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Phase retrieval extracts quantitative phase information from x-ray propagation-based phase-contrast images.
Notwithstanding inherent approximations, phase retrieval using a single sample-to-detector distance (SDD) is very
attractive, because it imposes no setup complications or additional radiation dose compared to absorption-based
imaging. Considering the phase-attenuation duality (ε ¼ δ=β, where ε is constant), a simple absorption correction
factor is proposed for the modified Bronnikov algorithm in x-ray propagation-based phase-contrast computed
tomography (PPCT). Moreover, a practical method for calculating the optimal ε value is proposed, which requires
no prior knowledge of the sample. Tests performed on simulation and experimental data successfully distin-
guished different materials in a quasihomogeneous and weakly absorbing sample from a single SDD-PPCT data
point. © 2011 Optical Society of America
OCIS codes: 100.5070, 110.6960, 110.7440.

X-ray phase-sensitive computed tomography (CT) can
provide substantially enhanced contrast, especially for
low-Z samples [1]. The x-ray propagation-based phase-
contrast CT (PPCT) method has attracted wide attention
thanks to its particularly simple experimental setup—
identical to absorption-based CT except for providing
that the beam is sufficiently spatially coherent and in-
creasing the sample-to-detector distance (SDD), to let
the beam propagate in free space after interaction with
the sample [2].
PPCT provides high-contrast qualitative images, i.e.,

edge enhancement, and has extensive applications in
many research fields [3]. Moreover, PPCT radiographies
also contain phase information that could be extracted;
in fact, phase retrieval is a technique for extracting
quantitative phase information from PPCT [2]. Several
phase-retrieval algorithms have been proposed, such
as the transport of intensity equation (TIE) method [4],
the contrast transfer function (CTF) method [2], the
mixed approach between the CTF and TIE method [5,6],
the Bronnikov algorithm [7], and others [8,9]. However,
all these methods require multiple SDD intensity mea-
surements that deliver a higher radiation dose to the sam-
ples, which could hinder its biomedical applications.
Undoubtedly, phase retrieval utilizing a single SDD-PPCT
data point will boost its applications, and make the pro-
cedure much easier [10,11], especially for low-Z samples.
The Bronnikov algorithm integrates the phase-retrieval

step into a modified CT reconstruction algorithm and
provides direct reconstruction of the three-dimensional
(3D) refractive index from the PPCT data [7]. Further-
more, Groso et al. introduced an absorption correction
factor (ACF: α) in the Bronnikov algorithm, naming it the
modified Bronnikov algorithm (MBA), and succeeded to
apply it for a single SDD-PPCT data point [10]. However,
the ACF value in the MBA was determined using a semi-
empirical approach, which may be cumbersome and time
consuming, because the ACF varies with the samples,

and thus it is inconvenient in general applications. More-
over, if it is not sufficiently precise, that will affect the
reconstruction results, which will be blurred with a
too-small ACF value, while the filter will be eliminated
with a too-large value.

In this Letter, based on phase-attenuation duality
(ε ¼ δ=β, where ε is constant and n ¼ 1 − δþ iβ is the
complex refraction index), which is valid for quasiho-
mogeneous and weakly absorbing samples [9], an ap-
proach to determine the ACF value simply and accurately
is proposed for MBA, which takes the wavelength, SDD,
and phase-attenuation duality of PPCT into account.
Moreover, a practical method for calculating the optimal
ε value directly is proposed, based on the first Born-type
approximation phase-retrieval algorithm [8]. Therefore,
no prior knowledge of the sample is required for 3D re-
fractive index reconstruction from a single SDD-PPCT
data point.

