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Abstract

The proposal of the possibility of change of signature in quantum

cosmology has led to the study of this phenomenon in classical general

relativity theory, where there has been some controversy about what is

and is not possible. We here present a new analysis of such a change

of signature, based on previous studies of the initial value problem

in general relativity. We emphasize that there are various continuity

suppositions one can make at a classical change of signature, and

consider more general assumptions than made up to now. We con�rm

that in general such a change can take place even when the second

fundamental form of the surface of change does not vanish.
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1 Introduction

Following on recent developments in quantum cosmology [1-3], a subject of

some interest is the possibility of a change of signature in a classical space-

time [4-12]. We discuss here in depth the geometry associated with such a

classical change of signature. The results obtained di�er depending on what

smoothness assumptions one makes. We look at the most general case, re-

sulting from concentrating on the 3-dimensional surface where the change of

signature occurs, rather than on either the Lorentzian (hyperbolic) or Rie-

mannian (positive de�nite) enveloping space (the latter is often referred to

as Euclidean; however we prefer Riemannian, as `Euclidean' suggests that

the space is at) .

In our approach we emphasize the initial value problem associated with

signature change and the dynamical content of the theory, rather than re-

garding the problem as just a generalisation of the well-known Israel junction

conditions [13]. There are more than junction conditions involved. In the

case of the surface of a star, junction conditions are rather separated from

the role of the initial value problem (because the surface is timelike). In the

case of a change of signature, this must take place on a spacelike surface

and so is essentially tied in to the nature of the initial value problem. Junc-

tion conditions play here a kinematical role, while the real dynamics of the

change of signature are captured by the constraints associated with the �eld

equations. This understanding underlies the approach we adopt.

The �rst fundamental form must be continuous. The continuity of the

the second fundamental form as seen from both sides, is only assumed up to

the action of an in�nitesimal di�eomorphism corresponding to a Lie deriva-

tive. This allows a kink in the geometry - not allowed in the more restrictive

assumptions considered up to now. We insist that the constraints are valid

for both enveloping metrics. Further junction conditions only arise if the

matter is assumed to be smoothly behaved - which may not be required.
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These conditions thus generalise those considered by Ellis et al [5,6,11],

which in turn are more general than those considered by Hayward et al

[7,8,10] on the basis of their more restricted approach (placing more strin-

gent restrictions on what is allowed). Our stand- point is that one can adopt

any of these views - they are based on di�erent philosophies of how one

should approach junction conditions - or indeed one can question whether

there should be any conditions other than a gluing condition, such as is

adopted here.

We avoid use of speci�c coordinate systems, as well as use of abstract

notation such as is employed by Hayward [7]. Rather we follow the notation

of Hawking and Ellis [14] and of Fisher and Marsden [15].

2 Approach Taken

We let S denote a compact oriented three-manifold, and let

� : S ! (M (4); g) �M (1)

be an embedding of S in a Lorentzian manifold (M (4); g) such that the imbed-

ded manifold �(S) is space-like, that is the pull-back

��(g) � h (2)

is a Riemannian metric on S.

Similarly we de�ne

�̂ : S ! (M (4); ĝ) � M̂ (3)

as an embedding of S in the same 4-dimensional manifold, M (4), but now

endowed with a Riemannian metric ĝ, viz., (M (4); ĝ).

Our strategy is to think of the metrics g and ĝ as living on the same

portion of manifold, and in order to avoid misunderstandings, we wish to
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stress that M and M̂ are just a shorthand notation for the same underlying

four-manifold M (4) with di�erent metrics, with g Lorentzian, whereas ĝ is

Riemannian. As we are not concerned with global problems we may restrict

ourselves to a a tubular neighborhood of �(S) (containing also �̂(S)). For

the moment g and ĝ are arbitrary. This coexistence of both Riemannian and

Lorentzian metrics on the same region of the manifold will in our opinion

avoid a lot of problems when thinking of the geometry involved.

We are going to identify - modulo the action of the di�eomorphisms-

the Lorentzian and Riemannian geometry along a common imbedded space-

like hypersurface, determined by the constraints associated with the Einstein

equations.

