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Abstract

In this Monte Carlo study we investigate molecular ordering in a nemato-

genic liquid with dispersed polymer networks. The polymer network fibers

are assumed to have rough surface morphology resulting in a partial ran-

domness in anchoring conditions, while the fiber direction is assumed to be

well-defined. In particular, we focus on the loss of long-range aligning capa-

bility of the network when the degree of disorder in anchoring is increased.

This process is monitored by calculating relevant order parameters and the

corresponding 2H NMR spectra, showing that the aligning ability of the net-

work is lost only for completely disordering anchoring conditions. Moreover,

above the nematic-isotropic transition temperature surface-induced parane-

matic order is detected. In addition, for perfectly smooth fiber surfaces with

homeotropic anchoring conditions topological line defects can be observed.

PACS number(s): 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

Polymer networks dispersed in liquid crystals typically consist of thin fibers — few

nanometers thick — or of somewhat thicker fiber bundles. Having a rather high surface-to-

volume ratio, polymer fibers can play a significant role in orienting the surrounding liquid

crystal even if the polymer concentration in the sample is low [1–3]. Such composite systems

are then similar to “ordinary” confined systems where liquid crystalline ordering is affected

by the interaction with the confining substrates (here substituted by fibers), external electric

or magnetic fields, and by the disordering temperature effects. Therefore, composite ma-

terials like liquid crystal-dispersed polymer networks are interesting in themselves, as they

are showing a variety of ordering and confinement-related phenomena. On the other hand,

they are important also for the construction of novel electrooptical devices based on chang-

ing the orientation of liquid crystal molecules — initially imposed by the polymer network

— by applying an aligning external electric field. Both the nature of this effect and the

performance of electrooptical devices are intimately related to the anchoring and ordering

conditions on the fiber surface, as well as to the topography of the network.

These network characteristics can be regulated during the polymerization from the

monomer-liquid crystal mixture through various parameters: monomer solubility, curing

temperature, ultra-violet (UV) light curing intensity, and the degree of orientational order-

ing in the liquid-crystalline component [1]. In particular, poorly soluble monomers result in

polymer fibers with a grainy and coarse surface morphology, while highly soluble monomers

can form smooth fiber surfaces [4]. Further, high curing temperatures, as well as high UV

light intensities, result in larger voids between polymer fibers [5]. If the liquid-crystalline

component of the mixture is isotropic during the polymerization process, polymer fibers

form directionless strands. On the other hand, performing the polymerization in the ne-

matic phase, or applying an external aligning magnetic field, fibers can form bundles with a

well-defined average direction [1]. Similar types of network-like confinement can be achieved

also in silica aerogel systems, where irregular chains of silica particles play the aligning role
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of polymer fibers [1]. While thin (nanometric) polymer fibers typically promote planar sur-

face anchoring along the fiber direction, thicker fibers or fiber bundles (several 10 nm in

diameter) can be treated with surfactants to yield homeotropic anchoring conditions.

Meanwhile there has been a growing number of experimental studies for these systems,

e.g., measurements of optical transmission, capacitance, or 2H NMR spectroscopy [1–3,6].

They are usually accompanied by theoretical (Landau-de Gennes-type) analyses, but so far

almost nothing has been done for such network-like confinement at the microscopic level.

For all these reasons we decided to perform a thorough microscopic simulation study of the

orientational coupling between polymer fibers and the surrounding liquid crystal. In this

analysis we focused on polymer networks with a well-defined fiber net direction (as shown,

for example, in Fig. 1 of Ref. [2]), and on effects of roughness on the fiber surface and

the resulting randomness in surface anchoring. In the paper, we first briefly describe our

model and the simulation method. Then we review changes in nematic ordering when the

conditions on the fiber surface are varied from a perfectly aligning anchoring that imposes a

well-defined orientation (planar along the fiber or homeotropic) to a completely disordering

(random) anchoring. To complete our results, we calculate one of the possible experimental

observables, the 2H NMR spectra.

