
Nonlinear sensors: An approach to the residence time detection strategy

A. Dari, L. Bosi, and L. Gammaitoni*
NiPS Laboratory, Dipartimento di Fisica, Universitá di Perugia, 06100 Perugia, Italy and INFN Sezione di Perugia,

06100 Perugia, Italy
�Received 17 November 2008; revised manuscript received 2 August 2009; published 12 January 2010�

The monitoring of the residence time difference in bistable sensors has been recently proposed as a valid
scheme for improving the detection capabilities of sensors as diverse as fluxgate magnetometers, ferroelectric
sensors and mechanical sensors. In this paper we propose an approach to the residence time based detection
strategy based on the measurement of the slope m of the sensor output integral. We demonstrate that such a
method, far from degrading the detection performances can provide an easier way to realize fast and reliable
sensors without the computationally demanding task related with the computation of the residence time dif-
ference. We introduce the receiver operating characteristic curve as a quantitative estimator for the comparison
of the two methods and show that the detector performances increase with increasing the periodic bias ampli-
tude A up to a maximum value. This condition has potentially relevant consequences in the future detectors
design.

DOI: 10.1103/PhysRevE.81.011115 PACS number�s�: 05.40.Ca, 07.07.Df

I. INTRODUCTION

A considerable number of sensor devices manifest a non-
linear input-output relationship, often in the form of bistable
response characteristic. These include magnetic sensors such
as fluxgates �1�, ferroelectric sensors �2�, and mechanical
sensors �3�, e.g., acoustic transducers, made with piezoelec-
tric materials. The functioning of these devices, for some
purposes, can be described in terms of dynamical systems
acted on by a combination of deterministic and stochastic
inputs. For such systems, it is common to assume a bistable
potential energy function V�x� �although it is not uncommon
the case of the so-called excitable systems where a threshold
discriminates between the two states �4��, where the two
stable states, located at the minima �xm of V�x�, are
separated by an unstable point represented by the
maximum of the potential, located at x=0. The two minima
are thus separated by a potential barrier with height
�V�=V�0�−V��xm�. If we assume the system to be sym-
metric, �V+=�V−=�V. In this framework, the dynamics of
the sensor is usually expressed in terms of the motion of a
massive particle in the static potential V�x�, subjected to
some deterministic forces A�t� representing the signal to be
sensed and by a random force ��t� representing the unavoid-
able noise that affects the sensor functioning.

The presence �detection� and the value �estimation� of the
unknown signal A�t� are assessed through a careful monitor-
ing of the dynamic system output x�t�. Due to the presence of
a nonlinear input-output relationship such monitoring activ-
ity is not straightforward and a number of different ap-
proaches to the problem have been developed, with specific
reference to the peculiarities of the input signal A�t�. In this
paper we will focus on the well known problem of sensing a
direct current �dc� or low-frequency signal. This is a classical
problem of signal analysis that, in the case of nonlinear
�bistable� potential has not yet received a completely satisfy-

ing solution. As an example, conventional fluxgate sensors
use a strategy based on the monitoring of the power spectral
density amplitude of the second harmonic of the response to
a periodic driving bias signal. Be A�t�=B�t�+� the input sig-
nal, where � is the dc signal to be sensed and
B�t�=A sin��0t� is an externally added bias periodic signal.
The system output x�t� will still be a periodic signal but due
to the nonlinear character of the system, there will be the
presence of higher harmonics of the fundamental �0. In par-
ticular, if �=0, due to the symmetry of the dynamics there
will be only even harmonics. The appearance of odd harmon-
ics can thus be associated with the presence of a non-null
target signal: ��0. However, such a detection strategy has
some drawbacks, mainly related with the computationally
demanding task of the estimation of the second harmonic of
a given signal.

On the other hand, particularly in the last few years, sen-
sor device miniaturization has become increasingly relevant
in order to attain higher level of integration, higher perfor-
mance and low energy consumption. Continuous downscal-
ing drastically increases the presence of disturbances of vari-
ous nature that can be collectively addressed as noise
affecting the sensing operation. Noise can affect the func-
tioning of sensors in a number of ways, with the final results
of limiting its sensitivity.

To circumvent problems due to the traditional strategy
and to operate in presence of noise, a readout approach has
been proposed using statistics in order to gain information on
the presence of small target signals. This approach is based
on the monitoring of the mean residence time difference
�5–9�. The residence time is the time the system output
spends in each of the two stable states. In the presence of the
input signal A�t�, if A is large enough and if �0 is small
enough, the system output x�t� is a periodic signal with am-
plitude proportional to xm and its dynamics is composed by
large excursions between one minima and the other, across
the potential barrier. If ��0, the system dynamics x�t� is
markedly asymmetric and the time x�t��0 is different from
the time x�t��0. If we set two thresholds +b and −b, we can
define a state transition from the state + to the state − when*luca.gammaitoni@pg.infn.it
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x�t� crosses −b from above. We say than that the system
output is in the − state as long as a − to + transition happens,
i.e., when x�t� crosses +b from below �see Fig. 1�.

