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We study the consequences of SU4 symmetry using the hypothesis that the SU4 algebra 

is generated by 15 operators : 

T"= I V4"(x)dx, 

Y."=I A."(x)dx, 

s.=J A.0(x)dx. 

Here V and A denote the vector and axial vector hadronic currents, with the upper index 

referring to isospin and the lower one to Lorentz space (k=l, 2 and 3). 

Particular emphasis is given to the treatment of muon capture. The equality between 

the vector and axial vector matrix elements and the connection of the vector matrix elements 

to the photoabsorption cross section are discussed for this process. Finally we draw some 

conclusions about many-body effects in electromagnetic and weak nuclear transitions from 

the current algebra and SU4 invariance for the nuclear Hamiltonian. 

§ l. Introduction 

There has been much effort to eliminate the meson degrees of freedom 

from nuclear wave functions and electromagnetic and weak transition operators. 

Within the context of a meson theory the problem may be completely solved, 

so that one may find equivalent transition operators whose matrix elements taken 

between eigenstates of the nucleonic Hamiltonian (involving only internucleon 

potentials) describe correctly the transition amplitudes.1l Ambiguities, however, 

arise, because, as noted by Bell,2l correlation effects in the wave functions may 

be transformed by a unitary transformation into many-body terms in the operators 

and vice versa, so that effective interactions and correlation functions are not 

separately well defined concepts. 

We study many-body effects in electromagnetic and weak nuclear transitions 

using current algebra3l and su4 invariance4l for the nuclear Hamiltonian; in es­

sence we try to find exact relations between matrix elements of the physical 

electromagnetic and weak ,currents, between true nuclear states (with mesonic 

effects included), taking advantage of their algebraic properties. 

In § 2 we give briefly the commutators which we use, the current-current 

and current-density commutators. we construct the su4 algebra in terms of 
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812 F. Cannata and J.-1. Fujita 

these m the way suggested by Radicati5> and illustrate its usefulness. 
In § 3 we study muon capture in particular, concerning ourselves mainly with the equality of the vector and axial vector matrix elements6>•7) and the rela­tion of the vector matrix elements, in the unretarded dipole approximation to the photoabsorption cross section.7> This last point seems important, because, as emphasized by Green,8> for the muon capture of doubly closed shell nuclei Foldy and W alecka7> related the total capture rates to the photoabsorption cross sec­tions by ignoring the exchange effects. For the electric-dipole transitions it is 

I well known, especially from recent experiments,9> that the exchange effects are very important; the integrated photoabsorption cross section is about twice of the classical sum rule.*> Fortunately, owing to the Siegert theorem10' (the low energy limit theorem**'), the unretarded dipole matrix element including the con­tribution of exchange currents in V~: can be rewritten in terms of V4• Therefore, the photoabsorption cross section in the Foldy-Walecka formula automatically includes the contribution of exchange currents as far as the unretarded dipole interaction is concerned. However, the situation is more complicated11' for lar.ge momentum transfers. Since the momentum transfer is generally larger for muon capture than the corresponding electromagnetic transition, we need precise knowledge on the exchange currents for finite momentum transfers in order to connect them. Furthermore, there is no simple direct connection between axial vector and vector exchange currents.12' In this context the authors believe that the relationship among the vector and axial vector matrix elements and the photoabsorption cross section should be again investigated without assuming that the contribution of exchange currents is small. 
In § 4 we give some arguments, in a special case of broken SU4 symmetry, that the su4 predictions may still be reasonably accurate. 

and 

§ 2. s u4 and current algebra 

The free quark model leads to the commutation relations at equal tiines: 

[ JV43 (x)dx, JA/(y)dy l.=v, = -es1~: JA/(y)dy, 

[ JA/(x)dx, JA12 (y)dy l.=v, = JV48 (x)dx 

(1) 

(2) 

*> The significance of the experimental results in connection with the Gell-Mann;Goldberger­Thirring sum rule has been discussed by Weise.9> 
**> Siegert's theorem10' is based on the argument that the impulse approximation can be ap­plied to v4 but not to v.: 