3 Geometry

In order to de�ne the variables of interest, we need to characterise the folia-

tions employed and the related lapse and shift in both the Riemannian and

Lorentzian cases.

Let E1(S; M̂) and E1(S;M) denote the sets of all spacelike imbeddings

of S in M̂ and M respectively.

Suppose we have a curve in each of these imbedding spaces: namely a one-

parameter (�) family of spacelike imbeddings of S intoM , and a similar one-

parameter (�) family of imbeddings of S into M̂ . Explicitly, ��:S � I !M

and �̂�:S � I ! M̂ , where I � (��; �) for a suitably small � > 0. This

family of imbeddings de�nes a corresponding one-parameter family of vector

�elds X
(4)
� :S ! TM (4) and X̂

(4)
� :S ! TM̂ (4) by

d��

d�
(p) = X

(4)
� (��(p)) (4)

and
d�̂�

d�
(p) = X̂

(4)
� (�̂�(p)) (5)
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as p varies over S.

In order to simplify the notation a bit, we shall denote them simply by

X� and X̂�. Roughly speaking, either in M or in M̂ these vectors connect

the point ��(p) with ��+d�(p) (and similarly for �̂); namely the images of a

given point p in S under two in�nitesimally near imbeddings.

If n and n̂ respectively denote the forward-pointing unit normals to �(S)

and �̂(S) (so nanbgab = �1; n̂an̂bĝab = +1), we can as usual decompose the

vector �elds X and X̂ into their normal and tangential components:

X� = N�n̂+ �� (6)

X̂� = N̂�n̂+ �̂� (7)

which de�ne the corresponding family of lapse functions on S, i.e.,N�:S ! R

and a corresponding family of shift vector �elds again on S, namely ��:S !

TS. We wish to stress the fact (slightly obscured by our simpli�ed nota-

tion) that the family of lapse functions N� are de�ned on the abstract man-

ifold S, and similarly the family of shift vector �elds �� are de�ned over S;

similarly for the lapse N̂� and shift �̂�. Here \the lapse and the shift are seen

in their proper geometric roles - describ- ing the hypersurface deformations

in the enveloping geometries - rather than as pieces of the metric" (Isenberg

and Nester [16]).

The metric interpretation comes about for instance if we use the maps

F : I �S !M (8)

de�ned by

(�; p) 7! ��(p) (9)

as a di�eomorphism of I � S onto a tubular neighbourhood of �0(S). We

can then pull back the metric g onto I � S and get the usual expression

(F �g)��dx
�dx� = �(N2

� � �i�
i)d�2 + 2�idx

id� + hijdx
idxj (10)
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where indices � and � run from 1 to 4, i and j run from 1 to 3, fxig are

local coordinates on S, and hij is the ��dependent one-parameter family of

metrics on S. A similar analysis holds for F̂ , leading to

(F̂ �ĝ)��dy
�dy� = +(N̂2

� + �̂i�̂
i)d�2 + 2�̂idy

id� + ĥijdy
idyj (11)

with the obvious meaning of the symbols.

There are a number of general comments that should be made at this

stage. In particular, we wish to caution the reader to not confuse the ab-

stract manifold S�I with its images ��(S) and �̂�(S) inM = (M (4); g) and

M̂ = (M (4); ĝ), respectively. Typically, when dealing with the initial value

problem, one is accustomed to do so for obvious reasons, and this identi�ca-

tion is usually harmless. However making clear the distinction is more than

a technical convenience here. By identifying S � I with ��(S) and �̂�(S)

one is lead to an incorrect interpretation of the vector �eld @=@�, which is

de�ned on S � I, in terms of which the initial value formalism is phrased.