We are now in position to define the residence time �RT�
in the + state as the time interval T+ between the instant of a
− to + state transition and the subsequent instant of the first
+ to − state transition. Analogously we can define T− as the
time interval between the instant of a + to − state transition
and the subsequent instant of the first − to + state transition.
The residence time difference is defined then as
�T=T+−T−. For what we have said, if �=0 and the system
dynamics is symmetric then �T=0. On the other hand,
if ��0 then �T�0. Thus monitoring �T we can obtain
information on the value of the unknown signal �.

The use of residence time as an indicator of the system
dynamics was initially proposed in �10�. In fact, in the pres-
ence of external noise the RT becomes a random variable
whose value changes with each sample. In this case it is
customary to consider the mean value of the residence time,
i.e., �T+� and �T−�, respectively. Here � . . . � indicates an aver-
age over the statistical ensemble.

Although noise and nonlinearity are usually considered
undesirable features of sensors, there are cases where they
can be employed in a cooperative way in order to improve
the sensitivity. An example is the so-called stochastic reso-
nance �SR� phenomenon �11,12�. The notion of SR was
originally introduced �13� to describe a property peculiar to
bistable systems subjected to a weak periodic modulation
embedded into a noise background: for a certain value of the
noise intensity the fundamental periodic component of the
system response gets amplified to an optimal amplitude. An-
other remarkable effect is the dithering effect �14� that finds
useful applications in ADC �analog-to-digital converters� and
resonant crossing �15� effect as well. Taking into account
this realistic scenario where nonlinearity and noise are unre-
movable system characteristics, it has been advanced the
idea that a class of sensors can be conceived, the so-called
noise activated nonlinear devices �5�, where noise and non-
linearity can cooperate in order to improve the device func-
tioning.

Starting from the known results of the resident time based
detection strategy �5,6�, the aim of this paper is to present
and discuss a method to simplify the sensor operation. Spe-
cifically, we propose to estimate the difference between the
mean residence times in the two stable states by computing a
quantity, I���, represented by the integral over time of the
system output. The function I��� has a definite relationship
with the mean residence time difference �T and results com-
posed by two contributions: one step function and a periodic
function. By monitornig the slope of the first integral com-
ponent, versus time, we can obtain the value of the target
signal, instead of measuring the computationally demanding
�T.

The paper is organized as follows: after analyzing the
operating conditions and after resuming the main character-
istics of the residence time based detection strategy, we
present our approach. Initially we show the analytical calcu-
lation for the deterministic case and then we investigate the
effect of asymmetry in presence of noise. We compare our
approach to the standard determination of the residence time
difference with respect to the detection capabilities of the
two methods. We conclude that the two methods perform
equally well and thus our approach has to be preferred be-
cause it can be implemented with less computational effort.
We also observe that, with reference to the detection task, the
detector performances increase with increasing the periodic
bias amplitude A up to a maximum value. I.e., it exists a

A= Ā value for the amplitude above which the detection ca-
pability does not increases and remain constant. This has
some relevant consequences in the detector design.

II. RESIDENT TIME-BASED DETECTION STRATEGY

The nonlinear sensors, studied in this paper, work in a
noisy environment and only few dynamical variables can be
adjusted to improve their performance. Specifically, the am-
bient noise and the target signal characteristics cannot be
modified at will, while the bias signal �amplitude and fre-
quency� and the reference thresholds can be arbitrarily ad-
justed.

As analyzed in �6�, the starting point of the residence time
difference detection strategy is the monitoring of the switch
dynamics in a symmetric, unperturbed bistable system. In
order to fix our ideas, avoiding the complex features of a
continuous dynamics, we will consider in the following a
two state discrete dynamical model. As in �6� the Schmitt
Trigger �ST� model is assumed. Compared to the continuous
dynamical model �e.g., the bistable Duffing oscillator�, the
ST output is completely controlled by the switching mecha-
nism between the two steady states �the interwell motion�,
while the intrawell dynamic �that is the motion around the
potential minima� is neglected. In the following we will con-
sider a ST model characterized by two static barriers at �b
with an input signal f�t� that consists of two components: �i�
a noisy signal 	�t� and �ii� a signal to be sensed A�t�,

f�t� = A�t� + 	�t� . �1�

We assume the noise 	�t� to be Gaussian band limited �ex-
ponentially correlated� having zero mean, and correlation

FIG. 1. Schmitt trigger model in the deterministic condition
�A�t� is a triangular wave function with the bias amplitude A larger
than the barrier� for the case where no dc signal is present �upper�
and for the case where there is a signal with constant amplitude �
�lower�. In the two figures the input and the output time series are
represented. Apparently, in the upper panel the residence times are
equal, while in the lower panel the two residence times are
different.
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time �0 �5�. The noise 	�t� originates from a white noise

driven Ornstein-Uhlembeck �OU� process: 	̇=−
0	+�F�t�,
where 
0��0

−1, and F�t� is white noise having zero
mean and unitary strength. 	�t� has correlation function
�	�t�	�s��=�	

2 exp�−�t−s� /�0� with variance �	
2=�2�0 /2.