V 4 (x, O);;;;:l] e10(x-x,) but V 0 (x, 0)~2: e1 (p1).0(x-x1)/M. ' ' 
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Exchange Effects and SU4 Invariance 813 

[ SAk± (x)dx, SV45 (y) exp (iy·11)dy l.~v. = =fi SAk± (y) exp(iy·11)dy. (3) 

The relations (1), (2) for l=4 and (3) for k=4 can be proved without invok­

ing the·· quark model.13l In the expression 

[ SAk± (x)dx, V,3 (y) l.~v. = =r=iAk ± (y) 

for k=/=4, we might expect to have some contribution of the so-called Schwinger 

terms, but it is a generally accepted idea that the once-integrated commutation 

relation is free from Schwinger terms.14l 

Wigner4l proved that, if the nuclear Hamiltonian H 0 includes potentials of 
Wigner and Majorana types only, the operators 

(To) a= t I:: ra (i)' 
i 

and 

commute with H 0 • If the nuclear forces are of sufficiently short range and at­

tractive in relative S-states, the ground states of A=4n nuclei IO) are scalar 
supermultiplets such that 

This idea· can be easily extended to the case where the nucleus consists of 

nucleons and mesons (or quarks) as far as isospin is concerned; this IS es­

sentially the philosophy underlying the conserved vector current theory.1"l 

and 

We now discuss the SU4 algebra generated by 

ya = fv.a(x)dx, 

yka = SAka(x)dx 

where k= 1, 2, 3 and Ak0 (x) is the isoscalar axial vector current density. 

(4) 

(5) 

(6) 

We note that P.C.A.C. theory13l relates (d/dt) fA 4a(x)dx to fcpa(x)dx, 

where cpa(x) is the pion field. The quantity fA4a(x)dx is not a constant of 

motion; nevertheless the current algebra of the free quark model guarantees that 
Ta, yka and Sk satisfy the same commutation relations16l as (T0)a, (Y0)ka and 
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(S0)k. It should be noticed that AA a(x) includes the induced pseudoscalar effect, 
the two-body Gamow-Teller exchange effects and so on. While the matrix 
elements of VA a and AA a are direct and physically observable quantities through 
the coupling of hadrons and leptons, the matrix elements of AA0 are not known 
experimentally so far. We assume that the neutral current AA 0 exists/7l but this 
is not yet definitely known. 

The reason why we are concerned with the algebra generated by Ta, Yk a 
and Sk is that it is a direct extension of Wigner's supermultiplet theory.6l In 
order to relate the generators defined by ( 4), (5) and (6) to the quantities ap­
pearing in conventional nuclear physics, we must truncate the whole Hilbert 
space into a model subspace, in which there exist only nonrelativistic nucleons. 
In this Hilbert space one has effective currents whose single-body parts give 

(Tl)a = (TO) a , (7) 

(Yl)k a= (Yo)k a (8) 
and 

(S1)k = (S0)k . (9) 

We have omitted possible renormalization factors*l in (8) and (9). In the next 
section we will discuss how the renormalization factor in Eq. (8) may be taken 
into account. 

Now we show the usefulness of these concepts by an application. 
Let us consider semileptonic processes in which the hadronic current 9: is 

coupled to the leptonic one. The hadronic structure enters18J in the expression 

which may be written as 

~(2n/V) J Jexp(iq· (x-x'))(pJJP+(x', O)JP') 

o(Ep'-Ep-Eq)(p'JJA(x, O)Jp)dxdx', 

where V represents the normalization volume, and ~ the sum over all final states 
and the average over the initial spin states of nucleus. In these relations p and 
p' are the total momenta for initial and final nuclear states, respectively. If 
we sum over all the final hadronic states, we obtain 

Xdxdx'. 