Observe that the parameter � is the natural label for all the �elds h�, ĥ�, N�,

N̂�, ��, �̂�, and the extrinsic curvatures (de�ned below), if they are referred

either to the Lorent- zian or to the Riemannian case. This is a rather obvious

statement when things are correctly seen, as they should be, on S � I. It is

not an obvious statement at all if we identify S � I with its images under

�� and �̂�. In this case, since the foliations ��(S) and �̂�S) are di�erent,

and with di�erent deformation vectors X� and X̂�, one is incorrectly led to

believe that these deformation vectors must be tangent to di�erent defor-

mation coordinates, namely X� = @=@� and X̂� = @=@!, for some other

defor- mation parameter !. As stressed before, this is usually harm- less in

standard situations where one has just one enveloping space- time, but it is

fatal here where the enveloping geometries are two and quite distinct.

The source of the error, in proceeding as above, lies in the fact that one is

identifying vectors living on di�erent spaces, since the family of vector �elds

@=@� is de�ned on S, while the deformation vectors X� and X̂� are de�ned

on M and M̂ , respectively. If these two latter are di�erent, their intuitive

identi�cation with vectors tangent to a deformation coordinate, (i.e., with

@=@�), is problematic and very confusing.
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One must clearly separate the role of the vector tangent to the deforma-

tion coordinate, which is @=@�, and which is de�ned on S, from the vectors

X� and X̂� which are respectively associated to the imbeddings �� and �̂�,

(these vector �elds can be thought of as the vector �elds covering the two

distinct family of imbeddings �� and �̂� of S).

It is our strategy to address the geometry of signature change exclu- sively

in terms of quantities de�ned on S and this should be clearly kept in mind

when deciding which quantities should be continuous through a surface of

signature change. For instance it would be very unnatural from our view-

point to assume the continuity of the unit normals, for these quantities live

in the embedding spacetimes M and M̂ , and this is something that an ob-

server living in S does not know a priori. It is much more natural for him

to assume the continuity of the vector @=@� and of the lapse function and

of the shift vector �elds, since all such quantities are well de�ned on S and

they provide him the complete kinematical framework for describing { from

his standpoint { the deformations of S which may be compatible with a Rie-

mannian geometry on one side and with a Lorentzian geometry on the other.

With these general remarks out of the way, we recall that in order to

describe the imbeddings � and �̂, besides introducing the 3-metrics h and ĥ

we must also introduce, on S, two symmetric tensor �elds K and K̂ to be in-

terpreted as the second fundamental forms of ��(S) and �̂�(S) respectively.

In our notation, they are de�ned, at the generic point x 2 S, and for any

pair of vectors u and v in TxS by

Kx(u; v) =< Tx� � ujr(4)(Tx� � v)n >g (�(x)) (12)

where r(4) denotes the covariant derivative operator in M , the brackets <

�j� >g (�(x)) stand for the inner product in the Lorentzian metric g evaluated

at the point �(x) 2M , and Tx� stands for the tangential mapping, at x 2 S,

associated to the embedding �.

Similarly, and with an obvious meaning of the symbols,

K̂x(u; v) =< Tx�̂ � ujr̂(4)(Tx�̂ � v)n >ĝ (�̂(x)) (13)
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For each given value of � the �elds (h;K) and (ĥ; K̂) cannot be arbitrarily

prescribed. From the Gauss-Codazzi relation, one gets that such �elds must

satisfy four compatibility conditions, namely in the Riemannian case

R(ĥ)� (K̂dcĥdc)
2 + K̂abK̂cdĥacĥbd = �2��(G�� n̂

�n̂�) (14)

where Ĝ�� is the Einstein tensor of ĝ and

D̂aK̂
acĥcb � D̂bK̂

cdĥcd = �̂�[R��(ĝ)n̂
�?

�

b ] (15)

where D̂ is the covariant derivative in (S; ĥ) and R�� is the Ricci tensor of

the metric ĝ.

In the Lorentzian case, we obtain

R(h) + (Kdchdc)
2 �KabKcdhachbd = 2��(G��n

�n�) (16)

where G�� is the Einstein tensor of g and

DaK
achcb �DbK

cdhcd = ��[R��(g)n
�?

�
b ] : (17)

4 Change of Signature

Now we are ready to discuss the possibility of change of signature through

a regular hypersurface. Till now the embedded hypersurfaces ��(S) and

�̂�(S) were kept distinct. The basic condition we need in order to be able to

speak of a signature change is to choose one of the ��(S) to `coincide' with

one of the manifolds of the family �̂�(S).

