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We show how a lattice-Boltzmann approach can be extended to ternary fluid mixtures
with the aim of modeling the diverse behavior of oil–water-surfactant systems. We model
the mixture using a Ginzburg–Landau free energy with two scalar order parameters
which allows us to define a lattice-Boltzmann scheme in the spirit of the Cahn–Hilliard
approach to nonequilibrium dynamics. Results are presented for the spontaneous emul-
sification of an oil–water droplet and for spinodal decomposition in the presence of a
surfactant.
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1. Introduction

Amphiphilic systems, for example oil–water-surfactant mixtures, show a wide

variety of equilibrium and dynamic behaviors. As the relative concentrations of

the components of the mixture are varied lamella, microemulsion, micellar, and

hexagonal phases are among those that can be stabilized.1,2 Often the ordering

is on mesoscopic length scales and as a result amphiphilic systems are extremely

difficult to model using microscopic simulation techniques.

We should like to have effective ways of simulating the ordering of the mesoscale

phases, the way in which they transform one to another, and their dynamic

behavior under flow. As well as the intrinsic scientific interest these problems are of

enormous industrial relevance. The oil industry is interested in the effect of surfac-

tants on the flow of oil–water mixtures in porous rock. The rheological properties

∗This paper was presented at the 7th Int. Conf. on the Discrete Simulation of Fluids held at the
University of Oxford, 14–18 July 1998.
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of the surfactants in cleaning products and food are relevant to many processing

industries.

Modeling the dynamics of amphiphilic systems is a difficult problem because of

the interplay between several relevant transport mechanisms, the diffusion of each

component and their hydrodynamic flow. The aim of this article is to describe a

lattice-Boltzmann scheme3 which includes each of these mechanisms explicitly in

such a way that their relative values can be easily controlled. We base the simu-

lation technique on the method first described by Orlandini et al.4,5 This has the

advantage that the equilibrium properties of the fluid can be described by a free

energy which has been extensively investigated in the literature. When approach-

ing such a complicated system, knowledge of the exact equilibrium state provides

a useful baseline.

An important component of the physics of amphiphilic systems is that the sur-

factant molecules move to the oil–water interfaces and hence lower the surface

tension.2 Previous lattice-Boltzmann models of amphiphilic systems have mimicked

this effect by varying the surface tension in the input free energy.6,7 The disadvan-

tage of this approach is that it cannot address questions related to the surfactant

dynamics and it is this omission that we aim to address here. Other numerical

approaches that have modeled amphiphilic rheology in a way that treats hydrody-

namic effects include time dependent Landau–Ginzburg approaches,8,9 molecular

dynamics,10 and a lattice gas cellular automaton scheme.11,12

In Sec. 2 we describe the lattice-Boltzmann method concentrating on the exten-

sions needed to treat the ternary mixture. Sections 3 and 4 demonstrate the affinity

of the interface for the surfactant and present preliminary results on spontaneous

emulsification and phase separation. In Sec. 5 we summarize the paper and point

out directions for further investigation.

2. The Lattice-Boltzmann Scheme

The variables of the lattice-Boltzmann model are three distribution functions fi(r),

gi(r) and hi(r), each of which evolves during a time-step ∆t according to a single

relaxation time Boltzmann equation13,14

fi(r + ei∆t, t+ ∆t)− fi(r, t) = −1

τ
[fi(r, t)− f0

i (r, t)], (1)

gi(r + ei∆t, t+ ∆t)− gi(r, t) = − 1

τφ
[gi(r, t)− g0

i (r, t)], (2)

hi(r + ei∆t, t+ ∆t)− hi(r, t) = − 1

τρ
[hi(r, t)− h0

i (r, t)], (3)

where τ , τφ and τρ are independent relaxation parameters and ei are the unit lattice

vectors. We use a nine-velocity model on a square lattice with ei = (±1, 0), (0,±1),

(±1/
√

2,±1/
√

2),(0, 0). The distribution functions are related to the total density

n, mean fluid velocity u, density difference of oil and water φ and difference ρ of
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local surfactant concentration from its average by

n =
∑
i

fi, nu =
∑
i

fiei, φ =
∑
i

gi, ρ =
∑
i

hi. (4)

These quantities are locally conserved in any collision process and, therefore, we

require that the equilibrium distribution functions f0
i , g

0
i , h

0
i also fulfil Eqs. (4).