*l The possibility of interpreting these renormalization constants as a polarization effect related 
to the highly excited states (nucleon resonances, etc.), neglected in our truncation, has been pointed 
out by Prof. M. Ericson and Dr. T. E. 0. Ericson. One of us (F. C.) is very grateful to them for 
interesting discussions on this point. 
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If we particularize J.,. to be v.,. or A.,., we can define w~.~VV) and W}~l; it is 
easy to verify that 

(10) 

(for k, l = 1, 2, 3), by making use of the commutator (3), if IP) is a scalar 
supermultiplet. One conjecture which we can make is that the exact SU4 rela­
tion is fairly good for sum rules, even if not too good for partial width or 
individual nuclear matrix elements. *l 

In the next section these general arguments are particularized to muon 
capture. 

§ 3. Muon capture in scalar supermultiplets 

If I 0) is a scalar supermultiplet and the Hamiltonian H is su4 invariant, 
then, using the commutator (3), we can prove that 

~~(/I SAk±(y, O)exp(iy·~o~)dyl0)12 

= ~~<fl Jv48 (y, O)exp(iy·~o~)dyl0)[2 

From (11) we have further 

where 

and 

(11) 

(12) 

and v=mi'-AI'- (E1 -E0), where E1 and E 0 represent the energies of the final 
and initial states, respectively, and Ap takes into account the binding energy of 
the muon, the difference in mass between neutron and proton and the Coulomb 
displacement between analogue states. A proof of (12) is obtained by writing 

Mv2 = ~ Jdv(4n)-1 [(mi'-JI') <JI Jv4±(y, O)exp(iy·~o~)dyiO> 

-<fi[H, Jv4±(y,O)exp(iy·~o~)dy]io>[2 (15) 

*> This conjecture can be stated more formally; the 8 function in Eq. (10) can be expanded 
in the following way,19> H 0 being SU4 invariant: 

tJ(H-E) =8CHo+H1-E) =8(Ho+dE-E) + (H1-dE)8'CHo+dE-E) + ······ 

and the second term on the right-hand side is expected to vanish in the RP A. 
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(and in a similar way MA2) and repeating the procedure which leads to (11). 
The difference between the conventional theory for muon capture (given, 

e.g., in Ref. 6)) and the present one lies in the fact that in the conventional 
theory we have three terms Mv 2, M} and M/ but in the present theory we 
have Mv 2 and M} only. In the Wigner SU4 limit we have M/=MA2 =Mp2 and 
in the present one we have Mv2 =MA2 only. 

Furthermore in the SU4 limit of the usual theory the muon capture rate J.. 
is given by (from now on we write Mv2 in the conventional theory6l as (M/)2) 

where ¢ IS the muon wave function before the capture, 

and 

and G is the Fermi constant including the eabibbo cos() factor. 
In the present SU4 approximation we have 

J.. = (m"2/2n) J ¢l~uonG24Mv2 , 

m which M v2 is defined by (13). 

(16) 

(17) 

Equation (17) seems rather unfamiliar. Let us explain how it can be relat­
ed to (16). First of all we have to deduce the renormalization constant relating 
(Y 1)ka to (Y0)k a. It is seen by taking the matrix element of the commutator 
(2) between nucleon states that the su4 relation is broken in the single nucleon 
system, which therefore does not belong to a pure representation of this group 
(this result was emphasized by Redicati.5l) Therefore we are led to 

Taking this into account, Eq. (17) is transformed into 

(18) 

Numerically Eq. (16) is equivalene0l to 

In impulse approximation we get M v2 = 1.2 (M v0) 2, so that the difference between 
Eqs. (16) and (18) is not large, even if these relations are derived under dif­
ferent hypotheses. 

We turn now to the evaluation of M /. It should be remarked that the 
quantity J(fl ~V/(y, O)exp(iy·S~)dyJO)J 2 in Eq. (11), which can be easily relat­
ed to Mv2 according to eve, is the quantity to be directly determined by the 
inelastic electron scattering data, in principle. However, for practical purposes 
it is better to connect M/ with the photoabsorption cross section. 

First we suppose that v is small; then we have exp(iy·S~)::::::::1+iy·S~. The 
continuity equation for the vector current leads to 

Downloaded from https://academic.oup.com/ptp/article-abstract/51/3/811/1876818
by guest
on 29 July 2018



Exchange Effects and SU4 Invariance 817 

so that the unretarded E1 matrix element is related to Mv2• For a finite v, 
instead of the Taylor expansion, we introduce a series11l 

exp (iy · 11) = io (vy) + {3jl (vy) /vy} iy · v + · · · 
= io (vy) + i y · 11 {jo (vy) + i2 (vy)} + · · · . 

