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We use the framework of a relativistic constituent quark model to study the semileptonic
transitions of the Bc meson into (c̄c) charmonium states where (c̄c) = ηc (1S0), J/ψ (3S1),
χc0 (3P0), χc1 (3P1), hc (1P1), χc2 (3P2), ψ (3D2). We compute the q2–dependence of all rele-
vant form factors and give predictions for their semileptonic Bc decay modes including also their
τ -modes. We derive a formula for the polar angle distribution of the charged lepton in the (lνl) c.m.
frame and compute the partial helicity rates that multiply the angular factors in the decay distri-
bution. For the discovery channel Bc → J/ψ(→ µ+µ−)lν we compute the transverse/longitudinal
composition of the J/ψ which can be determined by an angular analysis of the decay J/ψ → µ+µ−.
We compare our results with the results of other calculations.

PACS numbers: 13.20.He, 12.39.Ki

I. INTRODUCTION

In 1998 the CDF Collaboration reported on the observation of the bottom-charm Bc meson at Fermilab [1]. The
Bc mesons were found in an analysis of the semileptonic decays Bc → J/ψlν with the J/ψ decaying into muon
pairs. Values for the mass and the lifetime of the Bc meson were given as M(Bc) = 6.40 ± 0.39 ± 0.13 GeV and
τ(Bc) = 0.46+0.18

−0.16(stat)±0.03(syst) ·10−12 s, respectively. First Bc mesons are now starting to be seen also in the Run
II data from the Tevatron [2, 3]. Much larger samples of Bc mesons and more information on their decay properties are
expected from the current Run II at the Tevatron and future experiments at the LHC starting in 2007. In particular
this holds true for the dedicated detectors BTeV and LHCB which are especially designed for the analysis of B physics
where one expects to see up to 1010 Bc events per year.

The study of the Bc meson is of great interest due to some of its outstanding features. It is the lowest bound state
of two heavy quarks (charm and bottom) with open (explicit) flavor. As far as the bound state characteristics are
concerned the Bc meson is quite similar to the JPC = 0−+ states ηc and ηb in the charmonium (cc̄-bound state) and
the bottomium (bb̄-bound state) sector. However, the ηc and ηb have hidden (implicit) flavor and decay strongly and
electromagnetically whereas the Bc-meson decays weakly since it lies below the BD̄-threshold.

The Bc meson and its decays have been widely studied in the literature. The theoretical status of the Bc-meson was
reviewed in [4]. The Bc lifetime and decays were studied in the pioneering paper [5]. The exclusive semileptonic and
nonleptonic (assuming factorization) decays of the Bc-meson were calculated in a potential model approach [6]. The
binding energy and the wave function of the Bc-meson were computed by using a flavor-independent potential with
the parameters fixed by the cc̄ and bb̄ spectra and decays. The same processes were also studied in the framework
of the Bethe-Salpeter equation in [7], and, in the relativistic constituent quark model formulated on the light-front
in [8]. Three-point sum rules of QCD and NRQCD were analyzed in [9] and [10] to obtain the form factors of the
semileptonic decays of B+

c → J/ψ(ηc)l
+ν and B+

c → Bs(B
∗
s )l

+ν. As shown by the authors of [11], the form factors
parameterizing the Bc semileptonic matrix elements can be related to a smaller set of form factors if one exploits the
decoupling of the spin of the heavy quarks in the Bc and in the mesons produced in the semileptonic decays. The
reduced form factors can be evaluated as an overlap integral of the meson wave-functions which can be obtained, for
example, using a relativistic potential model. This was done in [12], where the Bc semileptonic form factors were
computed and predictions for semileptonic and non-leptonic decay modes were given.

In [13] we focused on its exclusive leptonic and semileptonic decays which are sensitive to the description of long
distance effects. From the semileptonic decays one can obtain results on the corresponding two-body non-leptonic
decay processes in the so-called factorization approximation. The calculations have been done within our relativistic
constituent quark model based on an effective Lagrangian describing the coupling of hadrons H to their constituent
quarks. The relevant coupling strength is determined by the compositeness condition ZH = 0 [14, 15] where ZH is
the wave function renormalization constant of the hadron H .

The relativistic constituent quark model was also employed in a calculation of the exclusive rare decays Bc →
D(D∗)l̄l [16] and of the nonleptonic decays Bc → DsD0 and Bc → DsD

0 [18]. In the latter case we confirmed that
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the nonleptonic decays Bc → DsD0 and Bc → DsD
0 are well suited to extract the CKM angle γ through amplitude

relations, as was originally proposed in [19, 20]. The reason is that the branching fractions into the two channels are
of the same order of magnitude.

