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ABSTRACT The study of mobile entities that based on local information have to accomplish global tasks
is of main interest for the scientific community. Classic models for the activation and synchronization
of mobile entities are the fully-synchronous (FSYNC), semi-synchronous (SSYNC), and asynchronous
(ASYNC) models, where entities alternate between active and inactive states with different timing.
According to the assumed synchronization model, very different results have been achieved in the field
of distributed computing. One of the main outcomes is the big gap between the ASYNC and the other
models in terms of manageability and algorithm design. In fact, there are still many problems for which
it is not known whether synchronicity is crucial for designing resolution algorithms or not.
In order to better understand the ASYNC case, here we propose a further model referred to as the semi-
asynchronous (SASYNC). This slightly deviates from SSYNC. In fact, like in SSYNC (and FSYNC), the
duration of the activation of an entity is kept of fixed time whereas, like in ASYNC, the starting instant
of the activation is not fully synchronized with the possible activation of other entities.
We show that for entities moving on graphs, the SSYNC model allows accomplishing more tasks than
the SASYNC that in turn allows accomplishing more tasks than the ASYNC.
Furthermore, our results show that, especially to tackle problems in the Euclidean plane, the SASYNC
model is already quite challenging, therefore there is no need to get involved with complications arising
in the ASYNC model.

INDEX TERMS Distributed Algorithms; Gathering; Mobile Robots; Synchronization.

I. INTRODUCTION

In this paper, we investigate on feasibility issues in dis-
tributed computing systems. We consider global tasks for
autonomous entities endowed with very weak capabilities.
As a standard notation, entities are usually referred to as
robots in the literature and so we do in the rest of the paper.

Standard and basic assumptions about capabilities con-
sider robots to be: autonomous, there is no central coordi-
nation for their actions; disoriented, each robot refers to its
own local coordinate system that may have no relation with
those of other robots; anonymous, they are indistinguish-
able and are not associated with any ids; homogeneous,
they all have the same capabilities and execute the same
(deterministic) algorithm; dimensionless, they are perceived
as points in the Euclidean plane or as occupying nodes of a
graph; silent, they have no direct means of communication,
that is, although they can see to each other, they cannot

explicitly communicate. It follows that all synchronizations,
interactions, and information spreadings among the robots
take place solely by observing the position of the robots in
the moving environment.

Concerning the behavior of the robots, one of the most
studied scenario assumes each robot to alternate between
active and inactive periods. When active, a robot operates in
standard Look-Compute-Move (LCM) computational cycles,
see e.g. [8], [39], [52]. Within one cycle, a robot acquires a
snapshot of the current global positioning of the other robots
(Look phase) with respect to its own coordinate system.
Successively, in the Compute phase, it decides whether to
move toward a computed direction or not (i.e., it executes
the designed distributed algorithm), and then performs the
move (Move phase), possibly a nil movement.

When dealing with such weak distributed robot systems,
it comes out that the feasibility of a global task depends on
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FIGURE 1: The Look-Compute-Move cycles that may occur
during an execution referring to the FSYNC, SSYNC, or
ASYNC models. For FSYNC and SSYNC, notice the subdi-
vision of the time axis into time units and the mark related
to each round.

many factors. The described robots’ behavior and capabili-
ties are certainly crucial but also the magnitude of synchrony
among the robots represents a main issue.

To this respect, in the literature, different characterizations
of the environment, illustrated in Figure 1, have been consid-
ered according whether robots are fully-synchronous, semi-
synchronous (cf. [14], [15], [52]–[54]) or asynchronous
(cf. [1], [24], [38], [41], [42]):

• Fully-Synchronous (FSYNC): All robots are always
active, continuously executing their LCM cycles in a
synchronized way. Hence, the time can be logically
divided into global rounds. In each round all the robots,
obtain a snapshot of the environment, compute on
the basis of the obtained snapshot and perform their
computed move.

• Semi-Synchronous (SSYNC): It is basically equivalent
to the FSYNC model, with the only difference that
within a round not all robots must be active.

• Asynchronous (ASYNC): Robots are activated indepen-
dently. Moreover, each phase may last for an undefined
but finite time. As a result, robots do not have a
common notion of time. Moreover, they can be seen
while moving, and computations can be made based
on obsolete information about positions.

In ASYNC, according to [38], [51], it is possible to assume
without loss of generality that the snapshot obtained during
the Look phase is in fact acquired at the beginning of such
a phase. The rationale behind it is that the Look phase can
be potentially thought as composed of three sub-phases:
(i) activation of the sensors; (ii) instantaneous snapshot
acquisition; (iii) processing data. Hence, by considering
sub-phase (i) as part of the preceding inactivity phase,
the assumption stands. This clearly does not change the
computational power of ASYNC but it reveals to be very

useful when the behavior of the robots is analyzed. We then
assume such a constraint in all the synchronization models.

Furthermore, it is usually assumed that for SSYNC and
ASYNC schedulers, an ideal adversary determines the Look-
Compute-Move cycles timing (i.e., which robots are acti-
vated at a given time). Anyway, the scheduler is always
assumed to be wait-free, that is each robot is activated,
eventually, and within finite time. Hence within a finite
but unpredictable window of time, each robot executes its
LCM cycle. This assumption is necessary to guarantee the
evolution of the system as, otherwise, an adversary may take
it unchanged forever.

One crucial property of the ASYNC model, that does not
apply in FSYNC nor in SSYNC, concerns the possibility
for the robots to be perceived while they are moving or
while robots have decided to move but they have not yet
started moving. In fact, as shown in Figure 1, during the
Look phase of a robot in ASYNC, other robots can be in
any other phase, whereas this cannot happen in FSYNC and
SSYNC due to the synchronization dictated by such models.
It follows that, in ASYNC a move can be performed after a
long time from the moment it has been computed, that is the
current configuration might have drastically changed with
respect to that moment. Such occurrences might heavily
affect the study of the ASYNC model where it might be
very difficult sometimes to figure out what is going on.
Hence, ASYNC reveals to be a model much more hostile
with respect to FSYNC and SSYNC for designing distributed
algorithms. This, of course, extraordinarily affects also the
arguments necessary to provide the proofs of correctness of
the proposed algorithms. To this respect, see [11] for an
extended discussion related to the difficulties encountered
when dealing with ASYNC.

In this paper, our investigation is toward the definition
of a new synchronization model that may exploit some
synchronization issues, like in FSYNC and SSYNC, but still
preserves some properties specific of the ASYNC model. In
practice, we look for a model that slightly deviates from
SSYNC toward ASYNC. Our aim is to better catch the
peculiarities that make ASYNC harder than SSYNC to deal
with, but without incurring in all the difficulties specific of
ASYNC. We will call our new model as semy-asynchronous,
SASYNC in brief. Such a model will help to better under-
stand the big gap between SSYNC and ASYNC, in terms
of computational power. To this respect, our investigation
heavily involves the study of the Gathering problem. In
general, this is the requirement, for a given set of robots, to
let them meet, eventually.

A. OUTLINE
The paper is organized as follows. In the next section, we
revise some related literature. In Section III, we formally de-
fine our new synchronization model. Namely, we introduce
the so-called SASYNC model, which lies in between SSYNC
and ASYNC in terms of computational power. Successively,
we start discussing about its properties and then describe an
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overview of our achievements. In Section IV, we formally
define the Gathering problem. In Section V, we provide
results for the studied Gathering problem with respect to
SSYNC robots moving on a ring, while the same problem is
studied for SASYNC robots in Section VI. In Section VII,
we analyze the new model with respect to the Gathering
problem for robots moving on the Euclidean plane. Finally,
in Section VIII, we conclude the paper by highlighting some
challenging research directions.