Here we assume that only the terms containing j 0 (vy) are to be retained. (This 
is justified if the single-particle m~del is adopted. 11l) Then we obtain 

/<Jl Jv48 (y, O)exp(iy·&~)dyJO)I2 

~/<Jl Jv48 (y, o)iy·&lio(vy)dyJo>/2 

=/io(vR) <fl Jv48 (y, O)&~·ydyJ0)/2 , 

·' 

where R IS an average value and v-dependent, defined by the theorem of mean 
value. For comparison we introduce the elastic form factor 

Fe1 =<0J SV48 (y, O)exp(iy·&~)dyJO)/(Ze) 

~<oJ Jv/(y, O)j0 (vy)dyJO)/(Ze) 

io (vR'). 

Putting these relations together, we arnve at the formula 

Mv2= (m//2n2a) (Em/mp)4foE .. (EE~Er 6'r~E) IFeii 2fdE, (19) 

where f = j 0 (vR) /j0 (vR'), (if only the unretarded E1 part is dominant, JFed 2/ in 
Eq. (19) is replaced by 1) and Em=ml'-.di'+Eo is of the order of 100 MeV. 
The formula (19) looks quite similar to the one derived by Foldy and W alecka7l 

if f = 1. Of course, whether f = 1 or not must be carefully examined in individual 
cases. 

What we would like to stress in this section is that, owing to Eq. (11), 

L;/<Jl SAk±(y, O)exp(iy·&~)dyJO)I2 

can be expressed in terms of the directly measurable quantity J <JJ ~ V43 (y, 0) 
X exp(iy·&~)dyJO)J 2, even when the contribution of exchange currents is large. 

§ 4. Discussion of SU4 breaking effects 

Most of the previous arguments, which were based on exact SU4 , are valid 
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also when, instead of 

we only require 

where Ja IS a constant defined by 

Ja~(OJ (Yka)+ [H, yka] JO). 
(OJ (Yka)+YkaJO) 

(20) 

(21) 

Even if [H, Yk a] is not small, in so far as Eq. (20) holds, the SU4 relations 
are valid with only minor modifications. The discovery of Isobaric Analogue 
States (IAS) for heavy nuclei in the early sixties showed us21l that 

but 

[H, T±] -T±J0 =small, 

L1a being a constant called the single particle Coulomb displacement. In other 
words, the diagonal Coulomb term (LIT= 0) is very important, but its non­
diagonal terms (L1T=f=O) are less important. If a similar situation is valid in 
our case, i.e., if Eqs. (20) and (21) hold, we still obtain*l Eq. (11) and a rela­
tion similar to Eq. (12) (see Eqs. (22), (23) and (24)) without assuming any 
detailed knowledge of nuclear structure at least as far as the first-order effects 
in the breaking of su4 are concerned. 

In order to examine this point in more detail, let us see again the rela­
tion (11): 

~~(JJ SAk±(y, O)exp(iy·ll)dyJO)I2 

= ~~<JJ Jv48 (y, 0) exp (iy·ll)dyJO)I2 

+(OJ Yk ± JAk+ (y, 0) exp ( -iy·11)dy Jv43 (y, 0) exp (iy·ll)dyJO) 

-(OJ J V/(y, 0) exp(- iy ·ll)dyYk + Jv48 (y, 0) exp (iy·11)dyYk ±JO) 

+(OJ Yk + JV48 (y, 0) exp ( -iy·ll)dy Jv48 (y, O)exp(iy·11)dyYk ±JO). 

(22) 

For the correction terms use has been made of a closure approximation. Truely 
this approximation is dangerous in our case since we do not use the single-

*l Equation (11) was first found within the framework of the harmonic oscillator shell model.6l 
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Exchange Effects and SU4 Invariance 819 

nucleon effective operator for the weak and electromagnetic currents, but we deal 
with the true physical hadronic currents which include, for example, electromag­
netic and weak production of pions. Thus, in performing the closure approxima­
tion we are really taking into account excitation processes to states which have 
nothing to do with the states excited by muon capture. 