Asking directly, as often is implicitly done, that for a given range of �,

say �� < � < �, ��(S) � �̂�(S), is too restrictive. And this is partially

the reason for having unnecessary stringent constraints on the second funda-

mental form on the hypersurface of signature change. It is more natural to

assume, at leas t a priori, that the identi�cation between ��(S) and �̂�(S),

�� < � < �, occurs modulo the action of di�eomorphisms of the manifold
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S. More particularly, we consider a � dependent family of di�eomorphisms

��:S ! S, smoothly varying as �� < � < �, and such that for a given value

of �, say � = 0,

�̂0(p) = �0(p);8p 2 S (18)

namely, it is only required that �� = idS for � = 0. The strategy will be to

use these di�eomorphisms to glue the bottom (Riemannian) region with the

top (Lorentzian) region. This will mean - remembering that there are two

metrics on S � I - we designate the metric ĝ as the physical metric in the

lower region S � (0;��) and the metric g as the physical metric in the upper

region S � (�; 0). On the zero section, S � f0g, of S � I, the constraints

associated to the Lorentzian and to the Riemannian imbedding must be si-

multaneously satis�ed.

It is clear that as far as the three-metrics h and ĥ are concerned, the

action of the one-parameter group of di�eomorphisms �� is simply that of

having

ĥ = ���h (19)

for �� < � < �, and in particular, ĥ = h for � = 0.

The situation is less dull as far as concerns the tensor �elds K and K̂

yielding the second fundamental forms. In order to see how the action of ��
relates K and K̂ on S let us write the explicit expressions of K and K̂ in

terms of the three-metrics h, ĥ, and of the vector �eld (de�ned over S � I),
@

@�
. We get

Kij = N�1
� [

@

@�
hij � L��hij ] (20)

and similarly

K̂ij = N̂�1
� [

@

@�
ĥij � L�̂�

ĥij ] (21)

where L� denotes Lie di�erentiation along the vector �eld indicated.
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For �� < � < �, we have ĥij = (���h)ij thus

K̂ij = N̂�1
� [

@

@�
(���h)ij � L

�̂�
(���h)ij] (22)

A direct computation shows (see e.g., DeTurck [17]),

@

@�
[(���h)ij(p)] = ���[

@

@�
hij(��(p))] + ���[Lv�hij(��(p))] (23)

where the vector �eld v� is the generator of the one-parameter group of

di�eomorphisms �� according to

@

@�
��(p) = v�(�; ��(p)) (24)

with the initial condition ��j�=0 = idS .

Thus

K̂ij = N̂�1
� ���[

@

@�
hij(��(p)) + Lv�hij(��(p))� L

�̂�
hij(��(p))] (25)

In particular, for � = 0, we get

K̂ij = N̂�1
� [

@

@�
hij + Lv�hij � L

�̂�
hij] (26)

which shows that if, as argued in the previous paragraph, we assume conti-

nuity of the lapse and the shift for � = 0:

N̂� = N�; �̂� = ��; (27)

and assuming also continuity of @

@�
hij , then

K̂ij = Kij +N�1
� Lv�hij (28)

(a similar relation holds for any �� < � < � provided that we act by ���).

Thus, on the hypersurface �0(S) = �̂0(S) where we seek a change of sig-

nature, we may assume that the corresponding second fundamental forms

coincide only up the Lie derivative term N�1
� Lv�h

ij.
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We wish to stress that by forcing �� to be the identity for all �, one

may obviously achieve equality between the second fundamental forms on

the transition hypersurface. But �xing a priori the three degrees of freedom

(per space point) associated with �� will be a very bad investment when

dealing with the constraints.