II. RELATED WORK
The research, in the field described in Introduction, has
mainly studied feasibility issues. In particular, for the most
of the tasks, the question has been whether such tasks are
solvable or if further assumptions must be introduced. The
choice of the synchronization model very often determines
whether a task is feasible or not. Tasks well investigated to
this respect are the Gathering, see [5]–[7], [9], [18], [21],
[22], [31], [32], [37], [43], [44], [46], in which all robots are
required to reach a common destination not known in ad-
vance; the Pattern formation, see [4], [11], [33], [40], [41],
in which robots are required to form a specific geometric
pattern in the Euclidean plane or to suitable dispose on the
nodes of a graph; the Leader Election problem, see [8],
[19], [20], [33], where one robot (when possible) must be
selected and recognized by all the others as the leader; the
Exploration problem, see [3], [17], [25], [27], [29], [34]–
[36], [47], [48], where the robots are required to visit /
explore an area of interest or a graph.

The environment where robots move can be the Euclidean
space [35], [54] or a graph where robots are constrained
to follow the path dictated by the edges [12], [13], [17]–
[19], [27]. Robots might be endowed with communication
means, e.g. by means of tokens as in [34], or they only
exploit stigmergic properties, see e.g. [36]. Along with
feasibility, sometimes also optimization issues have been
explored, see [5], [7], [9], [31], [32]. Objective functions
to accomplish a specific task may refer to the number of
robots as in [27], or the number of LCM cycles as in [15].

Our work has been mainly inspired by [23], [26], [28],
[51]. Such papers concern how synchronization impacts on
the resolution of problems in the LCM context.

As defined in [26], here we use the same notation to
compare synchronization models with respect to the induced
computational power. In particular, given two synchroniza-
tion models M and N , inequality M≥ N means that any
task that can be solved in N is also solvable inM. In other
words, M is not less powerful than N . Inequality M > N
means that M ≥ N holds and there exists a task that can
be solved in M but not in N . In other words, M is more
powerful than N .

As described in [23], it is known that FSYNC > SSYNC.
The inequality has been obtained by showing that the
Rendezvous problem (that is, the Gathering of two robots),
in the Euclidian plane, is solvable by means of FSYNC
robots but not by SSYNC robots (see, e.g. [52]).

Another interesting result about synchronization model is
that SSYNC > ASYNC. This inequality has been obtained
by introducing the so-called Movement Awareness problem
in the Euclidian plane that is solvable by means of robots
equipped with some memory in the SSYNC model but not
in the ASYNC model (see, e.g. [51]).

III. THE SASYNC MODEL
In this section, we first define the new SASYNC syn-
chronization model and provide some useful outcoming
properties. Then, we discuss about the roadmap of our
investigation on SASYNC.

A. DEFINING SASYNC

We now provide the formal definition of our new synchro-
nization model:
• Semi-Asynchronous (SASYNC): Similarly to ASYNC,

robots are activated independently so that two robots
can be in different phases. Like in FSYNC or SSYNC,
robots are synchronized with respect to phases, that is
two robots in two different phases started such phases
concurrently. Moreover, the duration of an LCM cycle
equals exactly two time units, the first one associated
with the Look (instantaneously executed at the begin-
ning) and the Compute phases, whereas the second one
to the Move phase (cf. Figure 2).
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FIGURE 2: The Look-Compute-Move cycles that may occur
during an execution referring to the SASYNC model.

Clearly, the wait-freedom of the adversary is maintained
in the SASYNC model as well as the assumption by which
the snapshot obtained during the Look phase is acquired
at the beginning of such a phase. Moreover, in SASYNC a
robot cannot infer from the snapshot whether other robots
are inactive or performing one of the phases of the LCM
cycle. Hence, similarly to ASYNC, robots can move based
on a configuration that has changed meanwhile.

Remark III.1. According to the defined SASYNC model,
the order in which the moves are performed equals exactly
the order in which robots have been activated (FIFO be-
havior). This represents the main difference with respect to
ASYNC where instead moves can be performed in any order.
In particular, in ASYNC a move computed later can occur
before moves computed earlier. In SASYNC, instead, each
LCM cycle lasts for exactly the same amount of time for
each robot. Hence, although the Look phase performed by
a robot r might overlap the Move phase performed by any
other robot r′, the move of r′ will be effective always before
the move of r.
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Definition III.2. A move that has been computed from a
configuration that is not the current one is called pending
if it has not been performed yet.

It turns out that, in ASYNC, there might occur a pending
move that has been computed very far away in time, whereas
in SASYNC a pending move can refer only to at most one
time unit back in time (where a time unit refers to one half
of the duration of the whole LCM cycle, cf. Figure 2).

When robots move within the Euclidean space, move-
ments can be assumed of two types: a movement is rigid
when a robot is always ensured to reach its target point
within one LCM cycle; a movement is non-rigid if the robot
does not have such a guarantee, that is the adversary can
stop it before reaching the target. However, within one move
the length of the trajectory traced is neither infinitesimally
small nor infinite. In particular, the adversary may prevent
a robot to reach its destination as long as such a point is
further than a distance δ > 0, unknown to the robots. In
such a case, the robot is only ensured to move of at least
δ. Whenever the destination is within distance δ, then the
robot is ensured to reach it. Clearly, without introducing the
assumption on the constant δ, the adversary may prevent a
robot to ever reach its destination. When robots move along
the edges of a graphs, a move is realized by reaching a
neighboring node as destination, and it is assumed to be
instantaneous, hence rigid. It follows that robots are never
perceived on the edges but always on the nodes.

Remark III.3. Differently from ASYNC, if a robot r in
SASYNC is performing the Move phase, while another robot
r′ is performing the Look phase, then r′ cannot perceive the
move of r. In fact, r′ acquires the snapshot at the beginning
of the LCM cycle, that is before r starts its movement. It
follows that robots cannot be seen while they are moving.
However, differently from SSYNC, robots in SASYNC can
be seen while they have already decided where to move.

Remark III.4. The introduced SASYNC model could be
easily extended by defining further levels of obsolescence
for the pending moves. Starting by observing that, in the
introduced SASYNC model, a pending move cannot stand
as such for more than one time unit (whereas in ASYNC a
pending move can last for a finite but unpredictable time),
we could define a hierarchy of models by using an integer
parameter k ≥ 1 to represent the number of time units
a pending move can stand. In any of such models, the
FIFO behavior would be still preserved because of the fixed
dimension of the LCM cycle of k + 1 time units. However,
for our purposes we prefer to deal with just the basic case
of the defined SASYNC, hence deviating from SSYNC as
less as possible.

B. INVESTIGATION OVERVIEW
Our aim is to find out the relations holding among the var-
ious synchronization models, including SASYNC, in terms
of computable tasks. The next theorem anticipates one of

the main results achieved within this paper. It relates the
computational power of SASYNC with that of the SSYNC
and ASYNC models for robots moving on graphs.

Theorem III.5. For robots moving on graphs, it holds:
SSYNC > SASYNC > ASYNC.

By definition, it trivially holds SSYNC ≥ SASYNC ≥
ASYNC also for robots moving in the Euclidean plane.
However, Theorem III.5 shows that the strict inequalities
hold. In particular, on graphs the SSYNC model is com-
putationally more powerful (i.e. more tasks can be solved)
than the SASYNC model, that in turn is computationally
more powerful than the ASYNC model.

In order to prove Theorem III.5, we have deeply investi-
gated, with respect to the various synchronization models,
the Gathering problem for robots moving on a ring. The
Gathering problem on rings has been almost completely
characterized in [21] for ASYNC robots. In particular,
there are some configurations that have been classified as
unsolvable, i.e. configurations from which the Gathering
problem cannot be solved. For robots moving on rings,
unsolvable configurations are those with exactly two robots
and those admitting some specific symmetries. For all the
other ones, but the class of the so-called SP4 configurations,
a resolution algorithm has been provided. A configuration
is of type SP4 if it admits a geometrical axis of reflection,
with four robots on a ring with an odd number of nodes and
some constraints on the disposal of the robots (the formal
definition of SP4 configurations will be provided later).
Hence, whether SP4 configurations are solvable or not in
ASYNC remains an open problem.