The higher moments of the equilibrium distribution functions are defined so that

we can obtain continuum equations pertinent to a ternary fluid mixture. Therefore,

we define ∑
i

f0
i eiαeiβ = Pαβ + nuαuβ , (5)

∑
i

g0
i eiα = φuα ,

∑
i

g0
i eiαeiβ = Γφ∆µδαβ + φuαuβ , (6)

∑
i

h0
i eiα = ρuα ,

∑
i

h0
i eiαeiβ = ΓρΛδαβ + ρuαuβ, (7)

where Pαβ is the pressure tensor, ∆µ is the chemical potential difference between

oil and water, Λ is the chemical potential of the surfactant, and Γφ and Γρ are

mobilities. Note that in writing the first equations in (6) and (7) we have assumed

infinite friction between the components. Expanding Eqs. (1), (2) and (3) to O(∆t2)

leads to the macroscopic equations5

∂tn+ ∂α(nuα) = 0, (8)

∂t(nuα) + ∂β(nuαuβ) = −∂βPαβ + ν∇2(nuα) + ∂α
[
λ(n)∂γ(nuγ)

]
, (9)

∂tφ+ ∂α(φuα) = ΓφΘφ∇2∆µ−Θφ∂α

(
φ

n
∂βPαβ

)
, (10)

∂tρ+ ∂α(ρuα) = ΓρΘρ∇2Λ−Θρ∂α

( ρ
n
∂βPαβ

)
, (11)

where

ν =
(2τ − 1)

6
(∆t), λ(n) =

(
τ − 1

2

)
∆t

(
1

2
− dp0

dn

)
,

Θφ = ∆t

(
τφ −

1

2

)
, Θρ = ∆t

(
τρ −

1

2

)
. (12)

We choose τφ = τρ = (1 + 1/
√

3)/2 in order to minimize correction terms.4

The ternary mixture is modeled by the free energy functional8,15

F [φ, ρ] =

∫
dr
[a
2
φ2 +

b

4
φ4 +

κ

2
(∇φ)2 +

c

2
(∇2φ)2 +

α

2
ρ2 +

λ

2
(∇ρ)2 +

γ

2
(∇2ρ)2

+ β1ρφ
2 + β2φ

2(∇2ρ) + β3ρφ(∇2φ)
]
. (13)

The terms depending only on ρ describe the pure surfactant. α and λ are positive.

Only terms quadratic in ρ enter because any ordering of the surfactant in the
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absence of oil or water is not within the scope of this model. The average value

of the surfactant concentration enters the model via the parameter κ. For positive

κ the surfactant concentration is small. As κ decreases and eventually becomes

negative the average value of the surfactant concentration increases. The coefficient

a is negative below the critical temperature where the oil–water mixture phase

separates, while b is always positive. Thermodynamic stability requires c > 0, γ >

0. The last three terms describe the interaction of the surfactant with oil and

water. The coefficient β1 is a measure of the miscibility of surfactant with the other

components of the fluid. β2 < 0 favors the surfactant sitting at oil–water interfaces

as can be seen integrating by parts twice to give a term ∼
∫
dr(∇φ)2ρ. The last term

in Eq. (13) is of the same order and should be included for consistency. Following

Ref. 16, the thermodynamic variables can be calculated from the free energy17

∆µ =
δF
δφ

= aφ+ bφ3 − κ∇2φ+ c(∇2)2φ+ 2β1ρφ+ 2β2φ(∇2ρ)

+ β3ρ(∇2φ) + β3∇2(ρφ), (14)

Λ =
δF
δρ

= αρ− λ∇2ρ+ γ(∇2)2ρ+ β1φ
2 + β2∇2φ2 + β3φ(∇2φ). (15)