As shown in Fig. 1, when a monochromatic plane x-ray
beam illuminates a sample that is quasihomogeneous and
weakly absorbing, the intensity distribution Iθ;z at SDD ¼
z and the rotation angle θ is approximated according to
the TIE [4]:

Iθ;zðx; yÞ ¼ Iθ;0ðx; yÞ
�
1 −

λz
2π∇

2ϕθðx; yÞ
�
; ð1Þ

Fig. 1. (Color online) Schematic of the PPCT scanning
geometry.
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where λ is the wavelength, Iθ;0ðx; yÞ is the intensity in the
contact plane, and ϕθðx; yÞ ¼ 2π

λ
R
δθðx; y; zÞdz is the

sample phase function, which integrates over the object
thickness along the beam propagation direction, at
rotation angle θ, respectively.
Reformulating Eq. (1) as∇2ϕθðx; yÞ ¼ − 2π

λz gθðx; yÞwith
gθðx; yÞ ¼ Iθ;z=Iθ;0 − 1, applying the 2D and 3D Radon
transform to gθðx; yÞ and δðx; y; zÞ respectively, the
following expression could be deduced, which is the
main result of the Bronnikov algorithm [7]:

δðx; y; zÞ ¼ 1

4π2z

Z π

0
½qðx; yÞ � �gθðx; yÞ�dθ; ð2Þ

where qðx; yÞ ¼ jyj
x2þy2

is a filter and �� indicate a 2D
convolution. Equation (2) can be utilized to reconstruct
a 3D refractive index δðx; y; zÞ from two SDD-PPCT data
points, i.e., Iθ;0 and Iθ;z.
Suppose imaging a quasihomogeneous and weakly ab-

sorbing sample, i.e., Iθ;0 ≈ 1, according to the convolution
theory and taking the effects of nonzero absorption into
account, the equation can be evaluated via Fourier space
transformation with gθðx; yÞ ¼ Iθ;z − 1 and the following
low-pass filter [10]:

Qðξ; ηÞ ¼ jξj
ξ2 þ η2 þ α ; ð3Þ

where ðξ; ηÞ correspond to ðx; yÞ in the Fourier space and
α is the AFC, which was introduced by Groso [10]. In the

following paragraphs, an approach for determining the α
value quickly and accurately is proposed and evaluated.
When a sample is quasihomogeneous, the real and ima-

ginary parts of its complex refraction index are propor-
tional to each other (phase-attenuation duality property)
[9], i.e., δðx; y; zÞ ¼ εβðx; y; zÞ, where ε is a constant. Ac-
cording to the PPCT theory, there are four parameters
that affect the result, namely, the wavelength λ, SDD
z, effective pixel size of the detector Δ, and complex re-
fraction index of the sample. With the phase-attenuation
duality property, the last parameter can be replaced with
ε in the phase-retrieval procedure. The dimensional anal-
ysis method was used to compute the relationship be-
tween α and λ, Δ, z, and ε: (i) assuming α ¼ aλbΔczdεe
with unknown values a, b, c, d, and e; (ii) simulating
the PPCT data with different λ, Δ, z, ε values; (iii) recon-
structing the best PPCT result and obtaining the corre-
sponding α value; (iv) calculating the a, b, c, d, and e
values from a series of α ¼ aλbΔczdεe equations. The
result we obtain for the AFC is

α ¼ 1
πελz : ð4Þ

Equation (4) takes λ, z, and ε of the PPCT into account,
while Δ was considered in the filter Qðξ; ηÞ. It should be
noted that, Gureyev et al. also reached a similar result
with theory analysis, which we noticed when checking
our result with the literature; however, to the best of
our knowledge, they did not test it with simulation or
experimental data [12].

In Eq. (4), typically, the ε value is treated as prior
knowledge of the sample [11], but this will be a challenge
for unknown samples. Here, we propose a practical
method to determine it from the experimental data.
According to the first Born-type approximation phase-
retrieval algorithm, the intensity distribution Iz at
SDD ¼ z of PPCT can be approximated by the following
equation [8]:

F ½ðIz=I0 − 1Þ=2�ðξ; ηÞ ¼ γ̂ cos χ þ ϕ̂ sin χ; ð5Þ

where χ ¼ πλzðξ2 þ η2Þ, ϕ̂, and γ̂ denote the Fourier
transform of phase and absorption function, ϕ and
γ ¼ 2π

λ
R
βðx; y; zÞdz, which also integrates over the object

thickness along the beam propagation direction. In the
case of a quasihomogeneous and weakly absorbing
sample, i.e., I0 ≈ 1, with intensity measurement at two
different SDDs (z1 and z2), the ε value can be calculated
as in the following equation:

ε ¼
�ϕ
γ

�
¼

�F −1
nh

cos χ1F
�
Iz2−1
2

�
− cos χ2F

�
Iz1−1
2

�i
= sinðχ2 − χ1Þ

o

F −1
nh

sin χ2F
�
Iz1−1
2

�
− sin χ1F

�
Iz2−1
2

�i
= sinðχ2 − χ1Þ

o
�
; ð6Þ

where χ1 ¼ πλz1ðξ2 þ η2Þ, χ2 ¼ πλz2ðξ2 þ η2Þ, and hi
denotes the average value on the sample.