Theorem III.5 is obtained by specifically studying the
Gathering problem on configurations in SP4. In particular,
we show that SSYNC robots suffice to always solve the
Gathering from configurations of four robots on rings with
n ≥ 7 nodes. Considering instead robots in SASYNC, we
provide an algorithm to solve the case of four robots on
seven-node rings, whereas we prove that SP4 configurations
with n = 9 nodes are unsolvable. Since in [30] it has been
proven that the case of four robots on a seven-node ring in
ASYNC is unsolvable, then Theorem III.5 follows.

Interestingly, our investigation also leads to fully charac-
terize the Gathering problem for robots moving on rings in
the SSYNC model.

Finally, we provide some evidence about the relevance of
the SASYNC model in the context of robots moving in the
Euclidean plane. In particular, we show that the resolution of
the Gathering problem of SASYNC robots seems to maintain
the same difficulties encountered in the ASYNC context,
hence suggesting that SASYNC might be a “sufficiently
hard” environment to compare the synchronization models.

IV. THE GATHERING PROBLEM
In general, the Gathering task requires robots to reach a
common placement, not known in advance. This might be
a point in the Euclidean plane or a node of a graph. If more
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than one robot occupies the same location, then we say that
a multiplicity occurs. The Gathering task is easily solvable
once a configuration is reached without pending moves and
with exactly one multiplicity, detectable by the robots. In
fact, all the robots not composing the multiplicity can move
cautiously toward it, that is, they move as soon as their
trajectory does not encounter other robots.

Solving the Gathering problem depends on the capa-
bilities assumed for the robots. According to the basic
capabilities introduced before and to the the setting defined
in [21], here robots are considered to be:

• Autonomous: no centralized control;
• Disoriented: No common coordinate system, no com-

mon left-right orientation;
• Anonymous: no unique identifiers;
• Homogeneous: they all execute the same deterministic

algorithm;
• Dimensionless: no occupancy constraints, no volume;
• Silent: no means of direct communication;
• Stateless (Oblivious): no memory of past events;
• Asynchronous: ASYNC LCM cycles;

As in [21], in this work we consider the Gathering prob-
lem where robots are located on a ring of n nodes, where
initially k < n nodes are occupied by k robots. Moreover,
during the Look phase, robots can detect multiplicities, but
not the exact number of robots composing them.1

During a Look operation, a robot basically acquires a
snaphsot of the environment. More specifically, it perceives
the relative locations on the ring of multiplicities and single
robots. The global status of the system can be defined by
the current disposal of the robots plus their status, that
is, whether they are inactive or they are performing the
Look, the Compute or the Move phase, and what they have
possibly already computed. Clearly, the global status of the
system cannot be deduced from the snapshot, including
whether there is a pending move or not. It is a common
assumption, in the graph environment, that within one move
a robot can either stay still or reach a neighboring node,
that is only one edge per move can be traversed. Moreover,
moves are instantaneous, that is robots are always perceived
on nodes and not on edges.

The current disposal of the robots, referred to as a
configuration, can be described in terms of the view
of a robot r. This is the sequence of single robots,
multiplicities and empty nodes (represented by charac-
ters ‘1’, ‘M’, and ‘0’, respectively) seen by r start-
ing from its position and proceeding toward an arbi-
trary direction. For instance, by referring to Figure 3,
the view of the robot denoted as x can be represented
by the sequence [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]
(or [1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], resp.) obtained
starting from x and proceeding in the clockwise (anti-

1This is usually referred to as the global weak multiplicity detection
capability.
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FIGURE 3: A configuration in SP4 and its illustration in
terms of intervals of nodes not occupied by robots.

clockwise, resp.) direction.2 Once a robot has acquired the
snapshot of the configuration during the Look phase, in
terms of the view, it can process the obtained sequence dur-
ing the Compute phase in order to infer useful information.

A configuration is said to be symmetric if the ring admits a
geometrical axis of symmetry that reflects single robots into
single robots, multiplicities into multiplicities, and empty
nodes into empty nodes; it is said periodic if it is invariant
with respect to a rotation of more than 0 and less than
360 degrees. We remind that robots are assumed to be
disoriented, that is they do not share chirality.

The Gathering problem of robots moving on rings has
been almost completely characterized in [21]. In order
to describe such a characterization, we first remind that
a configuration C is said to be initial if there are no
multiplicities. Symbol I is used to denote the set of all
initial configurations.

The following negative result has been provided.

Theorem IV.1. [21] The Gathering problem is unsolvable
(even for SSYNC robots) with respect to any configuration
C ∈ I satisfying at least one of the following conditions:

• there are only two robots in C;
• C is periodic;
• C is symmetric admitting an axis of symmetry that cuts

the ring along two edges.

In the remainder, we call unsolvable any configuration
C as characterized by Theorem IV.1, and use symbol U to
denote the set of all the unsolvable configurations.

In [21], a distributed algorithm has been designed that
solves the Gathering problem from all the configurations in
I \ (U ∪ SP4), where SP4 ⊂ I is a very special subset of
initial configurations. To define SP4, consider four robots
disposed on different nodes of a ring. As shown in Figure 3,
the robots partition the ring into four intervals. An interval
is intended as the maximal set of consecutive nodes not
occupied by robots between two robots; two adjacent robots
generate an empty interval.

2Robots have no common orientation which means the ‘clockwise’
direction of a robot does not necessarily coincide with that of another
robot.
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Definition IV.2. Let C ∈ I be a symmetric configuration
with four robots on a ring composed by an odd number
of nodes (i.e., the axis of symmetry passes through one
unoccupied node and one edge). If the interval constituted
by an odd number of nodes cut by the axis of symmetry is
bigger than the one constituted by an even number of nodes,
then C is said to belong to the set of SP4 configurations.

By looking at Figure 3, there are two intervals cut by an
axis of symmetry, namely IA and IC , consisting of three
and two nodes, respectively. The other two intervals, both
referred to as IB , have the same size since the configuration
is symmetric. Further sample configurations in SP4 are
shown in Figure 5, configurations (1) and (2), and in
Figure 7, configurations (1), (2), (3), and (4).

The only initial configuration of four robots on a five-
node ring belongs to SP4. In [28], it has been proved
that such a configuration is solvable by means of FSYNC
robots, whereas it is unsolvable in both SSYNC and ASYNC.
Actually, all the four moves that can be designed (and their
compositions) are shown to lead either to two multiplicities
or to cyclic sequences of configurations. Clearly, we can
deduce the same result of unsolvability also for SASYNC
robots as any execution in the SSYNC model can occur in
the SASYNC model as well, in fact SSYNC ≥ SASYNC.

Corollary IV.3. The Gathering problem is unsolvable for
SASYNC robots with respect to the configuration C ∈ SP4
consisting of four robots on a five-node ring.

Indeed, specific configurations in SP4 could be solv-
able but they may require specific strategies not prone to
be generalized. One of the main difficulties arising when
approaching SP4 configurations is due to the property by
which the bigger interval cut by the axis of symmetry is the
odd one. In fact, by the result shown in [32], it is known
that the only node candidate to finalize the Gathering in
configurations in SP4 is the middle node of the odd interval
cut by the axis. This remains true also for robots in the
FSYNC model. It turns out that robots must move toward
such a node, eventually, in order to create a multiplicity.
For instance, if robots x and x′ or y and y′ of Figure 3
are allowed to move, by the algorithm, in the up direction,
the adversary may make only one of them moving. Then, if
the intervals cut by the axis of symmetry differ of just one
node, the obtained configuration is made of two intervals
of the same size, those that were originally cut by the axis
of symmetry, and hence it is symmetric. However, the new
axis of symmetry is different from the original one. This
may cause many troubles if also pending moves occur.

Proving that initial configurations with four robots on
a seven-node ring are unsolvable in ASYNC has been
challenging, since exploring exhaustively all the possible
moves becomes computationally intractable. In fact, in [30],
both theoretical and computer-assisted analysis have been
exploited to prove such a claim. In [28], instead, it has been
proved that four robots on a seven-node ring are solvable in

SSYNC.
In Table 1, we report the current state-of-art with respect

to the Gathering problem for configurations in SP4. From
such results we can deduce the following relations: FSYNC
> SSYNC > ASYNC. This means that FSYNC robots are
more powerful (i.e. they can solve more tasks) than SSYNC
robots that in turn are more powerful than ASYNC robots.