One has to be more careful in deriving the pressure tensor. The pressure parellel

to the interface is

pL =
a

2
φ2 +

3

4
bφ4 − κφ(∇2φ)− κ

2
(∇φ)2 + cφ(∇2)2φ− c

2
(∇2φ)2

+
α

2
ρ2 − λρ(∇2ρ)− λ

2
(∇ρ)2 + γρ(∇2)2ρ− γ

2
(∇2ρ)2

+ 2β1ρφ
2 + β2[φ

2(∇2ρ)+ρ(∇2φ2)] + β3[ρφ(∇2φ)+φ∇2(ρφ)]. (16)

In order to satisfy the equilibrium condition

∂αPαβ = 0, (17)

we have to add off-diagonal terms to the pressure tensor. This is achieved by con-

sidering a linear combination of all symmetric tensors having two or four gradient

operators. The final result is17

Pαβ =
{
pL + c

[
(∇2φ)2 + ∂σφ∂σ∇2φ

]
+ γ
[
(∇2ρ)2 + ∂σρ∂σ∇2ρ

]
+ β2

[
∂σφ

2∂σρ

+φ2∇2ρ
]
+ β3

[
∂σρφ∂σφ+ ρφ∇2φ

]}
δαβ + κ∂αφ∂βφ− c

[
∂αφ∂β∇2φ

+ ∂βφ∂α∇2φ
]
+ λ∂αρ∂βρ− γ

[
∂αρ∂β∇2ρ+ ∂βρ∂α∇2ρ

]
− β2

[
∂αφ

2∂βρ+ ∂αρ∂βφ
2
]
− β3

[
∂αρφ∂βφ+ ∂αφ∂βρφ

]
. (18)
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3. Diffusion and Spontaneous Emulsification

We first consider the process of diffusion of the surfactant towards oil–water inter-

faces. We initialized a system with ρ = 0 and two planar interfaces whose initial

profile were the hyperbolic tangent that corresponds to the equilibrium interface

shape for a system with no surfactant. The simulations were run with a = −1,

b = c = 1, κ = −1.15, α = λ = γ = 1, β1 = 0, β2 = −0.2, β3 = 0.4, τ = 100,

Γφ = Γρ = 0.1 and ∆t = 0.004. Figure 1 shows the evolution with time of the

profiles of both the φ and ρ fields. It can be seen from Fig. 1 that when the system

reaches its equilibrium configuration the surfactant profile shows two peaks at the

position of the oil–water interfaces, as expected. Another striking feature is that the

profile of the oil–water density difference is no longer monotonic. Such nonmono-

tonic profiles were obtained in Ref. 18 and observed in experiment.19 Physically,

the surfactant causes a reduction of the surface tension at interface and, also, the

amphiphilic nature of surfactant tends to aggregate oil and water at either side

of the interface. We found that increasing the surfactant mobility, the equilibrium

configuration was attained more quickly.17

For this choice of the parameters the surface tension is negative and, as a con-

sequence, the system wants to increase the amount of interface20 and transform to

a new stable phase, the lamellar phase. To see this occurring we start from a drop

of oil in water randomly perturbing the interface to avoid the system remaining in

Fig. 1. Evolution with time ((a) t = 0, (b) t = 2, (c) t = 22, (d) t = 62, (e) t = 279, (f) t = 928)
of the profiles of oil–water density difference φ and surfactant density ρ.
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(a) (b) (c) (d)

Fig. 2. Evolution with time (from top, t = 46, 591, 1252, 2652, 5615) of spontaneous emulsification
of a droplet. Snapshots are given for (a) the oil–water density difference φ at high viscosity (grey-
scaling from black ⇒ white corresponds to φ = −1⇒ φ = 1); (b) the surfactant density ρ at high
viscosity (grey-scaling from black ⇒ white corresponds to minimum ρ ⇒ maximum ρ); (c) φ at
low viscosity; (d) ρ at low viscosity.

a metastable state. In Fig. 2 we report the time evolution of the oil–water density

difference and the surfactant density, comparing the behavior at high (τ = 100) and

low (τ = 0.585) viscosities. The lamellae start to form with a speed which clearly

depends on the value of viscosity.