II. THE SIMULATION MODEL

The Monte Carlo (MC) simulations presented in this study are based on the Lebwohl-

Lasher (LL) lattice model [7] in which uniaxial nematic molecules — or close-packed clusters

containing up to 102 molecules [8] — are represented by unit vectors (“spins”) ui. Despite

the fact that the spins are fixed on the sites of a cubic lattice, the LL model is found to

reproduce the orientational behavior of nematics sufficiently well [9]. The interaction energy

for a system of nematic particles is given by

U = − ∑
〈i<j〉

εij

[3
2
(ui · uj)2 − 1

2

]
, (1)
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where εij is a positive constant (ε if ui and uj are nearest neighbors, 0 otherwise).

As a first step towards modeling the complex topology of the polymer network, we

considered a single straight cylindrical fiber oriented along the z-axis. The shape of the

fiber was defined by carving a “jagged” cylinder from the cubic lattice with lattice spacing a

and taking all particles that are lying closer than R — the fiber radius — from the center of

the xy-plane. The particle orientations in the surface layer of the fiber (“ghost” spins) were

chosen in agreement with the desired boundary conditions and were kept fixed during the

simulation. The nematic-nematic and nematic-ghost interactions were chosen to be equal in

strength, which corresponds to the strong anchoring limit [10]. We further assumed periodic

boundary conditions at the simulation box boundaries. Such a set-up in fact corresponds to

a regular array of straight and parallel fibers.

In the case of “perfect” anchoring ghost spin orientations were chosen either along z (a

unit vector along the z-axis) for planar anchoring, or along the local radial unit vector for

homeotropic anchoring. For cases with partially disordered anchoring the perfect planar

or homeotropic ghost orientations were perturbed by performing an additional rotation for

each of the ghost spins, characterized by a set of polar (θ) and azimuthal (φ) angles. While

the φ angle was sampled from a uniform distribution within [0, 2π], the sampling of θ (or,

alternatively, cos θ) was biased so as to regulate the degree of randomness in ghost spin

orientations. The biasing distribution was chosen to be dw/d cos θ ∝ exp(A cos2 θ) (with w

denoting the probability and cos θ ∈ [−1, 1]), where for small A the resulting orientational

distribution of ghosts becomes almost isotropic, while for large values of A it becomes

strongly peaked at cos θ = ±1 (i.e., θ = 0, π) and therefore approaches that of the perfect

anchoring cases. In the case with completely disordering anchoring ghost orientations were

sampled from a fully random orientational distribution. The degree of randomness can be

given quantitatively by diagonalizing the ordering matrix Qαβ = 1
2(3〈uα

i uβ
i 〉g − δαβ) (the

average 〈...〉g taken over ghost spins), which gives the ghost director and the corresponding

order parameter 〈P2〉g. In all cases the 〈P2〉g order parameter is referred to the z-axis.

Therefore, cases with 〈P2〉g = 1 and 〈P2〉g = −0.5 stand for perfect planar and homeotropic
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alignment, respectively, and 〈P2〉g ≈ 0 for a random orientational distribution. Intermediate

values of 〈P2〉g then correspond to partial planar (〈P2〉g > 0) or partial homeotropic order

(〈P2〉g < 0) in ghost orientations.

To study the radial dependence of order parameters, we found it convenient to divide

our cubic simulation box into cylindrical layers surrounding the fiber (see Fig. 1). The

observables accumulated during the production run were 〈P z
2 〉, quantifying the degree of

ordering with respect to the z-axis, 〈P c
2 〉, indicating how the order deviates from perfect

radial ordering in the xy-plane, and the standard nematic order parameter S. Then, for

example, 〈P z
2 〉 profiles were calculated as 〈P z

2 〉(r) = 1
2 [3〈(ui · z)2〉r − 1] . The average 〈...〉r

has to be calculated over all nematic spins ui belonging to the cylindrical layer with radius r,

and over MC cycles. Analogously, 〈P c
2 〉 profiles were calculated with respect to the local unit

vector er, where er defines the local radial direction in the xy-plane at the ith lattice site.