FSYNC SSYNC ASYNC
n ≥ 5 [21], [28] n = 5 [28] n = 5 [45]

n = 7 [28] n = 7 [30]
n ≥ 9 ? n = 9 [30]

n ≥ 11 ?

TABLE 1: State-of-art about the Gathering problem for
configurations in SP4. Unsolvable cases are reported in
gray cells, whereas question marks refer problems that are
still open.

Configurations in SP4 for ASYNC robots have been also
investigated in [2]. However, in that paper the proposed
algorithm only deals with a proper subset of the possible
initial configurations, i.e. the authors overcome the main
difficulties faced with SP4 configurations by simply ignor-
ing some of them. Hence, this still leaves open the question
whether configurations in SP4 are in general solvable for
ASYNC robots or not.

A. GATHERING FOR SP4 CONFIGURATIONS

In this section, we provide notation and definitions about
the Gathering problem for SP4 configurations.

Given an initial asymmetric configuration, according to
its view, a robot can recognize its own position in the
ring. In fact, from the snapshot the robot knows the current
configuration and where it is placed with respect to the other
robots. In an initial symmetric configuration, instead, a robot
may have two possible choices for its current position. For
instance, referring to Figure 3 and to Figure 5.(1), (2) and
(3), robots denoted x and x′ are indistinguishable since
they cannot distinguish left from right (i.e., they do not
share chirality). In initial symmetric configurations on rings
constituted of an odd number of nodes, we will denote by
x and x′ the two robots closest to the node on the axis,
whereas the other two robots will be denoted y and y′.
Such naming is only meant for the analysis purpose but,
as already observed, x is indistinguishable from x′ and y is
indistinguishable from y′.

The set of consecutive nodes not occupied by robots in
between x and x′ is referred to as interval IA. The interval of
free nodes between y and y′ is denoted by IC . The interval
of free nodes between x and y, and that between x′ and y′

are both denoted by IB as they have the same size.
Reminding that during a move a robot can traverse at

most one edge, we make use of some additional notation in
the designed algorithms: from symmetric configurations, we
denote by r↑ a move of a robot r toward the middle node
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of IA, while by r ↓ we denote the move in the opposite
direction.

In the unique initial asymmetric configuration of four
robots on a seven-node ring reported in Figure 5.(4), robots
are referred to as a, b, c, and d. We denote by r → r′ the
move of robot r along the shortest path toward robot r′ (it
is worth noting that in a ring composed by an odd number
of nodes, such a direction is unique).

Concerning the already used notion of symmetric robots,
here we extend it into the more general version of equivalent
robots. The latter holds in any configuration defined on any
graph. In particular, in a configuration C defined on any
graph G, a pair of distinct robots r and r′ on nodes v
and v′, respectively, are equivalent if there exists a graph
isomorphism ϕ from G into itself that maps v into v′,
and any pair of equivalent nodes (including v and v′) in
the isomorphism ϕ must be occupied by the same number
of robots. This equivalence relation induces a partition on
the set of all robots: an element of this partition is any
maximal subset containing pairwise equivalent robots. For
instance, in Figure 4 it is shown a configuration whose
robots are partitioned into three sets: one set contains the
four equivalent robots located on the pendant nodes with
multiplicity two, another set contains the robot adjacent to
the empty node, and the last set contains the remaining
two robots. Referring to configurations (i), (ii) or (iii) of
Figure 5, robots denoted as x and x′ are equivalent as well
as robots denoted as y and y′. From an algorithmic view

(2)

(1)

(1)(1)

(2)

FIGURE 4: A configuration with seven robots defined on a
graph (numbers refer to the multiplicity on each node).

point, in such a case it can be observed that the robots
belonging to the same maximal subset of equivalent robots
cannot be distinguished. As a consequence, no algorithm
can avoid that all such equivalent robots perform a same
move simultaneously (whereas the adversary may decide
not to activate all of them). Finally, we need to define
what is meant by a transition among configurations. Given
an algorithm A and a configuration C (possibly admitting
pending moves), a transition from C to a configuration C ′

occurs if C ′ can be obtained during an execution of A that
from C generates C ′ after at least one robot has moved.
Note that the performed movement might be generated by
A from C or due to pending moves.

V. RESULTS FOR SEMI-SYNCHRONOUS ROBOTS
In this section, we provide results for semi-synchronous
robots. It is worth reminding that when dealing with syn-
chronous environments like FSYNC or SSYNC, instead of
SASYNC or ASYNC, pending moves cannot occur, i.e.
robots cannot be seen while they are moving nor even while
they have already computed the move but not started it.

We first propose Algorithm 1 referred to as SP4-SSYNC,
that takes as input a configuration in SP4, excluding the
case of five-node rings, and outputs either a configuration
with one multiplicity, or an asymmetric configuration, even-
tually. Then, such an algorithm is used as a subroutine for
the Gathering algorithm proposed in [21]. The resulting
algorithm obtained as the composition of SP4-SSYNC with
the algorithm in [21], not only solves the problem for SP4
configurations, but also provides a full characterization of
the Gathering problem in the SSYNC model.

Algorithm 1 SP4-SSYNC. A move of a robot r toward
the middle node of interval IA (cf. Figure 3, right side)
is denoted by r↑.
Require: Configuration in SP4 on a ring of n ≥ 7 nodes.
Ensure: Gathering.

1: if ( |IA| > |IC |+1) ∨ ( |IB | is odd) ∨ (x and y are adjacent)
2: then x↑
3: else y↑

Before proving the correctness of SP4-SSYNC, we de-
scribe an example of execution just as a warm-up for the
reader.

Consider configuration (2) of Figure 5 as input. It belongs
to SP4. Recalling from Figure 3 how configurations in SP4
can be interpreted, here we have |IA| = |IC |+1. Moreover,
x and y are not adjacent. However, |IB | = 1, i.e. it is odd.
The move dictated by algorithm SP4-SSYNC is then x↑.
Being the configuration symmetric, the move allows both
x and x′ to move. If they both move concurrently, a mul-
tiplicity is created and the algorithm terminates. If without
loss of generality, only x moves, then configuration (3) of
Figure 5 is obtained. From there we have |IA| = |IC |+ 1,
|IB | = 0 but x and y are adjacent. Hence, algorithm SP4-
SSYNC says x↑. Again, if both x and x′ move concurrently,
then a multiplicity is created. Otherwise, the asymmetric
configuration (4) of Figure 5 is obtained.

Lemma V.1. Given a configuration C ∈ SP4 on rings of
n ≥ 7 nodes, Algorithm SP4-SSYNC moves robots so that,
within a finite number of moves, the obtained configuration
C ′ either contains one multiplicity or C ′ ∈ I \ (U ∪ SP4).

Proof. Assume |IA| > |IC | + 1 and consider move x↑ at
Line 2. If, without loss of generality, only x moves, then the
obtained configuration C ′ is asymmetric. In fact, being the
ring composed by an odd number of nodes, there cannot be
an axis with robots. So, any possible axis should cut two
intervals among those of resulting size |IA|−1, |IB |+1, |IC |
and |IB |. Clearly, the axis cannot cut intervals with |IA|−1
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and |IC | nodes, as the other two intervals have different
size. There cannot be an axis passing through intervals with
|IB | + 1 and |IB | nodes because |IA| − 1 > |IC |. Being
asymmetric, C ′ is not in SP4.

If both x and x′ move, still a configuration in SP4 is
obtained but with interval IA decreased of two units, and
intervals IB increased by one. In this way, within a finite
number of moves, either an asymmetric configuration or a
configuration with |IA| = |IC |+ 1 is obtained.