4. Phase Separation

In this section we present preliminary results showing the effect of the surfactant

on the late stages of spinodal decomposition. The aim is to follow the growth of the

oil and water domains following a quench to below the critical temperature. (Note

that in this model the binary oil–water mixture is symmetric.) The growth of the
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ordered domains is measured through the average domain size R(t) calculated as

the inverse of the first moment of the circularly averaged structure factor.21 We

consider high viscosities where transport is diffusive and characterized by the law

R(t) ∼ tα with α = 1/3.

For amphiphilic systems previous results using Langevin equation and lattice gas

models have shown that the surfactant slows down the growth.11,12 Some evidence

has been presented for a logarithmic behavior.10,22

The phase separation was run with a = −1, b = c = 1, κ = 0.1, α = λ = γ = 0.5,

β1 = 0.25, β2 = −0.7, β3 = 0.125, τ = 100, Γφ = Γρ = 0.1, ∆t = 0.004 and random

initial conditions. Figure 3 shows snapshots of the time evolution of the patterns

(
i
v
)

(d) (e) (f)

(
i
i
i
)

(d) (e) (f)

(
i
i
)

(a) (b) (c)

(
i
)

(a) (b) (c)

Fig. 3. Snapshots of the evolution with time ((a) t = 279, (b) t = 1252, (c) t = 2652, (d) t = 8806,
(e) t = 18643, (f) t = 53275) of the oil–water density difference φ ((i) and (iii)) and the surfactant
field ρ ((ii) and (iv)) following a quench to the ordered phase. Grey-scaling is as in Fig. 2.
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Fig. 4. Double logarithmic plot of the evolution of the inverse first moment of the structure
factor as a function of time. The straight line has slope 1/3.

formed after the quench. In Fig. 4 we report the evolution of R(t).

After initial transients sharp domains form. Initially the domain size grows with

an exponent consistent with 1/3, but the growth is then slowed as the surfactant

diffuses to the interface. The surfactant lowers the surface tension which is the

driving force for diffusive growth. As a consequence the domains grow more slowly.

However for this choice of parameters the surface tension does not become negative

and hence the surfactant is not able to stop completely the growth of domains. A

power law growth, again with an exponent consistent with 1/3, re-emerges.

The size of the system was 64×64. A simulation with the same parameters on a

256×256 lattice performed to t = 15 000 shows the same behavior. Much of interest

remains to be explored. What is the effect of changing the time-scale for surfactant

diffusion on the growth? If hydrodynamic flow is the dominant mechanism in a

binary fluid the growth exponent increases to α = 2/3. How does the presence of

surfactant affect growth in this regime?

The lattice-Boltzmann method is particularly suited to answering these ques-

tions because the viscosity and diffusivity of the different components can be easily

tuned. Moreover, the final equilibrium state is known so one is aware if the system

becomes stuck in a metastable phase. However, the parameter space is large and a
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full understanding of the effect of surfactant dynamics on phase separation, even

in this simplified model, is not an easy task.

5. Conclusion

To summarize, we have written down a lattice-Boltzmann scheme to model the

equilibrium properties of ternary fluid mixtures, in particular oil–water-surfactant

systems. Results have been presented showing how the surfactant diffuses to the oil–

water interface leading, when the surface tension becomes negative, to spontaneous

emulsification. Preliminary results showing the effect of the surfactant on phase

separation in a high viscosity oil–water mixture have been discussed.

Understanding the rheology of amphiphilic systems is very challenging because

of the wealth of static and dynamic parameters. Many directions are accessible to

exploration by the model described here. Among these are the role of a surfactant

on interface dynamics, modeling a microemulsion phase, possibly by adding noise to

the simulations, and the transition kinetics between different mesoscale phases. A

well-defined equilibrium and the ability to impose rather than measure the transport

coefficients will be particularly helpful in exploring the physical and numerical

properties of such a complex model.
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