In this paper we continue the study of Bc decay properties and calculate the branching rates of the semileptonic
decays Bc → (c̄c) lν with (c̄c) = ηc (1S0), J/ψ (3S1), χc0 (3P0), χc1 (3P1), hc (1P1), χc2 (3P2), ψ (3D2). We compare
our results with the results of [6, 21] where it was shown that these decay rates are quite sizable and may be accessible
in RUN II of Tevatron and/or the LHC. Two-particle decays of the Bc-meson into charmonium states have been
studied before in [22] by using the factorization of hard and soft contributions. The weak decays of the Bc-meson to
charmonium have been studied in the framework of the relativistic quark model based on the quasipotential approach
in [23]. In this paper we compute all form factors of the above semileptonic Bc-transitions and give predictions
for various semileptonic Bc decay modes including their τ -modes. From a general point of view we would like to
remark that the semileptonic decays of the τ -lepton have been studied within perturbative QCD. It has allowed one
to determine the strong coupling constant with a high accuracy (see e.g. [24]). We have improved on our previous
calculation [13] in that we no longer employ the so-called impulse approximation. In the impulse approximation one
assumes that the vertex functions depend only on the loop momentum flowing through the vertex. Dropping the
impulse approximation means that the vertex function can also depend on outer momenta according to the flow of
momentum through the vertex. A comparison with the results for the decays into the para- and ortho-charmonium
states (c̄c) = ηc (1S0), J/ψ (3S1) [13], which was done in the impulse approximation, shows a ≈ 10% downward effect
in the rates when the impulse approximation is dropped.

II. BOUND STATE REPRESENTATION OF THE CHARMONIUM STATES

The charmonium states treated in this paper are listed in Table I. We have also included the purported D–wave
state ψ(3836) whose quantum numbers have not been established yet. Table I also contains the quark currents used
to describe the coupling of the respective charmonium states to the charm quarks. The masses of the charmonium
states listed in Table I are taken from the PDG [25].

TABLE I: The charmonium states 2S+1L J . We use the notation
↔

∂=
→

∂ −
←

∂ .

quantum number name quark current mass (GeV)

JPC = 0−+ (S=0, L=0) 1S0 = ηc q̄ iγ5 q 2.980

JPC = 1−− (S=1, L=0) 3S1 = J/ψ q̄ γµ q 3.097

JPC = 0++ (S=1, L=1) 3P0 = χc0 q̄ q 3.415

JPC = 1++ (S=1, L=1) 3P1 = χc1 q̄ γµγ5 q 3.511

JPC = 1+− (S=0, L=1) 1P1 = hc(1P ) q̄
↔

∂
µ

γ5 q 3.526

JPC = 2++ (S=1, L=1) 3P2 = χc2 (i/2) q̄
(
γµ
↔

∂
ν

+γν
↔

∂
µ)

q 3.557

JPC = 2−− (S=1, L=2) 3D2 = ψ(3836) (i/2) q̄
(
γµγ5

↔

∂
ν

+γνγ5
↔

∂
µ)
q 3.836

Next we write down the Lagrangian describing the interaction of the charmonium fields with the quark currents.

We give also the definition of the one-loop self-energy or mass insertions (called mass functions in the following) Π̃(p2)
of the relevant charmonium fields.

We can be quite brief in the presentation of the technical details of our calculation since it is patterned after the
calculation presented in [13] which contains more calculational details. We treat the different spin cases (S = 0, 1, 2)
in turn.

Spin S=0:

LS=0(x) =
1

2
φ(x)(2 −m2)φ(x) + g φ(x)Jq(x), 2 = −∂α∂α. (1)

Π(x − y) = i g2 〈T {Jq(x)Jq(y)} 〉0,
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Π̃(p2) =

∫
d4x e−ipx Π(x) ≡ 3 g2

4π2
Π̃0(p

2),

Z = 1 − Π̃ ′(m2) = 1 − 3 g2

4π2
Π̃ ′

0(m
2) = 0,

Jq(x) =

∫∫
dx1dx2 Fcc(x, x1, x2) q̄(x1) Γ q(x2) (Γ = i γ5, I),

Fcc(x, x1, x2) = δ

(
x− x1 + x2

2

)
Φcc

(
(x1 − x2)

2
)
,

Φcc
(
x2
)

=

∫
d4q

(2 π)4
e−iqx Φ̃cc

(
−q2

)
.

Π̃ ′(m2) is the derivative of the mass function Π̃(p2).

Spin S=1:

LS=1(x) = − 1

2
φµ(x)(2 −m2)φµ(x) + g φµ(x)J

µ
q (x), (2)

∂µφ
µ(x) = 0 (leaving three independent components),

Πµν(x− y) = − i g2 〈T
{
Jµq (x)Jνq (y)

}
〉0,

Π̃µν(p) =

∫
d4x e−ipx Πµν(x) = gµν Π̃(1)(p2) + pµpνΠ̃(2)(p2),

Π̃(1)(p2) ≡ 3 g2

4π2
Π̃1(p

2), Z = 1 − 3 g2

4π2
Π̃ ′

1(m
2) = 0,

Jµq (x) =

∫∫
dx1dx2 Fcc(x, x1, x2) q̄(x1) Γµ q(x2),

Γµ = γµ, γµγ5,
↔

∂
µ

γ5.