Finally, the nematic order parameter profile S(r) was obtained from the diagonalization of

the ordering matrix Qαβ(r) = 1
2(3〈uα

i uβ
i 〉r − δαβ) averaged over sites in the nematic layer

with radius r, and over MC cycles. The eigenvalue with the largest absolute value can then

be identified as S and the difference between the remaining two eigenvalues corresponds to

biaxiality.

In absence of significant collective molecular reorientation during the MC evolution, it is

instructive to calculate also spatially resolved director and order parameter maps n(ri) and

S(ri), respectively, where ri denotes the position of the ith lattice site. For this purpose the

local ordering matrix Qαβ(ri) = 1
2(3〈uα

i uβ
i 〉 − δαβ) was averaged over MC cycles and then

diagonalized, yielding the local value of the order parameter S(ri), as discussed above, and

the corresponding eigenvector, i.e., the local director n(ri). Similarly, the biaxiality map

can also be deduced from the data.

In our simulation, the simulation box size was set to 30a×30a×30a, which for the chosen
fiber radius (R = 5a) amounts to 24600 nematic and 840 ghost particles in total. Simulation

runs were started from a completely random (disordered or isotropic) orientational configu-

ration not to impose any preferred orientation in the system. Then the standard Metropolis
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scheme [11] was employed to perform updates in spin orientations [9,12]. Once the system

was equilibrated (after at least 60000 MC cycles), 66000 (or more) successive spin config-

urations were used to calculate relevant observables. Results from MC simulations were

expressed using selected order parameters and 2H NMR spectra following the methodology

presented in our earlier work on nematic droplets [13].

III. SIMULATION RESULTS

We report results obtained at two different reduced temperatures T ∗ = kT/ε, T ∗ = 1.0

and T ∗ = 1.2, deep enough in the nematic and isotropic phases, respectively (the nematic-

isotropic transition in the bulk takes place at T ∗ = 1.1232 [14]). Other calculations, not

reported here for reasons of space, were performed at T ∗ = 1.1 with results qualitatively

similar to those obtained for T ∗ = 1.0. The correlation length for orientational ordering at

these temperatures was found not to exceed ≈ 5 lattice spacings a, which with our choice for

the simulation box size is expected to be enough to avoid spurious correlations originating

from periodic boundary conditions. In this study the fiber radius was fixed to R = 5a.

Another set of runs for a thinner fiber with R = 3a has also been performed, but has shown

no major difference in comparison with the R = 5a case and is therefore not reported here.

A. Planar alignment (||z); nematic phase

The first case we have treated is a nematic sample at T ∗ = 1.0, with planar anchoring

along the z direction and with possible deviations from this perfect alignment, as described

above. This situation corresponds to a series of polymer fibers whose surface morphology

varies from smooth to rough and disordered. In Fig. 2 (a) we present how the 〈P z
2 〉 order

parameter changes across the simulation box from the fiber surface to the outer sample

boundaries. Different curves shown in the plot correspond to different degrees of order in

the ghost spin system, 〈P2〉g. For perfect planar anchoring ||z with 〈P2〉g = 1 the nematic

director n is parallel to z. In this case 〈P z
2 〉 becomes a direct measure for S because n and z

6



coincide. Far enough from the fiber the value of 〈P z
2 〉 approaches ≈ 0.6, matching with the

value of S in a bulk sample at T ∗ = 1.0 [14], while close to the fiber there is an increase in

〈P z
2 〉 reflecting the fiber-induced enhancement of nematic order. The same effect is further

confirmed by the behavior of the S(r) profile depicted in Fig. 3 (a), as well as by the S(x, y)

local order parameter map shown in Fig. 3 (b). For all three profiles the characteristic length

of the nematic order variation ξ roughly amounts to ≈ 3a.