We can now assume |IA| = |IC |+1. If |IB | is odd, then
we have to analyze what happens performing x↑. If both
x and x′ move, the obtained configuration maintains the
original axis of symmetry but it is not in SP4 as |IA|−2 <
|IC |. Moreover, a multiplicity is created in case |IC | = 0. If
only x moves, |IA| − 1 = |IC | and there is an axis passing
through intervals of size |IB | and |IB | + 1. Even though
it is a symmetric configuration, it is not in SP4 as, by
assumption, |IB | is odd and of course it is smaller than
|IB |+ 1.

We can now assume |IB | even. If x and y are adjacent,
then we have to analyze what happens performing x↑. As
above, if both x and x′ move, the obtained configuration is
not in SP4 and a multiplicity is created in case |IC | = 0.
If only x moves, |IA| − 1 = |IC | and there is an axis of
symmetry passing through intervals of size |IB | and |IB |+1.
Now, the obtained configuration C̃ is in SP4 because |IB |
is even. With respect to C̃, we are in the case where |IA| =
|IC | + 1, |IB | is even, but x and y are not adjacent as the
ring has at least seven nodes.3

We can now assume that x and y are not adjacent. In
this case, move y↑ is applied at Line 3. If both y and y′

move, a configuration with intervals with |IA|, |IB | − 1,
|IB |−1 and |IC |+2 nodes is achieved, which is not in SP4
since now |IA| = |IC | − 1 (it was |IA| = |IC | + 1 before
the moves). If, without loss of generality, only y moves,
then the obtained configuration admits an axis of symmetry
passing through the two intervals of size |IB | and |IB | − 1
since the interval of size |IC | has been increased of one
unit and |IC | + 1 = |IA|. Since |IB | is even, the obtained
configuration is not in SP4.

Finally, it is easy to check that each configuration ob-
tained in the analyzed cases is not in U since, for each of
them, none of the cases of Theorem IV.1 applies.

Reminding the result of [21] concerning ASYNC robots,
we can then exploit the above lemma in order to obtain a
full characterization of the Gathering problem on rings in
the SSYNC model. In fact:

Theorem V.2. [21] The Gathering problem on rings can be
solved with ASYNC robots with respect to any configuration
in I \ (U ∪SP4) without ever leading to a configuration in
SP4.

3We remind that n > 5 is required by the fact that the unique initial
configuration of four robots on a five-node ring is unsolvable even in
SSYNC.

Since Lemma V.1 ensures that any configuration in SP4
of SSYNC robots, on a ring of n ≥ 7 nodes, can be trans-
formed either into a configuration with one multiplicity or
into a configuration in I\(U ∪SP4), within a finite number
of moves, then, in order to obtain a general Gathering
algorithm for SSYNC robots on rings, we can distinguish
two cases: i) the input configuration is in SP4 on a ring of
n ≥ 7 nodes; ii) the input configuration is in I\ (U ∪SP4).

In case i), the resolution algorithm can apply Algorithm
SP4-SSYNC to obtain either a configuration with a multi-
plicity or a configuration in I \ (U ∪SP4). From there, the
configuration can be managed by the algorithm in [21]. In
fact, such an algorithm is able to manage the configurations
with exactly one multiplicity and by Theorem V.2, it copes
with all the configurations in I \ (U ∪ SP4) of ASYNC
(and hence also of SSYNC) robots without ever leading to
a configuration in SP4.

In case ii), the algorithm in [21] can be applied straight-
forwardly.

Summarizing, by combining Algorithm SP4-SSYNC with
that in [21], we obtain that the Gathering on rings can be
accomplished by SSYNC robots starting from any configu-
ration which has not been proved to be unsolvable. More
specifically:

Theorem V.3. The Gathering problem on rings can be
solved by SSYNC robots with respect to any configuration
C if and only if C ∈ I \ (U ∪SP4) or C ∈ SP4 on a ring
of n ≥ 7 nodes.

Proof. (=⇒) If C belongs to U , it is clearly unsolvable
by Theorem IV.1. If C belongs to I \ U and it is in SP4
with n < 7 nodes, then we get exactly the only initial
configuration of four robots on a five-node ring. According
to [28], such a configuration is unsolvable in SSYNC.

(⇐=) Let us first assume that C belongs to I \ (U ∪
SP4). To show that C is solvable, it is enough to consider
the algorithm provided in [21] designed for Gathering any
configuration in I\ (U ∪SP4) by means of ASYNC robots.
Clearly, it can be applied also in the SSYNC context. Hence,
by Theorem V.2, C is solvable without ever leading to a
configuration in SP4.

If C ∈ SP4 on a ring of n ≥ 7 nodes, then we can
combine the algorithm provided in [21] with Algorithm SP4-
SSYNC. In fact, according to Lemma V.1, Algorithm SP4-
SSYNC handles C in order to obtain either a configuration
C ′ with one multiplicity (and without pending moves) or a
configuration C ′ ∈ I \ (U ∪ SP4). From C ′, the algorithm
in [21] used in the SSYNC context guarantees to finalize the
Gathering.

Notice that the above result provides a full characteriza-
tion of the Gathering problem on rings in the SSYNC model.

VI. RESULTS FOR SEMI-ASYNCHRONOUS ROBOTS
This section is mainly devoted to prove the inequalities
SSYNC > SASYNC > ASYNC. We first show that inequality
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(4)

(3.1) (4.1) (4.2)

FIGURE 5: The four possible initial configurations of four
robots on a seven-node ring, and other three configurations
with possible pending moves. Edges composing the ring
between consecutive nodes are not drawn. An arrow on top
of a robot represents a pending move, that is a move already
computed by the robot that has not yet been performed.

SASYNC > ASYNC holds by proving that configurations
of four robots on rings of n = 7 nodes can be always
solved in SASYNC, whereas it is known that those belonging
to SP4 cannot be solved in ASYNC (see [30]). Then, we
show that inequality SSYNC > SASYNC holds by proving
that configurations in SP4 with n = 9 cannot be solved
in SASYNC, whereas in Section V we have shown that
such configurations are solvable in SSYNC. Finally, we also
present an algorithm for SASYNC robots that solves all the
configurations of four robots on rings of n = 11 nodes.
Such a case remains open in the ASYNC model.

For the case n = 7, Algorithm 2 referred to as 4on7-
SASYNC brings SASYNC robots to a configuration with one
multiplicity within a finite number of moves. From there, the
Gathering can be then easily solved.

Algorithm 2 4on7-SASYNC.
Require: Configuration C on a seven-node ring.
Ensure: Gathering.

1: if C contains a multiplicity m then
2: the robot(s) closest to m, but not on it,
3: moves toward m along the shortest path
4: else
5: if C is symmetric then x↑
6: else d→ c;

Theorem VI.1. The Gathering problem can be solved for
SASYNC robots with respect to any initial configuration C
with four robots on seven-node rings.

Proof. Figure 5, cases (1)–(4), shows all the possible con-
figurations in I with four robots on seven-node rings that

(4)

(4.1)

(2) (3.1)

(3) (4.2)

(1)

FIGURE 6: Possible transitions among configurations with-
out multiplicities produced by Algorithm 4on7-SASYNC.
Nodes in the graph represents any possible configuration
handled by Algorithm 4on7-SASYNC (for node labels refer
to Figure 5), while nodes with thick border represent con-
figurations leading to a multiplicity.

Algorithm 4on7-SASYNC can take as input, with (1) and
(2) belonging to SP4. We now analyze the behavior of
the algorithm with respect to all the possible handled
configurations (cf. Figure 5).
• From (1), the algorithm makes x↑. This may lead to

three different cases: (2), (4), or (4.1) where the move
of a robot is pending.

• From (2), x↑ is applied. If both the equivalent robots
move, a multiplicity is created without pending moves,
hence Gathering can be easily finalized. If only one
robot moves, the other may be pending or not, hence
reaching configurations (3) or (3.1), respectively.

• From (3) the algorithm makes x↑. If both robots move,
a multiplicity is created. If only one robot moves,
configurations (4) or (4.2) are possibly reached.

• From (4) the algorithm makes robot d move toward
robot c, hence creating a multiplicity. From there, the
Gathering can be finalized.