The spin 1 polarization vector ǫ
(λ)
µ (p) satisfies the constraints:

ǫ(λ)
µ (p) pµ = 0 transversality,

∑

λ=0,±

ǫ(λ)
µ (p)ǫ† (λ)

ν (p) = −gµν +
pµ pν
m2

completeness,

ǫ† (λ)
µ ǫ(λ

′)µ = −δλλ′ orthonormality.

Spin S=2:

LS=2(x) =
1

2
φµν(x)(2 −m2)φµν(x) + g φµν(x)J

µν
q (x). (3)

φµν(x) = φνµ(x), ∂µφ
µν(x) = 0, φµµ(x) = 0, (leaving 5 independent components),

Πµν,αβ(x− y) = i g2 < T
{
Jµνq (x)Jαβq (y)

}
>0,

Π̃µν,αβ(p) =

∫
d4x e−ipx Πµν,αβ(x) =

1

2

(
gµα gνβ + gµβ gνα

)
Π̃(1)(p2)
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+ gµν gαβ Π̃(2)(p2) + (gµν pαpβ + gµα pνpβ + gµβ pνpα) Π̃(3)(p2) + pµpνpαpβ Π̃(4)(p2),

Π̃(1)(p2) ≡ 3 g2

4π2
Π̃2(p

2), Z = 1 − 3 g2

4π2
Π̃ ′

2(m
2) = 0,

Jµνq (x) =

∫∫
dx1dx2 Fcc(x, x1, x2) q̄(x1) Γµν q(x2),

Γµν =
i

2

(
γµ

↔

∂
ν

+γν
↔

∂
µ)
,

i

2

(
γµγ5

↔

∂
ν

+γνγ5
↔

∂
µ)
.

The spin 2 polarization vector ǫ
(λ)
µν (p) satisfies the constraints:

ǫ(λ)
µν (p) = ǫ(λ)

νµ (p) symmetry,

ǫ(λ)
µν (p) pµ = 0 transversality,

ǫ(λ)
µµ (p) = 0 tracelessness,
∑

λ=0,±1,±2

ǫ(λ)
µν ǫ

† (λ)
αβ =

1

2
(Sµα Sνβ + Sµβ Sνα) − 1

3
Sµν Sαβ completeness,

ǫ† (λ)
µν ǫ(λ

′)µν = δλλ′ orthonormality,

where

Sµν = −gµν +
pµ pν
m2

.

We use the the local representation for the quark propagator when calculating the Fourier-tansforms of the mass
functions. The local quark propagator is given by

Sq(x− y) = 〈T {q(x) q̄(y)} 〉0 =

∫
d4k

(2 π)4 i
e−ik·(x−y) S̃q(k), S̃q(k) =

1

mq− 6k . (4)

For the mass functions one needs to calculate the integrals

Π̃0(p
2) = −

∫
d4k

4 π2 i
Φ̃2
cc(−k2)Tr

[
Γ S̃(k − p/2) Γ S̃(k + p/2)

]
,

Γ(P, S) = i γ5, I.

Π̃µν
1 (p) =

∫
d4k

4 π2 i
Φ̃2
cc(−k2)Tr

[
Γµ S̃(k − p/2) Γν S̃(k + p/2)

]
,

Γµ(V,A, PV ) = γµ, γµγ5, 2 i kµγ5.

Π̃µν,αβ
2 (p) =

∫
d4k

4 π2 i
Φ̃2
cc(−k2)Tr

[
Γµν S̃(k − p/2) Γαβ S̃(k + p/2)

]
,

Γµν(T, PT ) = i (γµ kν + γν kµ) , i
(
γµγ5 kν + γνγ5 kµ

)
.

The functional form of the vertex function Φ̃cc(−k2) and the quark propagators S̃q(k) can in principle be determined
from an analysis of the Bethe-Salpeter and Dyson-Schwinger equations as was done e.g. in [26]. In this paper,
however, we choose a phenomenological approach where the vertex functions are modelled by a Gaussian form, the
size parameters of which are determined by a fit to the leptonic and radiative decays of the lowest lying charm and
bottom mesons. For the quark propagators we use the above local representation Eq. (4).

We represent the vertex function by

Φ̃cc(−k2) = escc k
2

, scc =
1

Λ2
cc

,
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where Λcc parametrizes the size of the charmonium state. The quark propagator can easily be calculated using
Feynman parametrization. One has

S̃q(k ± p/2) = (mq+ 6k ± 6p/2)

∞∫

0

dα e−α (m2
q−(k−p/2)2) .

We then transform to new α-variables according to

αi → 2 scc αi,

and make use of the identity

∫ ∞∫

0

dα1dα2 f(α1, α2) =

∞∫

0

dt t

∫ ∞∫

0

dα1dα2 δ (1 − α1 − α2) f(tα1, tα2) .

One then obtains

Π̃(p) =

〈
1

c2t

∫
d4k

π2 i
e(k+cp p)

2/ct
1

4
Tr(· · ·)

〉
, (5)

where

ct =
1

2(1 + t)scc
, cp =

t

1 + t

(
α− 1

2

)

The symbol < ... > stands for the two–fold integral

〈· · ·〉 =

∞∫

0

dt
t

(1 + t)2

1∫

0

dα e−2 scc z (· · ·),

z = t
[
m2
c − α(1 − α) p2

]
− t

1 + t

(
α− 1

2

)2

p2 .