One may also argue that equation (26) is equally compatible with having

continuity of the second fundamental form, provided that one allows for a

discontinuous shift vector �eld, namely �� = �̂� � v�. Further impositio n

of the continuity of the shift would then yield v� = 0, and the former case

of freezing the di�eomorphism group is then recovered. All this is actually

related to what one considers standard junction conditions in the setting of

signature changes. In ordinary situations, such conditions require the conti-

nuity of the four-metric and of the second fundamental form. But whether

or not a such conditions can be extended at face value to the case of surfaces

of signature change is a very delicate issue. Continuity of the four-metric

leads to vanishing of the lapse function, which is quite disturbing. Moreover,

the tensor �elds K and K̂, when interpreted as second fundamental forms,

are to be thought of as de�ned in terms of a unit normal (to the surface of

signature change) whose norm changes sign at the junction. Thus it is not

obvious at all that the continuity of the second fundamental form is a natural

requirement in the case of surfaces of signature change.

In this respect, it is often argued that the correct answer must come from

the �eld equations. More precisely, one should impose the validity of the �eld

equations everywhere, in particular on the surface of signature change. This

point of view is apparently reasonable and interesting, but implies very se-

vere constraints on the resulting solutions. We o�er here an alternative point

of view, namely we do not force the validity of the full four dimensional �eld

equations on the surface of signature change, but rather we concentrate on

the validity of that part of the �eld equations which is really intrinsic to the

surface of signature change, namely we impose the consistency among the

four constraints associated with the �eld equations. In our view, this is a

11



minimal necessary requirement, the basic one. Further restrictions can come

only if one has some input from the matter �elds present, in particular on

how they behave on the surface of signature change; and that is a matter for

debate.

We wish also to stress the following point. From the point of view of

analysis and physics, partial di�erential equations of mixed type, where the

type (elliptic, hyperbolic, or parabolic) of the equation is a function of posi-

tion, are rather familiar. The added di�culty here, in considering surfaces of

signature change, lies exactly in the di�eomorphism invariance of the theory.

By considering the full �eld equations at once everywhere, one is behaving

as if there exists a general theory of boundary value problems independent

of the type of the equation, which is very bold, to say the least. Even in

the simplest cases in hydrodynamics, such a theory is very delicate, and gen-

eral results exist only for equations of special types. The situation becomes

hopeless in a general relativity setting. Indeed, Einstein's equations in the

Riemannian regime are a strongly overdetermined elliptic system (owing to

di�eomorphism invariance), and the problem of �nding a metric with a pre-

assigned Einstein or Ricci tensor is often obstructed even at an in�nitesimal

level, (i.e., there are even obstructions to �nding a metric, around a given

point, with prescribed Ricci tensor, see [17]). The situation changes drasti-

cally in the Lorentzian regime. Thus it is fair to say that the study of mixed

type Einstein equations is a completely open problem. It follows that forc-

ing the validity of the �eld equations everywhere, in the case of a surface of

signature change, is a formal procedure not really justi�ed from an existing

theory, and to which one should give the same interlocutory status as other

proposals. In our approach, restricting attention to the constraints forced on

the surface of signature change, one is considering what kind of initial data is

compatible with a signature change in terms of partial di�erential equations

which do not change type on the surface of signature change. Furthermore,

these contain the essential dynamical equations of the theory (for example

in the Robertson-Walker case, they include the Friedmann equation), which

lead to the Wheeler-de Witt equation which underlies quan- tum cosmology.
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As a �nal remark, notice that at �rst reading one may think there is a

surface layer present in our formalism because of the allowed discontinuity of

the second fundamental form. However, there is no variance with the essence

of the junction conditions of Israel [13], since we are assuming the continuity

of the proper dynamical variables, which are @
@�
hij. These conditions are

usually written down in terms of adapted coordinates such that the second

fundamental form is the time derivative, and so do not allow for the action of

a di�eomorphism which is responsible for the Lie derivative terms. Actually,

in the geometrical setting discussed here, as stressed above, they should not

be taken at face value, since the general remarks discussed in the previous

paragraph apply also here. In our setting, the proper variables to match are

the lapse N�, the shift ��, the three-metric h� and its derivative @

@�
h { as we

have done, and no surface layer is present as is clearly shown by imposing

the constraints.