The ST output is a dichotomic signal with values �xm.
Being x�0�=xm, the system output rests in this state as long
as the input f�t��−b with t�0. As soon as f�t� crosses −b
the trigger switches �almost� instantanously into the lower
state −xm and sits there until f�t��b�. The deterministic com-
ponent of f�t�, i.e., A�t�, is usually characterized by a peri-
odic bias signal B�t�, that can be introduced to control the
bistable sensor dynamic and is choosen in the supratheresh-
old regime �i.e., the amplitude of B�t� is larger than b�, and
by a small unknown dc target signal � ���b�,

A�t� = B�t� + � , �2�

After presenting the hypotheses of the present strategy, we
are now ready to discuss its main working principle. Using
the ST model we will compute the two residence times, T+

and T−, as defined previously. Considering the presence of
noise these two variables have a random nature, thus the so
relevant quantities will be replaced by the averaged
residence times: �T+� and �T−�, respectively. Accordingly
��T�= ��T+�− �T−�� and it will be a function of the input sig-
nal and will carry the information about the target signal
amplitude. In the symmetric case ��=0� the two values �T+�
and �T−� are identical and the mean residence time difference
is zero. For a nonzero target signal, ��0, the input signal is
on average closer to one of the thresholds �see Fig. 1� and
thus the residence time values in the two states are different.
As a consequence ��T�= ��T+�− �T−���0.

In order to reach a quantitative understanding of the be-
havior of ��T�, let’s consider at first the case where no noise
is present. Moreover, by the moment that the role of the
specific wave form of the bias signal has been discussed
elsewhere �6�, for the sake of simplicity we will consider
here a triangular signal B�t� of amplitude A,

B��� =	
4A�� − n� if n  � � n +

1

4

2A�1 − 2�� − n�� if n +
1

4
 � � n +

3

4

4A�− 1 + �� − n�� if n +
3

4
 � � n + 1


 �3�

with �= t /T0, where T0 is the period of the triangular wave
and n=int���, which means the integer part of �.

To obtain the value of the residence time difference in this
condition, we compare A�t�=B�t�+� with the two thresholds
�b. The relevant crossing times �+ and �− in the absence of
noise are readily computed as

�+ =
b − �

4A
, �4�

�− =
b + �

4A
+

1

2
, �5�

The crossing times refers, respectively, to the instant of the
first upward crossing of the upper threshold �lower-to-upper
state switch� and to the instant of the first downward crossing
of the lower threshold �upper-to-lower state switch�, i.e.,
�+= t+ /T0 and �−= t− /T0. Taking into account the input signal
defined in Eq. �3�, the ST output assumes the �xm values at
the considered crossing times,

x��� = 	− xm if n  � � �+ + n

xm if �+ + n  � � �− + n

− xm if �− + n  � � n + 1,

 �6�

To obtain the �T it is necessary to monitor the switches
between the two states by keeping track of the chronology of
each crossing. In a single period, T+= t−− t+ and T−=T0−T+,

T+ = T0��− − �+� = T0�A + �

2A
� , �7�

T− = T0�1 − ��− − �+�� = T0�A − �

2A
� . �8�

Finally, we obtain

�T = �2T+ − T0� = T0
�

A
. �9�

As it is well apparent, there is a linear dependence between
the residence time difference and the target signal amplitude:
a quite desirable condition in a sensor �15�.

III. INTEGRAL DETECTOR

The measurement of the mean residence time difference
in a real bistable device is a quite troublesome goal to reach.
As detailed in the previous section, the �T is obtained by
monitoring the chronological crossings. In fact, T+ and T−

have to be computed from the switching times and, after
accumulating such quantities, mediated to finally generate
��T�= ��T+�− �T−��.

This strategy has been implemented to achieve a sensor
with higher sensitivity and a simplified procedure compared
to the traditional method. However, the computation of the
mean residence time difference can be quite demanding, es-
pecially in the case where a stand-alone microsensor is in-
volved. Fortunately, as we are going to show, such a direct
computation can be avoided, without giving up with the resi-
dence time approach.

Let us consider the following quantity:

I��� = 
0

�

x�s�ds . �10�

In a single period t=T0 and thus �=1; we have:
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I�1� = 
0

1

x�s�ds = 
0

�+

x�s�ds + 
�+

�−

x�s�ds + 
�−

1

x�s�ds .