The proposed method was first evaluated via simula-
tion. As shown in Fig. 2(a), the 3D phantom was made
up of two spheres intersecting with each other; a PPCT

Fig. 2. (Color online) Simulation results: (a) 3D phantom and
one PPCT projection. (b) Cross-sectional view of 3D phantom.
(c) Corresponding reconstructed results of (b). (d) Profiles of
the phantom and the reconstructed result along the line posi-
tions in Figs. 2(b) and 2(c), respectively.
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projection at a given rotation angle is shown on the side.
Figure 2(b) shows three phantom slices according to the
line positions in Fig. 2(a). Three different values were as-
signed to the three phantom regions respectively, i.e., the
ðδ; βÞ values of the phantom were (0.0, 0.0) (black, back-
ground), (1:0 × 10−7, 1:0 × 10−10), (2:0 × 10−7, 2:0 × 10−10),
(3:0 × 10−7, 3:0 × 10−10) (white), which means ε ¼ 1000
for the phantom. The PPCT data were generated via
the tomography projection theory and the Fresnel dif-
fraction theory with λ ¼ 0:1 nm, SDD ¼ 20mm, and a
pixel size of 2 μm. At a given rotation angle, an additional
projection with SDD ¼ 50mm was simulated, to calcu-
late the ε value via Eq. (6). The result is 1001, very close
to the ideal value 1000. Three reconstructed slices
[the same position of Fig. 2(b)] are shown in Fig. 2(c).
Figure 2(d) depicts the profiles of the phantom and the
reconstructed result along the line position in Figs. 2(b)
and 2(c), respectively. It can be seen that the recon-
structed values of the refractive index match the ideal
values well except for some small errors near the edges
of the objects, which can be explained by the influence of
the interpolation in the backprojection step.
In the second step, the method was evaluated with ex-

perimental PPCT data collected at the X-ray Imaging and
Biomedical Application Beamline at the Shanghai
Synchrotron Radiation Facility. A sample with wires of
nylon (∅ ¼ 1:6mm), polystyrene (∅ ¼ 1:6mm), and
poly(methyl methacrylate) (PMMA—∅ ¼ 1 and 2mm—

GoodFellow, Huntingdon, UK), was investigated at
18keV with an effective pixel size of 3:7 μm and SDD ¼
20 cm. An additional projection with SDD ¼ 60 cm was
obtained for calculating the ε value via Eq. (6). The result
was 2503, and the ideal values of polystyrene, nylon, and
PMMA are 2062, 2371, and 2852, respectively at 18 keV
[13]. The reconstructed result was shown in Fig. 3(a),

while Fig. 3(b) shows the histogram of Fig. 3(a). As both
images show, three materials can be well distinguished,
although the ε value has not been optimized for every
specific material. Moreover, there is a qualitative agree-
ment with the ideal values, which are polystyrene
ð7:24e − 7Þ < nylon ð8:01e − 07Þ < PMMA ð8:23e − 07Þ.

We have proposed a fast and experimental feasible
approach for reconstructing the 3D refractive index
for quasihomogeneous and weakly absorbing samples,
from a single SDD-PPCT data point. The method was
tested with simulation and experimental data. We believe
that our method will find applications in a number of dif-
ferent fields, such as biomedical science and material
science, because it imposes no additional radiation dose
compared to ACT.
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Fig. 3. (Color online) Experimental results: (a) reconstructed
result of the wire sample and (b) histogram of Fig. 3(a); the la-
bels indicate the peak for each material.

May 1, 2011 / Vol. 36, No. 9 / OPTICS LETTERS 1721