4.1 Constraints

The constraints, both in their Lorentzian and Riemannian version, must hold

for � = 0.

Let us start from the momentum (or divergence) constraint. We assume

that on M both ĝ and g satisfy the corresponding form of Einstein �eld

equations, the Riemannian form for the former, the standard Lorentzian

form for the latter. Thus in the Riemannian case

R̂�� = T̂�� �
1

2
ĝ�� ĝ

�T̂� (29)

where T̂�� are the components of the Riemannian energy-momentum tensor.

Relative to the slicing �̂�(S) we shall write

T̂�� = �̂n̂�n̂� + ĵ�n̂� + ĵ�n̂� + ŝ�� (30)

where �̂, ĵ�, and ŝ�� respectively are the normal-normal, normal-tangential,

and tangential-tangential projections of T̂�� with respect to �̂�(S). In the
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Lorentzian case, we shall similarly write

R�� = T�� �
1

2
g��g

�T� (31)

where T�� are the components of the energy-momentum tensor which, rela-

tive to the slicing ��(S), can be decomposed according to

T�� = �n�n� + j�n� + j�n� + s�� (32)

where �, j�, and s�� respectively are the relative density of mass-energy,

the relative density of momentum, and the relative spatial stress tensor with

respect to ��(S).

In general, there is no a priori need to assume that for � = 0 the matter

variables are continuous. From a phenomenological point of view, there is

no obvious evidence that one should assume continuity of the stress tensor

components at the change of signature, although one might make that as-

sumption if given no further information. On the other hand, if one has

a more fundamental description of the stress tensor, for example as arising

from a scalar �eld, one can work out the continuity properties of the stress

tensor components from that description. This was done in [5,6] for the case

of a classical scalar �eld. Then the obvious continuity conditions are that

the fundamental variables associated with the more fundamental description

are continuous, and satisfy whatever requirements there may be to give a

good set of initial data for the matter �eld equations on either side of the

signature change surface.

In general this will result in discontinuous stress tensor components. This

is not unreasonable in view of the fact that the usual conservation laws for

energy and momentumbreak down at a change of signature surface [12]. The

fundamental underlying point is that it is di�cult to understand physics in

the positive de�nite region, indeed classical physics in the usual sense will

not exist there (although quantum physics will be �ne!). Thus one must be

open-minded as to what conditions should be imposed on `matter' in the
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positive de�nite regime, in a classical discussion of signature change.

Without making speci�c assumptions, the momentum constraint forced

on S � f0g by the Riemannian side is

D̂aK̂ab � D̂bk̂ = ĵb (33)

where k̂ � ĥcdK̂cd is the rate of volume expansion (the trace of the second

fundamental form). Since, for � = 0, D̂a = Da and K̂ab = Kab + N�1Lvhab

we get

DaKab + Da(N�1Lvhab) � Dbk � Db(h
cdN�1Lvhcd) = ĵb(34)(where as

above k � hcdKcd). But the momentum constraint forced on S � f0g by

the Lorentzian side implies that

DaKab �Dbk = �jb (35)

which, when introduced in the previous expression, yields

Da(N�1Lvhab)�Db(h
cdN�1Lvhcd) = jb + ĵb (36)

Given hab, the lapse function N , and the momentum densities jb, ĵb the

above is a system of partial di�erential equations determining the vector �eld

v which generates the gluing one-parameter group of di�eomorphisms �� in

the neighbourhood of � = 0. Notice however that this system is elliptic (i.e.,

(36) can be actually inverted) only if the vector �eld v is divergence-free,

Dava = 0. This further requirement implies that k, the trace of the second

fundamental form, is continuous through the surface of signature change S,

namely

k = k̂ (37)

This result is quite satisfactory since in an initial value approach, the rate

of volume expansion is to be considered as a kinematical variable selecting

the family of hypersurfaces along which we are following the dynamics of the

gravitational �eld.
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Next we can impose that both the Riemannian and the Lorentzian version

of the Hamiltonian constraint hold for S � f0g. This yields

2� + 2�̂ +
2

3
k2+

hachbd( ~Kab + N�1Lvhab)( ~Kcd + N�1Lvhcd) + ~Kab ~Kab = 0(38)where ~Kab

denotes the trace-free part of Kab.