It is then convenient to shift the loop momentum according to k → k − cp p. The ensuing tensor integrals can be
expressed by scalar integrals according to

∫
d4k

π2 i
f(−k2) kµkνkαkβ =

1

24

(
gµνgαβ + gµαgνβ + gµβgνα

) ∫ d4k

π2 i
f(−k2) k4 ,

∫
d4k

π2 i
f(−k2) kµkν =

1

4
gµν

∫
d4k

π2 i
f(−k2) k2 .

The remaining scalar integrals can be integrated to give

1

c2t

∫
d4k

π2 i
ek

2/ct k2n = (−)n (n+ 1)! cnt . (6)

For the mass functions one finally obtains

q̄ i γ5 q : Π̃(p2)P = 〈 2 ct +m2
c + (1/4 − c2p) p

2 〉
q̄ q : Π̃(p2)S = 〈 2 ct −m2

c + (1/4 − c2p) p
2 〉

q̄ γµ q : Π̃(p2)V = 〈 ct +m2
c + (1/4 − c2p) p

2 〉
q̄ γµγ5 q : Π̃(p2)A = 〈 ct −m2

c + (1/4 − c2p) p
2 〉

q̄
↔

∂
µ

γ5 q : Π̃(p2)PV = 2 ct 〈 3 ct +m2
c + (1/4 − c2p) p

2 〉
q̄ i2

(↔
∂
µ

γν+
↔

∂
ν

γµ
)
q : Π̃(p2)T = 2 ct 〈 ct +m2

c + (1/4 − c2p) p
2 〉

q̄ i2

(↔
∂
µ

γνγ5+
↔

∂
ν

γµγ5
)
q : Π̃(p2)PT = 2 ct 〈 ct −m2

c + (1/4 − c2p) p
2 〉
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The mass functions Π̃I(p
2) enter the compositeness condition in the derivative form

ZI = 1 − 3 g2
I

4 π2
Π̃′
I(p

2) ,

where the prime denotes differentiation with respect to p2. The differentiation of the mass functions result in

Π̃′(p2)P = 〈−2 scc ẑ [ 2 ct +m2
c + (1/4 − c2p) p

2 ] + 1/4 − c2p 〉
Π̃′(p2)S = 〈−2 scc ẑ [ 2 ct −m2

c + (1/4 − c2p) p
2 ] + 1/4 − c2p 〉

Π̃′(p2)V = 〈−2 scc ẑ [ ct +m2
c + (1/4 − c2p) p

2 ] + 1/4 − c2p 〉
Π̃′(p2)A = 〈−2 scc ẑ [ ct −m2

c + (1/4 − c2p) p
2 ] + 1/4 − c2p 〉

Π̃′(p2)PV = 2 ct 〈−2 scc ẑ [ 3 ct +m2
c + (1/4 − c2p) p

2 ] + 1/4 − c2p 〉
Π̃′(p2)T = 2 ct 〈−2 scc ẑ [ ct +m2

c + (1/4 − c2p) p
2 ] + 1/4 − c2p 〉

Π̃′(p2)PT = 2 ct 〈−2 scc ẑ [ ct −m2
c + (1/4 − c2p) p

2 ] + 1/4 − c2p 〉

where

ẑ = −t α(1 − α) − t

1 + t

(
α− 1

2

)2

.

III. THE SEMILEPTONIC DECAYS BC → (C̄C) + L + ν̄

Let us first write down the interaction Lagrangian which we need for the calculation of the matrix elements of the
semileptonic decays Bc → (c̄c) + l + ν̄. One has

Lint(x) = gbcB
−
c (x) · J+

bc(x) + gcc φcc(x) · Jcc(x) +
GF√

2
Vbc (c̄ Oµ b) · (l̄ Oµ ν),

J+
bc(x) =

∫∫
dx1dx2 Fbc(x, x1, x2) · b̄(x1) i γ

5 c(x2),

Jcc(x) =

∫∫
dx1dx2 Fcc(x, x1, x2) · c̄(x1) Γcc c(x2),

Fbc(x, x1, x2) = δ(x− c1 x1 − c2 x2)Φbc
(
(x1 − x2)

2
)
,

Fcc(x, x1, x2) = δ

(
x− x1 + x2

2

)
Φcc

(
(x1 − x2)

2
)
,

Φ
(
x2
)

=

∫
d4q

(2 π)4
e−iqxΦ̃

(
−q2

)
.

