction of PT symmetric quantum mechanics [1] the investigation of non-
Hermitian quantum mechanical problems has received much attention in the past couple
of years. In PT symmetric quantum mechanics the potentials defined in one dimension
are invariant under the simultaneous action of the space and time reflection operations P
and T , and have the property [V (−x)]∗ = V (x). The first notable finding was that despite
being complex, these potentials often have real bound-state energy spectrum, and this was
interpreted as the consequence of PT symmetry. However, it was soon noticed that PT
symmetry is neither a necessary, nor a sufficient condition for having real energy spectrum
in a complex potential. It is not a sufficient condition, because the energy eigenvalues
may also appear in complex conjugated pairs, in which case the eigenfunctions cease to be
eigenfunctions of the PT operator, and this scenario has been interpreted as the spontaneous
breakdown of PT symmetry [1]. Neither is PT symmetry a necessary condition, because
there are complex non-PT symmetric potentials with real energy eigenvalues [2].

More recently PT symmetric quantum mechanics was put into a more general context
as the special case of pseudo-Hermiticity [3], and this also accounted for the modified inner
product and the pseudo-norm [4,5] used in PT symmetric quantum mechanics.
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After the first numerical examples [1], a number of exactly solvable PT symmetric
potentials have been derived, mainly as the PT symmetric versions of conventional solvable
potentials (see e.g. [6] and references therein). The analysis of these problems showed
that due to the generally less strict boundary conditions, PT symmetric potentials have
two sets of normalizable solutions, which can be distinguished with the introduction of the
quasi-parity quantum number q = ±1 [7].

2. Potential algebras and PT symmetry

A more conventional symmetry concept related to quantum mechanical potentials is that of
the potential algebra [8]. Potential algebras are somewhat similar to degeneracy algebras in
the sense that the elements of the algebra connect degenerate levels which, however, belong
to different Hamiltonians, i.e. potentials of the same type with different depth. Furthermore,
in the case of non-compact potential algebras scattering and resonance states can also be
discussed in a group theoretical framework, in addition to bound states.

It is an interesting task to investigate how the potential algebras are influenced by PT
symmetry. In this respect the doubling of the normalizable states is an especially interesting
question. In the first investigations combining these two symmetry concepts the sl(2,C) [9]
and the su(1,1)'so(2,1) [10] algebras were used, which contain only a single pair of ladder
operators. However, one expects that another set of them should be defined in relation with
the second set of normalizable solutions, so the potential algebra should be enlarged. The
most obvious choice is considering the so(2,2)'so(2,1)⊕so(2,1) algebra. This algebra has
been studied in the case of Hermitian (real) potentials [8], and here we discuss it for PT
symmetric potentials.

Let us consider the commutation relations defining the so(2,2) algebra [11]

[Jz, J±] = ±J± [J+, J−] = −2aJz , [Ji,Kj ] = 0 (1)

[Kz,K±] = ±K± [K+,K−] = −2bKz , i, j = +, −, z , (2)

which also includes the so(4) and so(3,1) algebras for a = b = −1 and a = −b = ±1,
respectively. A straightforward coordinate realization of this algebra can be made by

J± = e±iφ

(

±h1(x)
∂

∂x
± g1(x) + f1(x)Jz + c1(x) + k1(x)Kz

)

, Jz = −i
∂

∂φ
, (3)

K± = e±iχ

(

±h2(x)
∂

∂x
± g2(x) + f2(x)Jz + c2(x) + k2(x)Kz

)

, Kz = −i
∂

∂χ
. (4)

We find that the algebra defined in (1) and (2) is obtained if the following relations hold:

k2
2 − h2k

′
2 = b h2f

′
2 − f2k2 = 0 k2

2 − f
2
2 = b c1 = c2 = 0 , (5)

h1 = Ah2 f1 = Ak2 k1 = Af2 g1 = Ag2 A2 =
a

b
= ±1 . (6)