Studying cases with reduced (imperfect) planar anchoring ||z [Figs. 2 (a) and 3 (a)], one
can see that at least down to 〈P2〉g ≈ 0.25 the bulk value of both order parameters remains

essentially unchanged if compared to the perfect 〈P2〉g = 1 case. Note that now for, e.g.,

〈P2〉g ≈ 0.75 the increase of order close to the fiber is smaller than for 〈P2〉g = 1, and that

already for 〈P2〉g ≈ 0.50 (as well as for 〈P2〉g ≈ 0.25) the surface degree of order is somewhat

lower than its bulk value. From these observations one can conclude that the first effect of

the partial disorder in surface anchoring is merely a slight decrease in the degree of nematic

order in the vicinity of the fiber, but that at this point the long-range orienting ability of

the polymer network is not lost. This ability, however, weakens upon further decreasing

〈P2〉g, but is present at least down to 〈P2〉g ≈ 0.09 (the corresponding profiles not plotted

here). Then only in a sample with a completely disordering fiber — for 〈P2〉g ≈ 0 — the net

orientation of the nematic for our intermolecular potential is completely detached from the

fiber direction. This follows from the behavior of the 〈P z
2 〉 order parameter (calculated with

respect to the fixed fiber direction) which now — in principle — can take any arbitrary value,

and from the fact that the liquid crystal is still nematic, as suggested by a nonzero value of

the S order parameter throughout the sample. Note that the bulk value of S remains almost

unaltered in comparison to, e.g., the 〈P2〉g = 1 case. The fact that it is actually slightly

lower than the value obtained for 〈P2〉g = 1 (≈ 0.6) can be attributed to slow collective

molecular motion during the production run.
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B. Homeotropic alignment; nematic phase

If we now proceed to cases with 〈P2〉g < 0, i.e., to perturbed homeotropic ordering,

already for 〈P2〉g ≈ −0.08 the polymer fiber is able to align the liquid crystal. Molecules
are now aligned perpendicular to z, the fiber direction, i.e., mainly within the xy-plane.

This can be deduced from 〈P z
2 〉 profiles; the 〈P z

2 〉 values being now negative for all r (not

plotted here). Similarly as for planar anchoring there is a decrease in the degree of nematic

ordering close to the fiber, e.g., for 〈P2〉g ≈ −0.25 (partial disorder) and an enhancement
for 〈P2〉g = −0.50 (perfect homeotropic order). Studying cases with homeotropic surface
alignment, it is more convenient to plot the 〈P c

2 〉 order parameter profiles. Note now that

for 〈P2〉g = −0.50 the 〈P c
2 〉 profile — shown in Fig. 4 (a) — is always positive and that the

〈P c
2 〉 values are rather high close to the fiber. This is a signature of strong radial ordering,

along with the negative values of S in the first layer next to the fiber surface, see Fig. 5 (a).

Going away from the fiber, 〈P c
2 〉 exhibits a plateau-like behavior, before relaxing to the

bulk value close to ≈ 1
4S, which is characteristic for homogeneous (undeformed) nematic

ordering. Such alignment far from the fiber is compatible with strong radial ordering in the

fiber vicinity only if topological defects are to form. In fact, as shown in the director map

n(ri), Fig. 6 (a), a pair of −1
2 strength defect lines forms along the fiber and close to the

simulation box diagonal. The plateau in 〈P c
2 〉 profiles then corresponds to the distortion

of the director field imposed by the defect lines. In the vicinity of the lines there is a

strong change in the degree of nematic order S (it even becomes negative), with the director

pointing out-of-xy-plane [Figs. 6 (a) and (d)]. Further, in this region molecular ordering is

accompanied also by non-negligible biaxiality. The inner structure of the defect lines was

studied in more detail elsewhere [15].

There are two parameters characterizing the position of each defect line: its distance

from the fiber surface and the corresponding polar angle in the xy-plane. Increasing the

system temperature from T ∗ = 1.0 to T ∗ = 1.1, the pair of defect lines moves away from

the fiber, which increases the thickness of the deformed region where radial ordering is
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well-pronounced, as imposed by strong surface anchoring; compare Figs. 6 (a) and (b).

This can be deduced also from the S(r) profile, Fig. 7, where radial ordering reflects in

S(r) < 0 close enough to the fiber. The increase of T ∗ results in an overall decrease of

S and, consequently, in a decrease of the corresponding elastic constants (proportional to

S2). Moreover, when approaching the fiber surface, at higher T ∗ the increase in S is larger

and occurs over a somewhat larger characteristic length ξ, which makes the defect formation

and the accompanying elastic deformation in the immediate fiber vicinity rather unfavorable.