Here we adopt the notation: l = e−, µ−, τ−, l̄ = e+, µ+, τ+, Oµ = γµ (1−γ5), c1 = mb/(mb+mc), c2 = mc/(mb+mc).
The S-matrix element describing the semileptonic decays Bc → (c̄c) + lν̄ is written as

SBc→(c̄c) = i3 gbc gcc
GF√

2
Vbc

∫∫∫
dxdx1dx2 B

−
c (x) δ(x − c1 x1 − c2 x2)Φbc

(
(x1 − x2)

2
)

×
∫∫∫

dydy1dy2 φcc(y) δ

(
y − y1 + y2

2

)
Φcc

(
(y1 − y2)

2
) ∫

dz
(
l̄ Oµ ν

)
z

× 〈T
{
b̄(x1) i γ

5 c(x2) · c̄(y1) Γcc c(y2) · c̄(z)Oµ c(z)
}
〉0.

The matrix element is calculated in the standard manner. We have

TBc→(c̄c)(p1, p2, kl, kν) = i (2π)4 δ(p1 − p2 − kl − kν)MBc→(c̄c)(p1, p2, kl, kν),
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MBc→(c̄c)(p1, p2, kl, kν) =
GF√

2
VbcMµ(p1, p2) ūl(kl)O

µ uν(kν),

Mµ(p1, p2) = − 3 gbc gcc
4 π2

∫
d4k

π2 i
Φ̃bc

(
−(k + c2 p1)

2
)

Φ̃cc
(
−(k + p2/2)2

)

× 1

4
Tr
[
i γ5 S̃c(k) Γcc S̃c(k + p2)O

µ S̃b(k + p1)
]

where p1 and p2 are the Bc and (c̄c) momenta, respectively. The spin coupling structure of the (c̄c)–states is given by

Γcc = i γ5, I, ǫ†νγ
ν , ǫ†νγ

νγ5, − 2 i ǫ†νkνγ
5, 2 ǫ†να k

νγα, 2 ǫ†να k
νγαγ5.

The calculation of the transition matrix elements Mµ proceeds along similar lines as in the case of the mass
functions. For the scalar vertex functions one has

Φ̃bc(−(k + c2 p1)
2) = esbc (k+c2 p1)2 , sbc =

1

Λ2
bc

,

Φ̃cc(−(k + p2/2)2) = escc (k+p2/2)
2

, scc =
1

Λ2
cc

,

S̃q(k + p) = (mq+ 6k+ 6p)
∞∫

0

dα e−α (m2
q−(k+p)2).

Again we shift the parameters αi(i = 1, 2, 3) according to

αi → (sbc + scc)αi,

∞∫

0

d3αf(α1, α2, α3) =

∞∫

0

dt t2
∞∫

0

d3α δ

(
1 −

3∑

i=1

αi

)
f(tα1, tα1, tα3)

where d3α = dα1dα2dα3. One then obtains

Mµ(p1, p2) =

〈
1

c2t

∫
d4k

π2 i
e(k+cp1

p1+cp2
p2)2/ct

1

4
Tr(· · ·)

〉
,

ct =
1

(sbc + scc)(1 + t)
,

cp1 =
c2 wbc + t α1

1 + t
, cp2 =

wcc/2 + t α2

1 + t
,

wbc =
sbc

sbc + scc
, wcc =

scc
sbc + scc

.

where the symbol < ... > is related to the corresponding symbol < ... > defined in Sec. II Eq. (5). In the present case
the symbol < ... > stands for the four-fold integral

〈· · ·〉 = (sbc + scc) ·
∞∫

0

dt
t2

(1 + t)2

1∫

0

d3α δ

(
1 −

3∑

i=1

αi

)
e− (sbc+scc) z (· · ·) ,

where

z = t
[
(α2 + α3)m

2
c + α1m

2
b − α1α3 p

2
1 − α2α3 p

2
2 − α1α2 q

2
]

+
1

1 + t

{
p2
1 [ t wbc c2 (2α1 + α2 − c2) + t wcc α1/2 − t α1 (α1 + α2)+, wbc c2 (wcc/2 − c2 + wbc c2)]

+ p2
2 [ t wbc c2 α2 + t wcc (α1/2 + α2 − 1/4) − t α2 (α1 + α2) + wcc/4 (2wbc c2 − 1 + wcc )]

+ q2 [ t (−wbc c2 α2 − wcc α1/2 + α1α2) − wbc wcc c2/2 ]
}
.
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One then shifts the loop momentum according to k → k − cp1 p1 − cp2 p2.
Our final results are given in terms of a set of invariant form factors defined by

Mµ(Bc → (c̄c)S=0 ) = Pµ F+(q2) + qµ F−(q2), (7)

Mµ(Bc → (c̄c)S=1 ) =
1

mBc
+mcc

ǫ†ν
{
− gµν Pq A0(q

2) + Pµ P ν A+(q2) + qµ P ν A−(q2)

+i εµναβ Pα qβ V (q2)
}
, (8)

Mµ(Bc → (c̄c)S=2) = ǫ†να
{
gµα P ν T1(q

2) + P ν Pα
[
Pµ T2(q

2) + qµ T3(q
2)
]

+i εµνδβ Pα Pδ qβ T4(q
2)
}
, (9)

P = p1 + p2, q = p1 − p2.

In our results we have dropped an overall phase factors which is irrelevant for the calculation of the decay widths.
The calculation of traces and invariant integrations is done with help of FORM [27]. For the values of the model

parameters (hadron sizes ΛH and constituent quark masses mq) we use the values of [28]. The numerical evaluation
of the form factors is done in FORTRAN.