Let us assume that the closure approximation*> is nevertheless good and 
draw some conclusions about the correction terms under this hypothesis. There 
are two kinds of terms (i) and (ii) in Eq. (22): 

(i) 

and 

J <OI s VNy, 0) exp ( -iy·JJ)dyYk + s V43 (y, 0) exp(iy·JJ) yk±IO>' 

l <OI yk+ Jv48(y, O)exp( -iy·JJ)dy J V43 (y, O)exp(iy·JJ) Yk±IO> 

If the first-order perturbation theory is valid, then 

10)=10))+(1-10))((01) 1 (1-IO))((OI)HliO)), 
E-H0 

for which 

and 

Then w'e can rewrite 

as 

In a similar way one may treat 

If 

Yk±IO))=O, 

[Ho, Yk±J =0 

*> The validity of this hypothesis has been discussed briefly in Ref. 20), but in essence the 
problem is still open (C. W. Kim, private communication). 
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(i) and (ii) clearly vanish in this approximation. *l 
Finally let us take into account the other term m Eq. (15). From the so­

called Ahrens-Feenberg approximation,22l 

and 

provided that (JJ) is a suitable average of JJ, we easily get a relationship between 
Mv2 and MA2, 

(23) 

In this framework the su4 symmetry implies JEF=JEGT• If the dipole mode is 
assumed to be dominant, we have in the Ahrens-Feenberg approximation 

So instead of Eq. (23) we obtain a more realistic formula 

(24) 

A formula similar to Eq. (24) has already been obtained and discussed25 l 
in detail in the framework of conventional nuclear theory; the present argument 
is based on a different standpoint. 

§ 5. Conclusion 

The SU4 symmetry for actual nuclei is broken because of spin-dependent 
forces, but it is still a useful concept for understanding systematic properties of 
nuclei, such as sum rules. 

In this paper we have tried to develop a nuclear theory on the basis of cur­
rent algebra and SU4 invariance along the line proposed by Radicati. 5l Special 
emphasis is put on possible roles of the exchange current. In §§ 2 and 3, we 
have derived the relations (10) and (12), M v2 = M}, and discussed their implica­
tion. The Mv2 is an experimentally measurable quantity if precise experimental 
data on electron scattering are available; it can also be estimated by relating it 
to the photoabsorption cross section under the assumption that the unretarded 
E1 interaction is dominant. 

It has been believed that owing to the Siegert theorem10l the exchange cor­
rections to ya are quite small, and according to meson-theoretic calculations12l 
those to yka are less than 10%. Therefore, the ground state JO), satisfying 

*> In general, to study SU4 impurities, Loewdin's expansion method23> can be applied.24> 

Downloaded from https://academic.oup.com/ptp/article-abstract/51/3/811/1876818
by guest
on 29 July 2018



Exchange Effects and SU4 Invariance 821 

Tal 0) = ykal 0) =Ski 0) = 0 is not expected to differ very much from the conventional 
one. However, our knowledge on fV4a(y)exp(iy·v)dy or fAka(y)exp(iy·v)dy 
for a finite 11 is rather poor. Thus, relations such as Eqs. (10) and (12) seem to 
be useful if we take the viewpoint that the exchange corrections are significant. 

In §4 we have stated the possibility that the relation [H, yka]=YkaLia is 
valid for actual nuclei in analogy to the case of T± which was investigated in 
detail in connection with IAS. We have derived the relation (24), which has 
been discussed25l within the framework of the conventional theory. 

In summary the present approach seems to be a good starting point for treat­
ing the nucleus as a composite system consisting of nucleons and mesons (or 
quarks); perhaps this is very close to the original idea of Wigner,4l which was 
proposed at a very early stage of nuclear physics. 

Finally the authors would like to express their sincere thanks to Professor 
Louis W. Bruch for reading this manuscript. 
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