If we assume that �̂ � 0, then the above condition, being the sum of

algebraically independent non-negative terms, is only compatible with the

vanishing of each summand. Thus, in this cas e from �̂ � 0 we actually get

�̂ = 0, � = 0, k = 0, ~Kab = 0, and N�1Lvhab = 0. Thus, if we require conti-

nuity of the matter variables through a surface of signature change, we found,

as expected, that the second fundamental form must vanish correspondingly.

Notice that this result follows without requiring the a priori continuity of

the 4-metric or the continuity of the second fundamental form. Actually,

it is precisely the continuity of the matter variables which forces such a re-

sult. It is not in the geometry, and as argued in the previous paragraph,

there is no a priori need to assume that for � = 0 the matter variables are

continuous, or satisfy energy conditions reminiscent of the Lorentzian regime.

In general, without imposing any continuity or sign restriction on �̂, equa-

tion (37) must be considered as a constraint on the Lorentzian rate of vol-

ume expansion k. In other words, the above compatibility condition between

the Hamiltonian constraints sets an origin for the extrinsic time k which

parametrizes the time evolution in the Lorentzian region. Geometrically

speaking, this condi- tion is simply selecting the hypersurface where the sig-

nature change can occur [5,6].

One could use an approach even more closely tuned to the spirit of the

initial value problem by using as dynamical variables the conformal part of

the 3-metric, and the scaled divergence-free trace-free part of the second

fundamental form. However this would complicate the equations without

throwing much light on the basic issues we are addressing. We have therefore

avoided these complications here, although this more detailed analysis shows
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signs of raising interesting questions.

5 Relation to other approaches

It is essential to our approach that the 3-metric is continuous through the

change of signature. Others have emphasized [7,8,10] their belief in the im-

portance of using coordinate systems where all the covariant components of

the metric are continuous at a change of signature surface. We have not

adopted this view, inter alia because then some of the contravariant metric

components will diverge at the surface of change, leading inter alia to the

divergence of various Christo�el terms; so the appearance of continuity is

somewhat misleading.

What we do believe is important is that the kinematics should be well-

behaved there; this means we demand a well behaved shift and lapse, which

determine the 4-dimensional metric structure. In particular the lapse should

not go to zero because if it does then one halts the evolution in the coordinate

system thereby de�ned. This means in turn that while the 3-metric compo-

nents and their �rst `time' derivative can always be chosen continuous up to

a di�eomorphism, if the lapse is regular then the 4-dimensional metric tensor

components associated will have a discontinuous component (the time-time

component, which is not dynamical).

In our geometric approach, there is no need to assume a priori that the

4-dimensional metric is continuous, because we have shown that one can

match the Lorentzian and Riemannian spacetimes without making such an

assumption, by having a perfectly well behaved kinematical description (the

lapse and shift are well-behaved in our approach). The kinematics through

a signature change surface should as far as possible be free from particular

coordinate choices, and one should be free to choose the kinematical data

(the lapse and shift) as desired, not forced to make them go to zero.

The approach of [7] is based on a di�erent view: emphasizing more the
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role of the full space-time metric than the view used here. It also assumes

additional di�erentiability for the solutions, and is therefore more restrictive

than the view adopted here; it is not surprising that the results obtained are

more restrictive than if one does not impose these extra conditions. However

that view also implies the lapse function goes to zero as one approaches the

change surface. This `collapse of the lapse' may be expected to cause prob-

lems for the dynamics [18].

It will be clear from the above that the generic situation does not require

a vanishing of the second fundamental form at the surface of change, which

is required for example in both the distributional [7] and the Hartle-Hawking

approach [19] (which uses a complex time variable). Our hope is that the

present geometrical analysis of the classical case will be of help in under-

standing the full generality of what may be possible in the quantum case,

through �rst clarifying the full generality of the analogous classical situation.

We thank the MURST (Italy) for support. We would like to thank Charles
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presentation of the paper.
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