• From (3.1), the algorithm makes x↑. Within at most two
phases of the LCM cycle, the pending move will create
a multiplicity, whereas the other robot, possibly moving
with respect to x ↑, does not interfere with such an
event since its move is ‘compatible’ with the movement
toward the multiplicity, that is such a move is toward
the multiplicity and does not create other multiplicities.
Notice that, by the SASYNC model, the pending move
is performed before a subsequent move takes place.

• From (4.1), d would move in the opposite direction
with respect to that specified by the algorithm, but no
other robot moves. This leads to (2).

• From (4.2), as noted above, the pending robot will
always create a multiplicity before the move d → c
applied in (4.2) is completed. Also in this case the
move d → c dictated by the algorithm from (4.2) is
compatible with the movement toward the multiplicity.

Summarizing, Figure 6 shows all the transitions (represented
as directed arcs) among the configurations handled by
Algorithm 4on7-SASYNC.

From Figure 6, it is easy to see that Algorithm 4on7-
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SASYNC never creates cycles among configurations and
that it eventually creates a multiplicity starting from any
input configuration. Notice that, possibly pending moves are
left but they are compatible with the movement toward the
multiplicity where the Gathering will be finalized, that is,
they do not affect the correctness of the algorithm.

Theorem VI.2. The Gathering problem is unsolvable for
SASYNC robots with respect to any initial configuration
C ∈ SP4 with nine-node rings.

Proof. We now prove the claim by defining a specific
behavior of the adversary when the configuration does not
contain multiplicities: Starting from one configuration in
SP4, whatever a Gathering algorithm specifies to move,
the adversary always allows the robots belonging to one
maximal subset of equivalent robots to move. In particular,
it allows synchronous moves as long as the configuration
remains in SP4 or become unsolvable, otherwise only one
robot is allowed to move, possibly leaving a pending move.

It is easy to see that in nine-node rings, there are 10 pos-
sible initial configurations, 6 of which are symmetric. Out
of the 6 symmetric configurations, 4 are SP4 configurations
(see Figure 7, configurations (1)–(4)).

Before proceeding with the proof, we need to observe that
a configuration composed of just two multiplicities can be
thought as equivalent to a configuration with just two robots,
i.e. it is unsolvable according to Theorem IV.1. In fact, the
adversary can make all the robots composing a multiplicity
move synchronously.

We now analyze the behavior of any possible Gath-
ering algorithm with respect to all the possible handled
configurations (cf. Figure 8), considering that only one
maximal subset of equivalent robots can move according
to the considered adversary. Note that, this does not mean
that the hypothetic Gathering algorithm must specify only
one maximal subset of equivalent robots to move from a
given configuration. However, among the maximal subsets
involved, the adversary will allow only one to move, not
necessarily the same subset from the same configuration
as this might be subject to wait-freedom constraints. By
proving that for any maximal subset of moving robots the
reached configurations are either unsolvable or belong to
SP4, provides the proof as this does not depend on the
behavior of the adversary and its wait-freedom constraint.

• From (1), only x↑ can make the configuration evolve
as any other move would lead to either an unsolvable
configuration with two multiplicities (x↓ and y↑ cases),
or to an infinite loop (y↓ case) remaining in (1). By the
defined adversary, configuration (2) is then reached.

• From (2) only two moves can be allowed by any
Gathering algorithm, that is x ↑ and y ↑ that lead to
(3) and (4), respectively. In fact, x↓ would lead back
to (1), creating a loop, whereas y ↓ would leave the
configuration unchanged in (2).

• From (3), the only ways to exit SP4 are either by
x ↑ or y ↑. Concerning x ↑, by making move only
one robot between x and x′, configuration in (4) is
again obtained. Concerning y ↑, configuration in (5)
is obtained either by moving only one robot or by
moving both y and y′ but with the pending move of
y′, as shown in (5.1). The actual move is chosen by
the adversary according to the move scheduled by the
Gathering algorithm with respect to case (5).
Notice that, since we are considering SASYNC robots,
the pending move in (5.1) cannot last for long as
in the ASYNC model, but we are guaranteed it will
be performed within a time unit after it has been
computed.
The other possible moves are x↓, which would lead
back to (2) thus creating a loop, or y ↓, that would
leave the configuration unchanged in (3).

• From (4), the only way to exit SP4 is by x ↑, in
which case the adversary makes only one robot move,
hence leading to (3). Concerning the other possible
moves: both y↑ and x↓ would lead to an unsolvable
configuration with two multiplicities, whereas y↓ would
lead back to (2).

• From (5), let us analyze any possible move performed
by the Gathering algorithm. Recall that (5) is not in
SP4 but it could be generated from (3), either as (5)
or with the pending move in (5.1). Then:

-- if the algorithm applies x↑, the adversary brings
the configuration to (3) starting from (5.1) and
performing both the move of the pending robot
and x↑ (where x↑ moves only one robot). Note
that the adversary can do that by awaking the
robot that would apply x ↑ before the pending
move is performed. It follows that move x↑ from
(5) is not effective;

-- if the algorithm applies x↓, the adversary brings
the configuration to (4) by starting from (5);

-- if the algorithm applies y↓, the adversary brings
the configuration to (3) by starting from (5);

-- if the algorithm applies y↑, the adversary brings
the configuration to (5.2) by starting from (5.1),
performing the pending move and leaving pending
y ↑ which now corresponds to x ↑. Then, from
(5.2), by performing both the pending move x↑
and the move y↑, again (2) is obtained.

In conclusion, we have exhaustively considered all possible
moves (and implicitly also their combinations) from all
possible initial configurations belonging to SP4, hence
showing there exists no strategy that ensures to reach a
configuration outside those in SP4.

We now provide Algorithm 3, referred to as 4on11-
SASYNC, to solve the Gathering problem from configura-
tions on eleven-node rings with four robots. The aim is to
show the impact of the SASYNC model on the resolution
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FIGURE 7: The possible initial configurations of four robots on nine-node rings that are symmetric. Configurations (1)–(4)
belong to SP4.

x
y y′

x′

(1)

x

y y′

x′

(2)

x

y y′

x′

(3)

x

y y′

x′

(4)

x

y y′

x′

(5) (5.1) (5.2)

FIGURE 8: The four possible initial configurations belonging to SP4 of four robots over a nine-node ring and a configuration
not in SP4 with two possible pending moves (cf. proof of Theorem VI.2).

of the problem when n = 11 that actually remains open in
ASYNC.

Theorem VI.3. The Gathering problem can be solved for
SASYNC robots with respect to any initial configuration C
with four robots on eleven-node rings.

Proof. Figures 9 and 10 show all the possible configurations
in I with four robots on an eleven-node ring. In particular,
Figure 9 shows all the initial symmetric configurations (out
of which the first six belong to SP4), while Figure 10
shows all the initial asymmetric configurations. Concerning
the asymmetric configurations, according to Figure 10, the
robots encountered on the depicted rings, starting from the
leftmost one and proceeding in the anti-clockwise direction,
are denoted by a, b, c, d.

Algorithm 4on11-SASYNC is designed to solve the Gath-
ering problem from all those configurations.

The proof about the correctness of Algorithm 4on11-
SASYNC is done by an exhaustive case-by-case analysis of
the configurations that can be generated and that in fact lead
to Gathering. In order to understand it, we need to specify
some notation.

Configurations denoted by a decimal number – e.g., con-
figuration (3.1), see Figure 11 – concern those with pending
moves that may occur according to the defined algorithm.
In Figure 12, any node with thick border represents a case
in which there could be a transition leading to the creation
of a multiplicity. For the ease of notation, such transitions
are simply omitted. Moreover, in such cases there might still

be pending moves by means of robots not belonging to the
multiplicity, however it can be checked they do not interfere
with the finalization of the Gathering.

According to the algorithm, it can be checked that all the
possible transitions among configurations are those shown
(or implicitly represented) in Figure 12. Configurations (12),
(13) and (15) do not appear in the figure as, from each of
them, the algorithm would generate a multiplicity just after
the first move, whereas no transition leads to them.