The Casimir invariant

C
(JK)
2 = 2C

(J)
2 + 2C

(K)
2 ≡ 2

(

−aJ+J− + J2
z − Jz − bK+K− +K2

z −Kz

)

(7)
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is then a second-order differential operator and its eigenfunctions Ψ ≡ Ψ(x, φ, χ) =
ei(mφ+m′χ)ψ(x) are also those of Jz and Kz. Here ψ(x) is the physical wavefunction depend-
ing on the coordinate x, while φ and χ are auxiliary variables, which are multiplied with m
and m′, the eigenvalues of generators Jz and Kz, respectively.

With the additional condition g2 = 1
2 (k2 − h′2) the linear derivative can be eliminated

and the eigenvalue equation of C
(JK)
2 then takes the form of the Schrödinger-like equation

C
(JK)
2 Ψ = 4bh2

2Ψ
′′ + [b((h′2)

2 + k2
2 − 2h′′2h2)− 2

+4(1− bk2
2)(J

2
z +K2

z )− 8bf2k2JzKz]Ψ

= ω(ω + 2)Ψ . (8)

When h2 is a constant, the Hamiltonian is simply proportional with the Casimir operator,
and thus there will be a set of degenerate energy levels of different Hamiltonians connected
by the generators, and we obtain a potential algebra. (When these Hamiltonians are iden-
tical, we get a symmetry or degeneracy algebra, but this cannot occur in the case of one-
dimensional potentials, because these are forbidden under rather general conditions.) Before
closing this section we mention that the generators transform under the PT operation as

PT (J/K)±(PT )
−1 = (J/K)∓ , PT (J/K)z(PT )

−1 = −(J/K)z . (9)

3. An illustration: the Scarf II potential

The Scarf II potential is obtained by substituting h2 = 1, g2 = − 1
2 tanhx, f2 = i/ coshx,

k2 = − tanhx and a = b = 1 [11]:

V (x) = −

(

m2 +m′2 −
1

4

)

1

cosh2 x
− 2imm′

sinhx

cosh2 x
(10)

and the so(2,2) generators are

J± = e±iφ

(

±
∂

∂x
− tanhx(Jz ±

1

2
) +

i

coshx
Kz

)

, (11)

K± = e±iχ

(

±
∂

∂x
− tanhx(Kz ±

1

2
) +

i

coshx
Jz

)

. (12)

Ifm andm′ are real, potential (10) is PT -symmetric, while its Hermitian version is obtained
if m or m′ is imaginary.

The first independent solution is

F1(x) = (1+iy)
m
′
−m

2
+ 1

4 (1−iy)−
m+m

′

2
+ 1

4F (−m+
1

2
−ik,−m+

1

2
+ik,m′−m+1;

1 + iy

2
) (13)

with y = i sinhx, while the second one is obtained by the m ↔ m′ transformation. These
solutions lead to discrete eigenvalues when k = i(m − n − 1

2 ) and k = i(m′ − n − 1
2 ) holds

for the two solutions, respectively [10].
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Multiplying (13) with the usual phase factors, we find that the effect of the ladder
operators on the Ψ1(m,m

′;x) = ei(mφ+m′χ)F1(x) is J±Ψ1(m,m
′;x) → Ψ1(m ± 1,m′;x)

, K±Ψ1(m,m
′;x) → Ψ1(m,m

′ ± 1;x), while the action of the generators on the second
independent solution is obtained by the replacements: J ↔ K, m ↔ m′. It has also been
shown that the effect of the ladder operators (11) and (12) is the same as that of the
supersymmetric shift operators, defined also in two varieties, correspondig to quasi-parity
q = ±1 [12].

Finally, we note that the transmission and reflection coefficients of the Scarf II potential
have been derived [10], and the spontaneous breakdown of PT symmetry has also been
studied for it [13].
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12. G. Lévai and M. Znojil, J. Phys. A 35 (2002) 8793.
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