Therefore, the defects are pushed away from the fiber surface when T ∗ is increased. On the

other hand, according to our tests, at fixed T ∗ the defects move away from the fiber also

as the fiber radius R is increased. In addition, for a given R the defect-to-fiber distance

seems to be rather insensitive to changing the simulation box size. Indeed, for large R (i.e.,

for a low curvature of the fiber surface) the elastic deformation imposed by the defect is

more compatible with the radial aligning tendency of the fiber if the defect is located far

enough from the fiber surface. Finally, for our system size the main mechanism for the

formation of the defects close to the simulation box diagonal seems to be the repulsion

between defects corresponding to adjacent fibers. This mechanism is possibly enhanced

by collective fluctuations, as mentioned in Ref. [15]. Also the defect-to-defect repulsion

is mediated by curvature elasticity and weakens upon increasing temperature. The actual

defect position is then determined by the subtle interplay between all the effects listed above.

Note that for T ∗ <∼ 1 the defect position becomes almost temperature-independent. Note

also that the defect size increases with temperature, which qualitatively agrees with an

increase of the characteristic length ξ on approaching the nematic-isotropic transition.

C. Planar alignment (||z); isotropic phase

If temperature in the LL model is further increased to T ∗ = 1.2, in a bulk sample

the isotropic phase is stable. However, in restricted space, aligning substrates can induce

nematic ordering even at temperatures well above the nematic-isotropic transition. The
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same phenomenon is expected also in a nematic with a dispersed polymer network. For

the case of planar anchoring ||z Figs. 2 (b) and 3 (c) show the 〈P z
2 〉 and the local S(x, y)

profiles, and in fact confirm the existence of surface-induced planar ordering. Note that the

layer-averaged nematic order parameter profile S(r) would have looked exactly like the 〈P z
2 〉

profile and is therefore not shown here. The net molecular orientation is still along z, as

imposed by the fiber, and the corresponding degree of order (given either by 〈P z
2 〉 or S)

decays to zero over a characteristic length of the order of ξ ≈ 5a.

D. Homeotropic alignment; isotropic phase

Analogous conclusions as for planar anchoring can be drawn in the isotropic phase also

for the homeotropic case, now inspecting the decays in 〈P c
2 〉 and S order parameters shown in

Figs. 4 (b) and 5 (b). Note that the two defect lines observed in the nematic phase for T ∗ =

1.0 and T ∗ = 1.1 have now vanished and that the residual surface-induced ordering is simply

radial [Fig. 6 (c)]. This is because the fiber-to-fiber distance in our simulation is larger than

2ξ and the degree of ordering at the simulation box boundaries is already negligibly small.

Consequently, no relevance should be attributed to the “randomly” distributed directors

plotted in the outer cylindrical layers of the sample, Fig. 6 (c).

IV. SIMULATIONS OF 2H NMR SPECTRA

The observations listed in the previous section can be confirmed also by calculating 2H

NMR spectra using the numerical output from MC simulations. Experimentally, 2H NMR is

one of the most convenient tools for investigating confined liquid-crystalline samples [1]. As

discussed elsewhere [1,13], in deuterated nematics quadrupolar interactions perturb the Zee-

man energy levels and give rise to a molecular orientation-dependent frequency splitting in

the NMR spectrum. In uniaxial nematics it is given by ωQ(r) = ±1
2δωQ S(r)[3 cos2 θ(r)− 1],

where δωQ is the quadrupolar coupling constant (typically ≈ 2π × 40 kHz), S(r) the local

uniaxial nematic order parameter, and θ(r) the angle between the local nematic director
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and the NMR spectrometer magnetic field. Fig. 8 shows the NMR spectra calculated for the