From the discussion above and from the analysis of the
transitions shown in Figure 12, it can be observed that
algorithm 4on11-SASYNC is able to solve the Gathering
problem from each initial configuration.

We conclude this section by summarizing all the results
obtained with respect to the considered synchronization
models. This is done by presenting Table 2, which also
updates the current status of the Gathering problem in
SP4 configurations and, in turn, represents a proof of
Theorem III.5. In particular, Table 2 shows a first relevant
difference between SASYNC and ASYNC (i.e., SASYNC >
ASYNC); it refers to the Gathering problem in SP4 configu-
rations for the case n = 7. In fact, in [30] it has been proved
that Gathering four robots on seven-node rings is unsolvable
for ASYNC robots. The provided proof is rather involving
as it exploits both theoretical aspects and computer-assisted
evaluations in order to exhaustively explore all possibilities.
In SASYNC, instead, Algorithm 4on7-SASYNC represents
a rather easy solution, also with respect to the associated
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FIGURE 9: The symmetric initial configurations of four robots on eleven-node rings. Note that configurations (1)–(6) belong
to SP4.
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FIGURE 10: The asymmetric initial configurations of four robots on eleven-node rings.

Algorithm 3 4on11-SASYNC.
Require: Configuration C on an eleven-node ring.
Ensure: Gathering.

1: if C contains a multiplicity m then
2: the robot(s) closest to m, but not on it,
3: moves toward m along the shortest path
4: else
5: if C is symmetric then
6: if C ≡ (9) then y↑
7: else x↑
8: else
9: if C ≡ (14) then d→ c

10: else
11: if C ∈ {(17), (19)} then c→ d
12: else
13: if C ≡ (20) then c→ b
14: else a→ b

proof of correctness.
The other difference, necessary to complete the proof

of Theorem III.5, comes out by comparing Theorems V.3
and VI.2. Table 2 shows that such theorems imply SSYNC
> SASYNC; this result refers to the Gathering problem in
SP4 configurations for the case n = 9, solvable in SSYNC

FSYNC SSYNC SASYNC ASYNC
n ≥ 5 [21], [28] n = 5 [28] n = 5 [Cor. IV.3] n = 5 [45]

n ≥ 7 [Th. V.3] n = 7 [Th. VI.1] n = 7 [30]
n = 9 [Th. VI.2] n = 9 [30]
n = 11 [Th. VI.3] n ≥ 11 ?
n ≥ 13 ?

TABLE 2: State-of-art about the Gathering problem for con-
figurations in SP4 after including our results (cf. Tables 1).
Unsolvable cases are reported in gray cells, question marks
refer to problems that are still open, whereas results obtained
within this paper are highlighted in bold.

and unsolvable in SASYNC.
Finally, the case n = 11 solvable in SASYNC according

to Theorem VI.3 remains open for ASYNC. Still the result is
interesting as it shows there is not a net separation between
solvable and unsolvable cases in SASYNC due to the size
of the ring.

VII. ABOUT THE EUCLIDEAN PLANE
Similarly to what has been done in [50] to show that SSYNC
> ASYNC, here we can prove that SASYNC > ASYNC. In
fact, this can be achieved by considering the task referred to
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FIGURE 11: All possible configurations with pending moves that can be generated before creating a multiplicity by algorithm
4on11-SAsync(1).

as Movement Awareness defined in [50] for robots admitting
states (i.e., non-oblivious). Still remains open to establish
whether the inequality SSYNC ≥ SASYNC is strict also for
stateless robots.

In the remainder, we investigate on the computational
relation between SASYNC and SSYNC for stateless robots.
In particular, we consider the Gathering task for robots
moving in the Euclidean plane with exactly the same setting
of [16] and [52], that is, the same assumptions as in
Section IV plus the following one:
• Non-rigid: robots are not guaranteed to reach a desti-

nation within one move;
When considering the algorithms provided in the litera-

ture to solve the Gathering problem in ASYNC [16] and in
SSYNC [52], it leaps out the main difference in the com-
plexity required. In fact, both the design of the algorithms as
well as the related proofs of correctness look very different
in terms of readability and argumentations. Still, both algo-
rithms solve the Gathering problem starting from any initial
configuration but those composed of just two robots. Hence,
investigating on Gathering cannot lead to a prove that the
inequality ASYNC ≤ SASYNC ≤ SSYNC is strict as we did
in the context of robots moving on graphs. However, we
felt to examine in more depth the context of robots moving
in the Euclidean plane in order to better understand how
SASYNC can be approached. In particular, can we provide
a simple algorithm as in the SSYNC case or the difficulties
arising in the ASYNC case are already present in SASYNC?

From our investigation, it seems that SASYNC does not
prevent to introduce the arguments required for ASYNC,
hence showing its ‘hostile’ nature. It follows that, the drastic
reduction concerning the obsolescence of the pending moves
occurring in SASYNC with respect to ASYNC seems to be
not effective when looking for a resolution algorithm in
the context of robots moving in the Euclidean plane. As
a benefit of our investigation, instead, our outcome seems
to suggest that, when dealing with robots moving in the
Euclidean plane, it is enough to focus on the SASYNC model
rather than approaching the ASYNC one along with all its
complications.

Before providing the algorithm designed in [52], we first
need some notation. Let R be a multiset of points in the
plane. By C(R) and c(R) we denote the smallest enclosing
circle of R and its center, respectively. Let C be any circle
concentric to C(R). We say that a robot r ∈ R is on C
if and only if r is on the circumference of C; ∂C denotes
all the robots on C. We say that a robot r ∈ R is inside
C if and only if r is in the area enclosed by C but not in
∂C; int(C) denotes all the robots inside C. The smallest
enclosing circle C(R) is unique and can be computed in
linear time [49].

For a fair comparison among the two algorithms, we
restrict to the case of configurations composed by n ≥ 5
robots, initially occupying different positions. In such a set-
ting, Algorithm 4 summarizes the strategy proposed in [52].

Since, by definition, in SSYNC there cannot occur pend-
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(a) Transitions starting from configurations (8)–(11), (14) and (18).
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(b) Transitions starting from configurations (1)–(4), (11), (17) and
(19).
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(c) Transitions starting from configurations (5)–(7), (16), (18)–(20).

FIGURE 12: Transitions produced by Algorithm 4on11-SASYNC before creating a multiplicity (for node labels refer to
Figures 9, 10, and 11; nodes with thick border represent configurations leading to a multiplicity). Nodes with scattered
border represent configurations which already appeared in a preceding sub-figure. For the sake of simplicity, configurations
(12), (13) and (15) do not appear in the figure as from each of them the algorithm generates a multiplicity (without pending
moves) just after the first move.
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ing moves, then it is quite easy to infer the correctness of
Algorithm 4. In fact, before a multiplicity is created, only the
three cases caught by Lines 4–9 can occur. Moreover, during
the movements, no undesired multiplicities can be created.
Once a multiplicity is done, each other robot is cautiously
moved toward it, that is without overpassing other robots.

By means of the next lemma, we show that the cases
caught by Lines 4–5 represent a strategy necessary also
when assuming FSYNC robots.

Algorithm 4 Algorithm for n ≥ 5 robots in SSYNC [52].
Require: Configuration R with n ≥ 5 robots.
Ensure: Gathering.

1: if there is a multiplicity at point m then
2: all robots in R cautiously move toward m
3: else
4: if |int(C(R))| = 0 then
5: all robots in R cautiously move toward c(R)

6: if |int(C(R))| = 1 then
7: r ∈ int(C(R)) moves toward the closest robot
8: if |int(C(R))| > 1 then
9: robots in int(C(R)) cautiously move toward c(R)

Lemma VII.1. Let R be an initial configuration with n ≥ 5
robots forming a regular n-gon on C(R). Any Gathering
algorithm must move robots toward c(R).