�11�

By substituting the values for �+ and �− and considering the
system output x�t�= �xm we can easily obtain

I�1� = xm�2��− − �+� − 1� = xm
�

A
. �12�

For a generalization to a generic instant of time, we assume
��0 and we compute the value of the integral. This consists
of two contributions: a step function �that increases every
period T0 by a quantity proportional to �� and a triangular
function that superimposes onto the step function,

I��� = Xstep��� + Xtri��� , �13�

with

Xstep��� = nxm
�

A
, �14�

where n=int���, and

Xtri��� = xm	− � if n  ���+ + n�
�� − 2�+� if �+ + n  ���− + n�
2��− − �+� − � if �− + n  ��n + 1.�



�15�

If we consider I��i�, where �i= i+��0� and i=0,1 , . . ., it is
easy to realize that these values lies in a straight line. For
different ��0� we have different straight lines that have the
same slope, but different starting point. The slope of these
lines is readily identified as

m = xm
�

A
. �16�

Based on these results we are now in position to present a
detection strategy for the measurement of �: in order to gain
information on the target signal � it is sufficient to measure
the slope of the straight line obtained by sampling the output
integral I�t� at regular intervals, each spaced by an integer
multiple of the period T0. Quite conveniently, also in this
case the measured quantity is proportional to �. We stress the
fact that this approach allows us to circumvent the difficul-
ties connected to the direct �T computation that is usually
performed with a digital signal processing �DSP� system. On
the other hand the measurement of the quantity just intro-
duced can be performed both with a DSP and also, most
importantly, with analog electronics by means of a running
average on the signal. This can be realized with a low pass
filter, RC type. This second solution is by far less demanding
both by the electronic complexity point of view and by the
energetic demand point of view. Two points, these that are
quite relevant in the autonomous sensors design.

IV. IN THE PRESENCE OF NOISE

The previous theoretic calculation has been restricted to
the deterministic case. However, in order to obtain a more

realistic description, it is mandatory to take into account the
role of noise, unavoidably present in each measurement. In
this section we will discuss the possibility of implementing
the slope-based measurement strategy, in the presence of ex-
ternal additive noise. In the following we assume that
f�t�=A�t�+	�t�, where the noise 	�t� statistical properties
have been defined above. Because of the noise, the slope m
computed from different time series, behaves here as random
variable. The relevant quantity will thus be assumed to be its
ensemble average �m�. In order to study the behavior of �m�
as a function of the relevant parameters we realized a digital
simulation of the ST dynamics. A number of digital time
series of the input and output signal were produced and the
statistical average of the relevant quantities computed from
these �see e.g., Fig. 2�.

We started our investigation by studying the dependence
of �m� on the noise intensity for various values of A��=1�.

The results of the digital simulation have been plotted in
Fig. 3. A number of features are evident:

�1� In the so-called suprathreshold case, i.e., when A�b
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FIG. 2. I��� versus �, with �= t /T0, for four different values of
the target signal �. With dots we have plotted the average value
�I����. These values are used to compute the linear regression and to
extract �m�.

FIG. 3. Slope �m� versus the noise standard deviation �	, for
four different values of the bias signal amplitude A with the same
frequency �0=1 /T0. b=70, �=1, T0=5, and �0=0.5. The horizontal
lines represent the theoretical prediction for the zero noise limit in
the suprathreshold case.
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+� the dynamics is mainly driven by the deterministic peri-
odic bias A�t�. Specifically,

�i� For weak noise intensities ��	�A−b−�� the dynamic
is completely driven by the triangular signal amplitude and
the obtained �m� value can be approximated by the determin-
istic calculation. For �	=0, �m�=m and coincides with the
value predicted in Eq. �16�: see horizontal lines in Fig. 3.

�ii� Increasing �	, the system reaches an intermediate con-
dition: �	�A−b−�. The presence of the right amount of
noise induces a failure mechanism in switches of the system
between the two stable states. It means that the system will
spend a larger time in the two wells increasing the slope
value to a maximum �16�, an effect known in the literature as
resonant trapping �17�. The amplitude of this effect and the
position of the maximum are clearly a function of A �18�. It
is interesting to note that, as reported in the literature for the
�T behavior �5�, the resonant trapping mechanism is visible
also for �m� and the �	 value where �m� reaches a maximum,
increases with increasing A.

�2� In the so called subthreshold case, i.e., when
A�b+�, the role of the noise is determinant in leading the
switch mechanism.

�i� When the noise is small ��	�b−A−�� there are just
few rare switches and in the zero noise limit the ST is not
able to switch anymore. The system output is thus confined
permanently in one of the states. In this case �open star sym-
bols in Fig. 3� the zero noise limit for �m�=m and can be
easily computed analytically as

I = 
0

nT0

xmdt = xmnT0, �17�

and thus:

m = I/n = xmT0, �18�

that is in good agreement with the value in Fig. 3 for
A=65 and �=0.