IV. ANGULAR DECAY DISTRIBUTIONS

Consider the semileptonic decays B−
c (p1) → (c̄c)(p2)+ l(kl)+ ν̄(kν) and B+

c (p1) → (c̄c)(p2)+ l̄(kl)+ν(kν). Recalling
the expression for the matrix elements, one can write

MB−

c →c̄c(p1, p2, kl, kν) =
GF√

2
VbcMµ(p1, p2) ū

λ
l (
~kl)O

µ vλ
′

ν (~kν),

MB+
c →c̄c(p1, p2, kl, kν) =

GF√
2
VbcMµ(p1, p2) ū

λ
ν (
~kν)O

µ vλ
′

l (~kl),

where p1 and p2 are the Bc and (c̄c) momenta, respectively.
The angular decay distribution reads

dΓ

dq2 d cos θ
=

G2
F

(2π)3
|Vbc|2 ·

(q2 − µ2) |p2|
8m2

1 q
2

· Lµν Hµν (10)

where µ is the lepton mass and |p2| = λ1/2(m2
1,m

2
2, q

2)/(2m1) is the momentum of the (c̄c)-meson in the Bc-rest
frame.
Lµν is the lepton tensor given by

Lµν∓ =
1

8
Tr (Oµ 6kνOν 6kl) = kµl k

ν
ν + kνl k

µ
ν − gµν

q2 − µ2

2
± i εµναβ kl αkν β , (11)

The lepton tensors Lµν− and Lµν+ refer to the (lν̄l) and (l̄νl) cases. They differ in the sign of the parity–odd ε-tensor

contribution. The hadron tensor Hµν = Mµ(p1, p2)M†
ν(p1, p2) is given by the corresponding tensor products of the

transition matrix elements defined above.
It is convenient to perform the Lorentz contractions in Eq. (10) with the help of helicity amplitudes as described in

[29] and [30, 31]. First, we define an orthonormal and complete helicity basis ǫµ(m) with the three spin 1 components
orthogonal to the momentum transfer qµ, i.e. ǫµ(m)qµ = 0 for m = ±, 0, and the spin 0 (time)-component m = t

with ǫµ(t) = qµ/
√
q2.

The orthonormality and completeness properties read

ǫ†µ(m)ǫµ(n) = gmn (m,n = t,±, 0),

(12)

ǫµ(m)ǫ†ν(n)gmn = gµν
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with gmn = diag (+ , − , − , − ). We include the time component polarization vector ǫµ(t) in the set because we
want to include lepton mass effects in the following.

Using the completeness property we rewrite the contraction of the lepton and hadron tensors in Eq. (10) according
to

LµνHµν = Lµ′ν′gµ
′µgν

′νHµν = Lµ′ν′ǫµ
′

(m)ǫ†µ(m′)gmm′ǫ†ν
′

(n)ǫν(n′)gnn′Hµν

= L(m,n)gmm′gnn′H(m′, n′) (13)

where we have introduced the lepton and hadron tensors in the space of the helicity components

L(m,n) = ǫµ(m)ǫ†ν(n)Lµν , H(m,n) = ǫ†µ(m)ǫν(n)Hµν . (14)

The point is that the two tensors can be evaluated in two different Lorentz systems. The lepton tensors L(m,n) will
be evaluated in the l̄ν or lν̄–c.m. system whereas the hadron tensors H(m,n) will be evaluated in the Bc rest system.

A. Hadron tensor

In the Bc rest frame one has

pµ1 = (m1 , 0, 0, 0 ) ,

pµ2 = (E2 , 0 , 0 , −|p2| ) , (15)

qµ = ( q0 , 0 , 0 , |p2| ) ,

where

E2 =
m2

1 +m2
2 − q2

2m1
, q0 =

m2
1 −m2

2 + q2

2m1
,

E2 + q0 = m1, q20 = q2 + |p2|2, |p2|2 + E2 q0 =
1

2
(m2

1 −m2
2 − q2).

In the Bc-rest frame the polarization vectors of the effective current read

ǫµ(t) =
1√
q2

( q0 , 0 , 0 , |p2| ) ,

ǫµ(±) =
1√
2
( 0 , ∓1 , −i , 0 ) , (16)

ǫµ(0) =
1√
q2

( |p2| , 0 , 0 , q0 ) .

Using this basis one can express the helicity components of the hadronic tensors through the invariant form factors
defined in Eqs. (7-9). We treat the three spin cases in turn.

(a) Bc → (c̄c)S=0 transition:

H(m,n) =
(
ǫ†µ(m)Mµ

)
·
(
ǫ†ν(n)Mν

)† ≡ HmH
†
n (17)

The helicity form factors Hm can be expressed in terms of the invariant form factors. One has

Ht =
1√
q2

(Pq F+ + q2 F−) ,

H± = 0 , (18)

H0 =
2m1 |p2|√

q2
F+ .
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(b) Bc → (c̄c)S=1 transition:

The nonvanishing helicity form factors are given by

Hm = ǫ†µ(m)Mµαǫ
†α
2 (m) for m = ±, 0 (19)

and

Ht = ǫ†µ(t)Mµαǫ
†α
2 (0) (20)

As in Eq. (17) the hadronic tensor is given by H(m,n) = HmH
†
n.