Proof. As the robots form a regular n-gon, they are all
equivalent. It means that, any move dictated by a resolu-
tion strategy involves all such robots. It follows that the
adversary may force all the robots to work synchronously,
and hence any move toward a point different from c(R)
can be performed by all the robots. This would leave the
configuration similar to the initial one. In fact, the robots
would keep on forming always a regular n-gon even though
the smallest enclosing circle may change. Hence, the claim
holds.

We now consider Algorithm 4 in the context of SASYNC,
hence showing the main difficulties arising and why that
algorithm does not work. Clearly, Lemma VII.1 also holds
in SASYNC. Hence, if the initial configuration is given
by n robots forming a regular n-gon on C(R), the res-
olution strategy must move them toward c(R). However,
now pending moves can occur, even though they can stand
as such just for one time unit. Unfortunately, this is al-
ready enough to face much more difficulties in designing
a resolution strategy. We can describe a possible execution
R = R0, R1, R2, . . . (with Ri being the configuration
observed at time i) of Algorithm 4 with respect to the
SASYNC model where complications arise.

The scenario is described by Figure 13.(a), by means of
a configuration R = R0 composed of five robots disposed
as a pentagon. As non-rigid movements are assumed, the
adversary can make move any subset of robots toward
c(R0) at different distances. This implies that, at the initial
time 0, only a subset of robots could be active; moreover,

the adversary may prevent such active robots to form a
multiplicity in c(R0) and to obtain a configuration at time 2
where c(R2) 6= c(R0). In the case described by Figure 13,
the active robots at time 0 are r1 and r2, and in R2 we have
that r1 has reached c(R0), whereas r2 has been stopped
before. Figure 13.(b) shows the activation schema of all
the five robots. With respect to such a schema, it turns
out that robots r3 and r4 have already computed their
moves (that are pending) at time 2. In fact, their target is
c(R0) and it has been computed at time 1 according to
the algorithm. However, the computed moves are performed
in the subsequent time step, while robots r2 and r5 are
finalizing their Compute phase on the basis of the snapshot
acquired at time 1, that is, the snapshot acquired by r3
and r4 reveals configuration R1 = R0. Hence, at time
3, configuration R3 may occur in which r3 and r4 have
formed a multiplicity on c(R0) where also r1 resides. Since
both r1 and r5 perform their Look phase at time 2, they
both execute Lines 8–9 of Algorithm 4 (because they both
belong to int(C(R2))). It follows that r2 and r5 move
toward c(R2) and the adversary can make both complete
their movements at time 4. The obtained configuration R4

then contains two multiplicities, one at c(R0) and one at
c(R2). From R4, the adversary may prevent the robots to
ever finalize the Gathering since a configuration composed
by just two multiplicities is basically equivalent to have
just two robots. In fact, the adversary can make move all
the robots composing one multiplicity in a synchronous
way, i.e., like if they were a unique entity. Since it is
known that the Gathering is unsolvable for n = 2 even
in SSYNC, see [52], then the obtained configuration R4 is
unsolvable. It follows that Algorithm 4 cannot be applied
as it is to solve the Gathering problem in SASYNC. In fact,
the scenario reported in Figures 13 can be easily extended
to configurations with an arbitrary number of robots.

Modifications to the strategy proposed by Algorithm 4
to avoid the difficulty described above are then required.
Hypothetically, we may want to find a move that can ‘waste
time’ before moving the robots toward the center of the
current smallest enclosing circle. This may allow possible
pending moves to be realized, hence either creating only
one multiplicity in the original c(R) or letting the robot
move successively to the new center. For instance, from R2

one may think about rotating the robots on C(R) along the
circumference toward specific targets that permit to infer
the termination of the rotation. If such a movement can
be realized, all the robots can deduce from there that no
pending moves are standing. Clearly, it is possible that
pending moves originated in R0 are performed and they
either create a multiplicity or simply change the number of
robots involved by the move designed for R2. Unfortunately,
it seems it is not that obvious to realize such a strategy.

On the other extreme, there is of corse the strategy
proposed in [16] dealing with ASYNC robots. This is based
on the preliminary step where robots first check whether the
current configuration is equiangular or not. A configuration
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FIGURE 13: A visualization of the execution of Algorithm 4 in the SASYNC model.

is said to be equiangular if there exists a point p such that by
drawing all n half-lines starting from p and passing through
any robot, the intersections of the drawn lines with any circle
centered in p form a regular n-gon. From an equiangular
configuration is rather easy to accomplish the Gathering,
it is enough for the robots to move toward the detected
point p. From R0, for instance, the point p is exactly
c(R). Hence, if the robots are always able to detect such
a point during the execution of the algorithm then there is
no risk to create undesired multiplicities. However, as shown
in [16], the main problems start when the configuration is
not equiangular but it may become as such due to some
movement. This constitute the main difficulty arisen in [16]
and its resolution is shown to be quite involving. It is still
not clear whether by dealing with SASYNC still requires
such arguments or somehow they can be simplified.

VIII. CONCLUDING REMARKS
In this work, we have studied the computational power of
distributed systems consisting of very simple autonomous
robots. Since it is known that the ability of a system of mo-
bile robots to solve a given distributed problem is strongly
influenced by the extent of synchrony between the robots,
we have introduced a new synchronization model that is
located in between ASYNC and SSYNC. This new model,
called SASYNC, is defined in order to better understand the
big gap between ASYNC and SSYNC in terms of level of
difficulty to approach problems.

Our first result proves that SSYNC robots can solve more
tasks (i.e., they are more powerful) than SASYNC robots,
that in turn can solve more tasks than ASYNC robots. This

is obtained by investigating the Gathering problem on rings,
in particular on SP4 configurations.

Before stating the main message that comes from this
work, we need to recall the main differences between
FSYNC, SSYNC, ASYNC models and the new SASYNC.
One of the main difference between ASYNC and the syn-
chronized models FSYNC and SSYNC is that in ASYNC,
when a robot performs the Look phase, it can perceive
other robots in each of their possible phases with respect
to the LCM model. In particular, it is possible to perceive
a robot while it is moving. On the contrary, in FSYNC
and SSYNC, when a robot performs the Look phase, other
robots are either inactive or performing the same Look
phase. As an intermediate behavior, in SASYNC a robot
that performs the Look phase cannot perceive other robots
while these are moving, but it can perceive robots that have
already computed the move but have not yet performed
it. Importantly, in SASYNC a pending move will always
be performed before any other move computed later in
time (while in ASYNC there might occur pending moves
computed very far away in time that become effective after
moves computed more recently by other robots). It follows
that, in SASYNC, pending moves are resolved in the order
they are computed (FIFO behavior).

Concerning the obtained results and according to the dis-
cussion about the Gathering problem on the Euclidean plane,
it seems that the SASYNC model is already “sufficiently
hard” to deal with. In particular, it seems that studying
SASYNC instead of ASYNC may already provide useful
information about the complexity of the studied problem.

So, the main message coming from the new synchroniza-
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tion model could be twofold: (1) the ASYNC model is hostile
for designing distributed algorithms because of pending
moves. Less relevance seems to concern the possibility of
ASYNC robots to be seen while they are moving; (2) when
a new task must be studied according to the LCM model,
it is sufficient to use the SASYNC model in order to face
the main difficulties that usually characterize asynchronous
systems.

There are also some challenging research directions that
deserve to be investigated:
• Concerning the Gathering problem on graphs, from Ta-

ble 2 we see that the main question left open is whether
for n ≥ 11, configurations in SP4 can be solved in
ASYNC or not. In [30], it has been conjectured that in
ASYNC such configurations are unsolvable;

• About Gathering on graphs within SASYNC, it remains
open whether configurations in SP4 with n ≥ 13 can
be solved or not;

• Another problem that remains open is whether the strict
hierarchy SSYNC > SASYNC > ASYNC also holds
for robots moving on the Euclidean plane. Moreover,
for the Gathering problem, it is not clear whether
for SASYNC robots it is possible to design a simpler
algorithm than that provided in [16] for ASYNC robots.

• Finally, it would be interesting also to explore how the
four synchronization models relate when considered
within a same problem with respect to optimization
issues rather than simply feasibility.
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