�ii� When the noise increases from �=0 the switch prob-
ability grows from null to a finite amount. As a result an
increasing number of switches take place and the residence
time difference decreases, lowering the average slope �m� of
the integral.

�3� In the limit of �	�A−b−�, regardless the value of A,
the noise has the main role on the dynamics. The presence of
the antisymmetrizing signal � becomes progressively less
important and the dynamics becomes more and more sym-
metric. The value of the slope �m� decreases to zero. In fact,
if noise is very large the ST switches frequently between the
two stable attractors and the details of the bias signal wave
form become decreasingly relevant.

To further characterize the �m� parameter, we simulated
the dynamic of the ST varying the bias signal amplitude at a
given noise standard deviation and bias frequency. In Fig. 4
we show the behavior of �m� versus A.

As it is evident the curves present a monotonic decrease
toward zero, moving from a value at A=0 that can be esti-
mated by using the computation of the mean first passage
time �16� for a purely noise driven switch process. Here ��+�
is the average normalized time that the system spends in the

“+” state, i.e., the average normalized time that the process 	
takes to reach the −b+� level, provided that at t=0 was
	=b+� and that there is and absorbing boundary in −b+�
and a reflecting boundary in +�. Analogously we can define
��−� as the average normalized time that the system spends in
the “−” state, i.e., the average normalized time that the pro-
cess 	 takes to reach the b+� level, provided that at t=0 was
	=−b+� and that there is and absorbing boundary in b+�
and a reflecting boundary in −�.

In these conditions, the value of the integral can be easily
expressed in terms of

I��+ + �−� = m���+� + ��−�� , �19�

where m is the slope.
On the other hand we have

I��+ + �−� = 
0

��+�+��−�

xmdt = , �20�

=
0

��+�

xmdt − 
��+�

��+�+��−�

xmdt = , �21�

=xm���+� − ��−�� , �22�

thus we obtain:

m = xm
��+� − ��−�
��+� + ��−�

. �23�

The horizontal lines in Fig. 4 present our prediction in Eq.
�23�, in good agreement with the results of the digital simu-
lation.

In the large A case, i.e., when A�b+� the switching
mechanism is dominated by the deterministic bias and Eq.
�16� holds true: m is inversely proportional to the bias am-
plitude �see dotted line in Fig. 4�.

We notice here that the highest value of m is realized
when A=0. Such a condition seems to suggest that the best
operating condition for our bistable sensor is one where there

FIG. 4. Slope �m� versus the amplitude A of the triangular forc-
ing bias for three fixed values of the noise standard deviation �	.
The horizontal lines represent the theoretical prediction �mean first
passage time� for the case where only noise is present �A=0, i.e.,
zero bias signal amplitude limit�. The dashed line is the theoretical
prediction for the deterministic limit. The relevant parameters value
b, �, T0, and �0 are as in Fig. 3.
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is no periodic bias. This special case is intriguing; it opens up
the possibility of operating the sensor with minimal onboard
power. However, although it is true that when A=0, m is
maximum, by a practical point of view this operating condi-
tion has some disadvantages related to the averaging proce-
dure. As a matter of fact, the measure of m requires an inte-
gration procedure carried on in time. If m is small compared
to the noise there might be necessary to carry on a long
integration before being able to discriminate between the �
=0 and ��0 cases. Moreover, a larger m does not imply, by
itself, a higher capability of measuring the target signal. In
order to better understand the role of A in the framework of
the proper detection task, in the following section we will
address the detection problem more extensively.

V. DETECTION THEORY

The purpose of a sensor is to measures a physical quan-
tity, by converting it into a suitable signal that can be read by
an observer or by an instrument. Because sensor is a real
device working in a real world, it has to take into account
unavoidable noise sources. There are many different noise
sources, some of them can be intrinsic in the device func-
tioning or due to external process such as the environmental
working condition.

Noise affects the measurement procedures and causes sta-
tistical fluctuations. Due to the unpredictable character of the
noise, the possibility to make decisions on the presence or
not of a specific target signal is questioned. Due to this, each
time a decisions about uncertain events has to be taken, it is
necessary to follow a statistical approach. Such an attitude
has been codified in what is nowadays called “detection
theory.” The detection theory provides methods, named “de-
tection strategies,” aimed at maximizing the detection prob-
ability and, at the same time, at minimizing the probability of
error.

In the following we present some signal detection theory
tools that will be useful to asses detection probabilities for
our sensor.