30×30×30 particle sample and a single fiber in the nematic (left) and in the isotropic phase
(right), with the spectrometer field applied along the fiber direction z. The calculation was

based on generating the free induction decay (FID) signal from the MC data and calculating

its Fourier transform representing the spectrum, as described in detail in Ref. [13]. Generat-

ing the FID signal, we also included effects of translational diffusion, which always becomes

important in strongly confined systems. Following Ref. [13], the diffusive molecular motion

is simulated by a random walk on the cubic lattice, performing 1024 diffusion steps per NMR

cycle. The effective diffusion constant for such a random-walk process can be measured to

be D = 256a2δωQ/3π, yielding a root-mean-square molecular displacement of
√
6Dt0 = 32a

in each NMR cycle. Here a stands for the spin-to-spin spacing on the cubic lattice, while

t0 = 2π/δωQ denotes the NMR cycle duration. Since this displacement is comparable to the

size of our sample, the calculated NMR spectra are expected to be highly diffusion-averaged.

Finally, note that the NMR spectrometer magnetic field is assumed to be weak enough not

to align nematic molecules, which, again, is the case only for strongly confined systems.

The calculated spectra are shown in Fig. 8, left. In the nematic phase with T ∗ = 1.0,

for perfect planar anchoring (〈P2〉g = 1) in the spectrum we have two peaks positioned at

ωQ/δωQ ≈ 0.6. In the geometry we chose, ωQ/δωQ is supposed to be roughly equal to the

value of S, the nematic order parameter, since the director and the direction of the NMR

spectrometer magnetic field coincide. Indeed, for T ∗ = 1.0 we have S ≈ 0.6, as already seen

above from various order parameter profiles. Translational diffusion in this case affects the

spectra only negligibly: the nematic director is homogeneous throughout the sample and

the degree of order is enhanced only slightly in the vicinity of the fiber. Therefore, the effect

of diffusion should be merely a slight increase in quadrupolar splitting, but the resolution of

our spectra is not high enough to clearly see this surface ordering-induced shift.

Proceeding now to fibers with partially disordered anchoring, in the spectra there is no

noticeable difference at least down to 〈P2〉g ≈ 0.25, reflecting the ability of the polymer

network to align the surrounding liquid crystal along z. In the case when anchoring is
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completely disordered and 〈P2〉g ≈ 0 holds, the spectrum typically still consists of two

peaks, however, the corresponding splitting can be arbitrary because there is no preferred

direction in the system — note that only one example of the possible spectra is plotted.

Note also that sometimes during the acquisition of the FID signal slow collective molecular

motion can occur, which results in an increase of the spectral line width. On the other

hand, in homeotropic cases with 〈P2〉g
<∼ 0, molecular ordering is confined to the xy-plane.

The quadrupolar splitting now decreases by 50% with respect to perfect planar anchoring

because the director is perpendicular to the spectrometer field direction (see the two spectra

in the bottom of Fig. 8, left).

In the bulk isotropic phase, however, quadrupolar interactions giving rise to the ωQ

splitting are averaged out by the rapid molecular motion. Therefore, ignoring translational

diffusion, in a confined system for S ≈ 0 one should expect a single-peaked spectrum at

ωQ ≈ 0, as already suggested above, and somewhat broadened by the surface-induced order.

The spectra shown in Fig. 8, right, were calculated with fast translational diffusion, and it is

evident that some of them are actually double-peaked. This is a clear signature of surface-

induced paranematic order. In fact, the peak-to-peak distance decreases with decreasing

degree of surface order; compare with Figs. 2 (b) and 5 (b). For 〈P2〉g ≈ 0 exhibiting no

surface order, the spectrum is again single-peaked. Finally, note that the splitting observed

for perfect planar anchoring (〈P2〉g = 1) roughly amounts to twice the splitting seen in the

perfectly homeotropic case (〈P2〉g = −0.5). This is because the nematic director close to the
fiber is parallel to the NMR spectrometer magnetic field in the first case and perpendicular

to the field in the second.