In order to express the helicity form factors in terms of the invariant form factors Eq. (8) one needs to specify the
helicity components ǫ2(m) (m = ±, 0) of the polarization vector of the (c̄c)S=1 state. They are given by

ǫµ2 (±) =
1√
2
(0 , ±1 , −i , 0 ) ,

(21)

ǫµ2 (0) =
1

m2
(|p2| , 0 , 0 , −E2 ) .

They satisfy the orthonormality and completeness conditions:

ǫ†µ2 (r) ǫ2µ(s) = −δrs,
(22)

ǫ2µ(r) ǫ
†
2ν(s) δrs = −gµν +

p2µp2ν

m2
2

.

The desired relations between the helicity form factors and the invariant form factors are then

Ht = ǫ†µ(t) ǫ†α2 (0)Mµα =
1

m1 +m2

m1 |p2|
m2

√
q2

(
P · q (−A0 +A+) + q2A−

)
,

H± = ǫ†µ(±) ǫ†α2 (±)Mµα =
1

m1 +m2
(−P · q A0 ∓ 2m1 |p2|V ) , (23)

H0 = ǫ†µ(0) ǫ†α2 (0)Mµα

=
1

m1 +m2

1

2m2

√
q2

(
−P · q (m2

1 −m2
2 − q2)A0 + 4m2

1 |p2|2A+

)
.

(c) Bc → (c̄c)S=2 transition:

The nonvanishing helicity form factors can be calculated according to

Hm = ǫ†µ(m)Mµα1α2
ǫ†α1α2

2 (m) for m = ±, 0 (24)

and

Ht = ǫ†µ(t)Mµα1α2
ǫ†α1α2

2 (0) (25)

Again the hadronic tensor is given by H(m,n) = HmH
†
n.

For the further evaluation one needs to specify the helicity components ǫ2(m) (m = ±2,±1, 0) of the polarization
vector of the c̄cS=2. They are given by

ǫµν2 (±2) = ǫµ2 (±) ǫν2(±),

ǫµν2 (±1) =
1√
2

(ǫµ2 (±) ǫν2(0) + ǫµ2 (0) ǫν2(±)) , (26)

ǫµν2 (0) =
1√
6

(ǫµ2 (+) ǫν2(−) + ǫµ2 (−) ǫν2(+)) +

√
2

3
ǫµ2 (0) ǫν2(0) ,
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where ǫµ2 (r) are defined in Eq. (21).
The relation between the helicity form factors Hm and the invariant form factors Eq. (9) read

Ht = h(t, 0) =

√
2

3

m2
1 |p2|2

m2
2

√
q2

{
T1 + (|p2|2 + E2 q0 +m1 q0)T2 + q2 T3

}
,

H± = h(±,±) =
m1 |p2|√

2m2

(T1 ∓ 2m1|p2|T4) ,

H0 = h(0, 0) =

√
1

6

m1 |p2|
m2

2

√
q2

(
(m2

1 −m2
2 − q2)T1 + 4m2

1 |p2|2 T2

)
.

B. Lepton tensor

The helicity components of the lepton tensors L(m,n) are evaluated in the (lν̄)–c.m. system ~kl + ~kν = 0. One has

qµ = (
√
q2 , 0 , 0 , 0 ) ,

kµν = ( |kl| , |kl| sin θ cosχ , |kl| sin θ sinχ , |kl| cos θ ) , (27)

kµl = (El , −|kl| sin θ cosχ , −|kl| sin θ sinχ , −|kl| cos θ ) ,

with

El =
q2 + µ2

2
√
q2

, |kl| =
q2 − µ2

2
√
q2

.

In the (lν̄)–c.m. frame the longitudinal and time-component polarization vectors are given by

ǫµ(t) =
qµ√
q2

= (1, 0, 0, 0),

ǫµ(±) =
1√
2

(0,∓,−i, 0), (28)

ǫµ(0) = (0, 0, 0, 1).

Using Eqs. (28) and (11) it is not difficult to evaluate the helicity representation L(m,n) of the lepton tensor.
In this paper we are not interested in the azimuthal χ–distribution of the lepton pair. We therefore integrate over

the azimuthal angle dependence of the lepton tensor. Of course, our formalism is general enough to allow for the
inclusion of an azimuthal dependence if needed. After azimuthal integration the differential (q2, cos θ) distribution
reads

dΓ

dq2d cos θ
=

3

8
(1 + cos2 θ) · dΓU

dq2
+

3

4
sin2 θ · dΓL

dq2
∓ 3

4
cos θ · dΓP

dq2
(29)

+
3

4
sin2 θ · dΓ̃U

dq2
+

3

2
cos2 θ · dΓ̃L

dq2
+

1

2

dΓ̃S
dq2

+ 3 cos θ · dΓ̃SL
dq2

,

where we take the polar angle θ to be the angle between the ~p2 and the ~kl in the lepton-neutrino c.m. system.
The upper and lower signs in front of the parity violating (p.v.) contribution refer to the two cases l−ν̄ and l+ν,
respectively.