A. Detection strategies

The aim of this section is to provide basic tools of the
detection theory. We consider the particular case, relevant
here, of a dc signal of amplitude �, embedded into a zero
mean white Gaussian noise. Let’s suppose that we have ac-
quired a set of data, represented here by the sequence x�n�,
where n=0,1 , . . . ,N−1. We consider two hypotheses:

H0:x�n� = w�n� ,

H1:x�n� = � + w�n� . �24�

The first hypothesis is called null hypothesis and represents
the case when only noise �the sequence w�n�� is present in
the data. The second hypothesis is called alternative hypoth-
esis and in this example represents the case where the data
account for a signal composed by noise and the dc term. The
detection strategy is aimed at finding a method to declare if

the signal � is present or not in the x�n� data set, thus decid-
ing between the H0 and H1 hypothesis.

In Fig. 5 the two distributions for x�n� and �=0.5, under
H0 and H1 hypothesis are shown. In the absence of signal
�H0� we expect pure noise w�n� with �x�n��=0. On the other
hand, under the H1 hypothesis, we expect a similar distribu-
tion, with the same standard deviation but translated for a
quantity �x�n��=�. Thus, if on observing the data x�n�, we
find x�0��1, this implies that the observed sample more
likely belongs to a distribution with �x�n���0 and thus it
suggests that more likely H1 is true. In fact from Fig. 5 is
evident how the probability is higher if this value is due to
H1 than to H0, i.e., p�x�0� ;H1�� p�x�0� ;H0�. Such a prob-
ability is named “detection probability.” In this way we have
built a first naive detector, where we compare an observed
datum with a reference value, usually called “threshold.”

Following the previous reasoning it is evident that in this
procedure two types of errors can be identified. The first
error is the missed detection, i.e., when we decide for H0 but
H1 holds instead; the second error is the false alarm, i.e.,
when we decide for H1 but H0 holds instead.

We are interested in computing the probabilities of such
errors. The probability of false alarm is the probability to
claim a signal in the data when there isn’t any. Given the
threshold �, we can write

PFA = 
�

� 1

2�
exp�−

1

2
t2�dt . �25�

In a similar way the probability of detection is the probabil-
ity to claim the presence of a target signal � in the data when
there is one. This is given by

PD = 
�

� 1

2�
exp�−

1

2
�t − ��2�dt . �26�

Where the distribution is by hypothesis Gaussian with a stan-
dard deviation equal to 1.

B. Detection of a dc level in white Gaussian noise

Intuitively, increasing � we expect a better detection due
to higher signal. If we consider the previous statistical de-
scription, such effect is associable with a better separation
between the two Gaussian distributions in Fig. 5.

Under H0 the x�n� is a statistical variable with PDF given
by

FIG. 5. Probability density for x�n� and �=0.5 under H0 and
H1.
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p�x;H0� =
1

�2��2�N/2exp� 1

2�2 �
n=0

N−1

x2�n�� ,

while under the H1 hypothesis we have the same distribution
but shifted by �,

p�x;H1� =
1

�2��2�N/2exp� 1

2�2 �
n=0

N−1

�x�n� − ��2� .

Following the Neyman-Pearson theorem �19�, we define
likelihood ratio as the ratio between two probabilities,

L�x� =
p�x;H1�
p�x;H0�

, �27�

and we decide H1 if L�x� is higher of a certain threshold

L�x� � � �28�

with this definition we have

PFA = 
x:L�x���

p�x;H0�dx .

It is possible to demonstrate �19� that under proper hypoth-
esis the 29 can be reduced to

1

N
�
n=0

N−1

x�n� � ��, �29�

where �� is a normalized threshold that includes all the con-
stants and well know parameters of the problem.

In our case,

�� =
�2

N�
log � +

�

2
. �30�

We have now what is called a Neyman-Pearson detector
based on the comparison of the mean �x�= 1

N�n=0
N−1x�n� to a

threshold ��.
The detection problem can now be addressed with the

following steps:
�1� define the problem H0 and H1 and its statistical fun-

tions PFA and PD;
�2� calculate the likelihood ratio function;
�3� select the maximum PFA that is acceptable �this is the

arbitrary part of the detection procedure, where we agree on
the maximum error rate we can tolerate. For example we can
select a PFA=10−2�;

�4� given the PFA we derive the needed threshold invert-
ing the Eq. �25�;

�5� apply the Eq. �28� on data and look if the returned
value is higher or lower ��;

�6� decide signal � is present if the value is higher than the
threshold, vice versa decide that the data are composed only
by noise; and

�7� for long data set the procedure is repeated from step 5,
dividing data in several overlapping time slices and applying
the procedure on each segment.

It is clear how, given the detector, the first critical step is
the threshold definition and hence the selection of the accept-
able probability of false alarm. This probability is clearly

interlinked with the probability of detection, meaning that we
cannot reduce the probability of error �false alarm and
missed detection� by keeping fixed the probability of detec-
tion.