V. CONCLUSION

We have performed a Monte Carlo analysis of the aligning effect imposed by a polymer

network dispersed in a liquid-crystalline system. To model the liquid crystal we have adopted

a simple lattice model based on microscopic interactions, which turned out to be suitable for
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the description of ordering induced by polymer fibers. Different types of anchoring conditions

on the fiber surface have been considered: planar along the fiber direction, homeotropic, and

partially or completely random. In cases with perfect planar or homeotropic anchoring in the

very vicinity of the fiber nematic order is enhanced. However, once the anchoring conditions

are partially distorted, the surface degree of nematic order may drop below its bulk value, but

the long-range orienting capability of the fiber network is still retained. This ability seems

to be lost only for completely random anchoring imposing no well-defined direction in the

system, as confirmed also by the 2H NMR spectra calculated from the simulation output.

Further, above the nematic-isotropic transition surface-induced paranematic ordering has

been detected, reflecting clearly in the translational diffusion-averaged 2H NMR spectra.

In addition, in the nematic phase two −1
2 strength disclination lines parallel to the fiber

were observed for perfect homeotropic anchoring, and were seen to move away from the

fiber upon increasing temperature. We believe that the simplified topography of the fiber

network does not affect the qualitative character of our conclusions, at least for low-density

polymer networks. More realistic network models should include curved fibers positioned

randomly inside the simulation box and allow for cross-linking between them at higher

concentrations.

ACKNOWLEDGMENTS

G. S. wishes to acknowledge the support by CINECA through the EC Access to Research

Infrastructures action of the Improving Human Potential Programme. C. Z. thanks the

University of Bologna, CNR and MURST-PRIN for support. C. C. and P. P. acknowledge
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FIGURES

FIG. 1. Schematic depiction of the polymer network (right) and the simulation box with the

cylindrical fiber and one of the cylindrical shells (left).

FIG. 2. Order parameter 〈P z
2 〉 versus r/a, the normalized distance from the simulation box

center, as obtained from Monte Carlo simulations in a 30 × 30 × 30 particle system, with a single

cylindrical fiber of radius R = 5a placed in the center of the simulation box. Planar anchoring

along the z-axis; (a) nematic (T ∗ = 1.0) and (b) isotropic phase (T ∗ = 1.2). In the plots each

of the curves corresponds to a different degree of ordering in the ghost spin system: 〈P2〉g ≈ 1.0,

0.75, 0.50, 0.25, and 0 (top to bottom). The dotted lines serve as a guide to the eye (also in the

following Figures).

FIG. 3. Planar anchoring ||z. (a) Order parameter radial profiles S(r) for different values

of 〈P2〉g in the nematic phase (T ∗ = 1.0); curves are labeled like in Fig. 2. (b) Perfect planar

anchoring (〈P2〉g = 1); xy-cross section of the local S(ri) order parameter map in the nematic

phase (T ∗ = 1.0). (c) Same as (b), but in the isotropic phase (T ∗ = 1.2).

FIG. 4. Order parameter profiles 〈P c
2 〉 for homeotropic anchoring with 〈P2〉g ≈ -0.50, -0.25,

and 0. (top to bottom); (a) nematic phase (T ∗ = 1.0) and (b) isotropic phase (T ∗ = 1.2).

FIG. 5. Order parameter profiles S(r) for homeotropic anchoring. Curve labels are same as in

Fig. 4. (a) Nematic phase (T ∗ = 1.0) and (b) isotropic phase (T ∗ = 1.2).

FIG. 6. Director field for perfect homeotropic anchoring, xy-cross section. (a) T ∗ = 1.0 ,

(b) T ∗ = 1.1 (both nematic), and (c) T ∗ = 1.2 (isotropic phase). (d) xy-cross section of the S(ri)

order parameter map for T ∗ = 1.0. In the nematic phase a pair of −1
2 strength defects has formed

close to the diagonal.

FIG. 7. Order parameter profiles S(r) for perfect homeotropic anchoring and different temper-

atures. With increasing T ∗ the defects move away from the fiber [compare with Figs. 6 (a) and

(b)].

16



FIG. 8. 2H NMR spectra; T ∗ = 1.0 (left) and T ∗ = 1.2 (right). Top to bottom: spectra for

〈P2〉g=1.0, 0.75, 0.50, 0.25, 0, -0.25, and -0.50.
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