In fact, if we try to reduce the PFA, we need to increase
the threshold value. When the threshold is increased the
probability to observe output due to noise fluctuation in-
creases, because we are considering now more data from the
tail of the Gaussian distribution. But it is also true that we are
reducing the probability �PD� to observe outputs due to sig-
nal with lower energy.

More in general the decision of the threshold to use is
made considering together the PFA and PD. These are linked
by �19�

PD = Q�Q−1�PFA� −�N�2

�2 � , �31�

where Q�¯ � is the complementary cumulative distribution
�18�.

For a fixed PFA the PD increases monotonically with

N�2

�2 = R�. �32�

This quantity is usually called signal-to-noise ratio �SNR�
and plays an important role in the detection task. In fact the
SNR is proportional to the energy of the signal contained in
the data and inversely proportionally to the noise floor.

A relevant indicator of the detector performance is the
plot of curves PD vs PFA at different thresholds. These curves
are called receiving operative characteristic �ROC� curves.
Using these plots it is possible, once selected the threshold,
to estimate the subsequent expected PFA and PD. Moreover,
the ROC curves are often useful to compare different detec-
tors.

C. Detection strategies for the optimal detector

In the first part of this section we describe the detection
strategy of the residence time detector, under the very favor-
able hypothesis that all the relevant detector parameters are
known.

Let’s suppose that our data set is

x�t� = A sin��0t� + ��t� + � ,

where A sin��0t� is a known periodic signal, ��t� is an expo-
nentially correlated Gaussian noise with zero mean and � is
the target dc signal.

The first difference between this problem and the one
treated in the previous chapter is the presence of the periodic
signal and the exponentially correlated noise. The periodic
component is not a problem if it is known, while the corre-
lation of the noise change more deeply the physics of the
process and hence the results of the NP detector strategy.

1. NP detector for �-correlated noise

Let us consider first the case where there is the periodic
signal but the noise is white �i.e., � correlated�. For the delta
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correlated case we can demonstrate that the optimal detector
is still given by Eq. �29�,

1

N
�
n=0

N−1

y�n� � � ,

where y�n�=x�n�−A sin��0n�t�, with �t the sampling time
for the y�n� time series.

2. NP detector for exponentially correlated noise

Here ��t� is an exponentially correlated Gaussian noise
with covariance matrix C and correlation time �0�0. The
covariance matrix is defined here as

�C�mn = E���m���n�� = r���m − n� = �2e−��m−n��t�/�0.

It is possible to demonstrate that the general expression for
the NP detector �19� is

T�x� = xTC−1s � � ,

where x is the input data vector and s is the vector containing
the signal to be detected, in our case: s=�� �1� and �1� is a
unit vector.

In order to evaluate the detector performances we intro-
duce the deflection coefficient,

d2 = sC−1s ,

for exponentially correlated noise we have �19�

d2 = �−
n − 1

n
+ e1/


1 + e1/
 ��n�2

�2 � .

Where 
=�0 /dt with dt sampling interval.
It is customary to use a large numbers of samples

�n�1�, thus the term n−1
n can be approximated to 1

d2 = � e1/
 − 1

e1/
 + 1
�R�,

we have

d2 = � R�.

Now we are in position to compare the detector perfor-
mances in the two cases addressed above: �-correlated noise
and exponential-correlated noise. We can observe how the
coefficient �1, showing how the effect of the noise expo-
nential correlation is to reduce the detection probability re-
spect to the �-correlated case.

The effect of a finite correlation time on the ROC is
shown in Fig. 6 where we compare three pairs of curves with
SNR equal to 6, 10, and 20. As it is well apparent for every
fixed PFA the corresponding PD of the �-correlated noise
outperforms the PD of the exponentially correlated noise.

D. Detection strategies for the suboptimal detector

In the previous sections we have presented the detection
strategies for the case where the data set is given by

x�n� = A sin��0n�t� + ��n�t� + � .

In the most general case the data set is a nonlinear function
of this expression. Such a complication is introduced by the
sensor employed to sense and transduce the physical signal
into a data set ready to be processed by a proper detector.
Moreover, for a generically complex data set it is not always
possible to identify an optimal detector and thus one is often
faced with the problem of employing a suboptimal detection
strategy �20�. In these cases a numerical approach to the
computation of the ROCs under NP-strategy approach is re-
quired. This is clearly the case of the residence time detector
and integral detector introduced above. Specifically we are
interested in evaluating the ROCs for the two detectors and
compare them.

E. ROCs comparison

Hence the two detector described in Sec. II are subopti-
mal. Both the residence time detector and the integral detec-
tor are quite simple detectors and members of the energy
detectors family. These detectors generically are aimed at
extracting the signal energy, by suppressing the stochastic
part of the signal via averaging procedures. For the sake of
comparison, in Fig. 6 we show the ROC of the optimal de-
tector together with the ROC for the integral detector. As we
expected, the integral detector is outperformed by the opti-
mal detector.

FIG. 6. ROC curves for the two cases: �-correlated noise �con-
tinuous line� and exponentially correlated noise �dashed line� for
three values of the SNR: 6, 10, and 20. Here 
=1 for all the curves.
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FIG. 7. ROC area versus SNR for the �-correlated case.
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In the following we focus our attention to the comparison
of the integral detector with the residence time detector per-
formances.

In order to simplify the anaysis we introduce the concept
of ROC area that can be demonstrated to be correlated with
the detection performance of a detector for a given SNR. In
particular, if we consider fixed the SNR of the physical pro-
cess, different detectors will recover different amounts of
energy and produce different ROCs. As it is well apparent in
Fig. 7 we observe that a better detection is associated to a
curve with higher area value. Under the optimal hypothesis
of NP detector for dc signal in Gaussian white noise case, the
relation between ROC area and SNR is shown in Fig. 8. In
this case the ROC area is a monotone function of the SNR.
In all cases the ROC area has a lower bound at 0.5 and
higher bound at 1.

With respect to the optimal case, we expect for the sub-
optimal detectors and for a given SNR, a lower ROC area
value. Hence, ROC area is a good parameter, useful for the
detectors performance comparison, where the higher bound
is represented by the area of the optimal detector.

In Fig. 9 we show the difference between the ROC area
computed for the �T observable and for the m observable.
As it is well apparent the difference is in the range of few

percent and well within the statistical fluctuation of the two
quantities. These results support our proposal of using the
observable m instead of �T. In fact the two quantities are
statistically equivalent from the point of view of the detec-
tion performances and thus, in principle, m should be pre-
ferred due to the easier way to compute this quantity.

In these two detectors four parameters A , � , �, and b
are defined. Not all the parameters are independent. Specifi-
cally we can rescale amplitudes by introducing the ratio be-
tween one parameter and the others. Thus if we want to
characterize the detectors performances we need to cover a
three-dimensional space parameters.

In Fig. 10 we present the ROC area versus the amplitude

A of the periodic force. As is apparent it does exists a Ā value
above which the area does not increase anymore. Such a
value scales with � and b apparently according to

Ā�b+2�. Moreover for large A the values of the ROC area
for various � and b converges approximately to the same
asymptotic value. It is also worth noting that on decreasing b
the curve develops a maximum before converging to the
large A plateau.

In Fig. 11 we present a more general perspective of the
ROC area versus both the amplitude A of the periodic force
and the noise intensity �. As previously observed, once the

noise intensity is fixed, for A� Ā the ROC area does not

increases anymore �Fig. 12�. Moreover the Ā increases with
increasing �. This has some relevant consequences in the
detector design. In fact, as we noticed at the end of Sec. IV
with reference to Fig. 4, the highest value of m is realized
when A=0. However such a condition that can be relevant in
order to operate the sensor with the highest sensitivity does
not coincide with the best detector operating condition. Such
a condition, for what it is apparent in Fig. 10 is reached

instead for A� Ā. At the same time Fig. 10 suggest that there

is no advantage in using a larger A, i.e., A� Ā.

VI. CONCLUSIONS

In this paper we have analyzed the performances of an
approach to the residence time based detection strategy. Such
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FIG. 8. ROC of the optimal detector compared with the ROC
for the Integral Detector �dotted lines�. Here �=1, �=10, b=70,
A=100, and �0=0.2. �m� is computed from a time series of T=60
averaged 104 times.

FIG. 9. �Color online� ROC area percentage difference versus
the amplitude A of the periodic force for different values of the
noise intensity �. The other parameter values are �=1 and b=70.

FIG. 10. ROC area for �m� versus the amplitude A of the peri-
odic force for different values of the noise intensity �. The other
parameter values are �=1, b=70, and �0=0.2. �m� is computed
from a time series of T=60 averaged 104 times.
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an approach, based on the measurement of the slope m of the
sensor output integral, is shown to perform equally well with
the standard method based on the measurement of the mean
residence time difference �T. Thanks to the easier way to
implement the method this has to be preferred to the standard
one. We have computed the ROC area as a quantitative esti-
mator of the detector performances and observed that the
detector performances increase with increasing the periodic

bias amplitude A up to a maximum value. This amount to say

that it exists a A= Ā value for the amplitude above which the
detection capability does not increases and remains constant.
This condition has potentially relevant consequences in the
detector design.
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FIG. 11. �Color online� ROC area for ��T� versus the amplitude
A and �. The other parameter values are �=1, b=70, and �0=2.0.
��T� is computed from a time series of T=120 averaged 5000
times.

FIG. 12. �Color online� ROC area versus the amplitude A and �.
The same parameter values as in Fig. 11.
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