The differential partial helicity rates dΓi/dq
2 and dΓ̃i/dq

2 in Eq. (29) are defined by

dΓi
dq2

=
G2
F

(2π)3
|Vbc|2

(q2 − µ2)2 |p2|
12m2

1 q
2

Hi , (30)

dΓ̃i
dq2

=
µ2

2 q2
dΓi
dq2

,
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where we have introduced a standard set of helicity structure functions Hi (i = U,L, P, S, SL) given by the following
linear combinations of the helicity components of the hadron tensor H(m,n) = HmH

†
n:

HU = Re
(
H+H

†
+

)
+ Re

(
H−H

†
−

)
Unpolarized − transverse

HL = Re
(
H0H

†
0

)
Longitudinal

HP = Re
(
H+H

†
+

)
− Re

(
H−H

†
−

)
Parity − odd

HS = 3 Re
(
HtH

†
t

)
Scalar

HSL = Re
(
HtH

†
0

)
Scalar − Longitudinal interference

Note that the helicity amplitudes are real such that the complex conjugation symbol can in fact be dropped.

It is evident that the “tilde” rates Γ̃ in Eq. (30) do not contribute in the limit of vanishing lepton masses. In the
present application this means that they can be neglected for the e– and µ–modes and only contribute to the τ–modes.

Integrating over cos θ one obtains the differential q2 distribution

dΓ

dq2
=
dΓU
dq2

+
dΓL
dq2

+
dΓ̃U
dq2

+
dΓ̃L
dq2

+
dΓ̃S
dq2

.

Finally, integrating over q2, one obtains the total rate

Γ = ΓU + ΓL + Γ̃U + Γ̃L + Γ̃S

In Sec. V we list our predictions for the integrated partial helicity rates Γi (i = U,L, P ) and Γ̃i i = (U,L, S, SL).
To save on notation in the following we shall sometimes use a self-explanatory notation for the differential and

integrated partial helicity rates. For example, we write U for either the differential or the integrated helicity rates

dΓU/dq
2 and ΓU , respectively, and Ũ for dΓ̃U/dq

2 and Γ̃U .
An interesting quantity is the forward-backward asymmetry AFB of the lepton in the (lν̄) cm system which is given

by

AFB =
3

4

±P + 4S̃L

U + Ũ + L+ L̃+ S̃
. (31)

In Sec. V we shall give our numerical predictions for the asymmetry AFB for the decay channels under study.
For the discovery channel Bc → J/ψlν with the J/ψ decaying into muon pairs the transverse/longitudinal composi-

tion of the produced J/ψ is of interest. The transverse/longitudinal composition can be determined by a measurement
of the angular orientation of the back-to-back muon pairs in the J/ψ rest frame. The relevant angular distribution
reads

dΓ

dq2d cos θ∗
=

3

8
(1 + cos2 θ∗)

(
dΓU
dq2

+
dΓ̃U
dq2

)
(32)

+
3

4
sin2 θ∗

(
dΓL
dq2

+
dΓ̃L
dq2

+
dΓ̃S
dq2

)

where θ∗ is the polar angle of the muon pair relative to the original momentum direction of the J/ψ. We have included
lepton mass effects so that the angular decay distribution in Eq. (32) can be also used for the τ -mode in this decay.

The transverse and longitudinal contributions of the J/ψ are given by (U + Ũ) and (L+ L̃+ S̃), respectively.
One can define an asymmetry parameter α∗ by rewriting Eq. (29) in terms of its cos2 θ∗ dependence, i.e. dΓ ∝

1 + α∗ cos2 θ∗. The asymmetry parameter can be seen to be given by

α∗ =
U + Ũ − 2(L+ L̃+ S̃)

U + Ũ + 2(L+ L̃+ S̃)
. (33)

Our predictions for the asymmetry parameter α∗ appear in Sec. V.
We have only written out single angle decay distributions in this paper. It is not difficult to write down joint

angular decay distributions including also azimuthal correlations in our formalism if necessary.
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V. NUMERICAL RESULTS

Let us discuss the model parameters and their determination. Since we consider the decay of the Bc-meson into
charmonium states only, the adjustable parameters are the constituent masses of charm and bottom quarks and the
size parameters of the Bc-meson and charmonium states. The values of quark masses were determined in our previous
studies (see, for example, [28]) of the leptonic and semileptonic decays of the low-lying pseudoscalar mesons (π, K,
D, Ds, B, Bs and Bc). The values of the charm and bottom quarks were found to be mc = 1.71 GeV and mb = 5.12
GeV. The value of Λbc = 1.96 GeV was determined from a fit to the world average of the leptonic decay constant
fBc

= 360 MeV. The value of ΛJ/ψ = 2.62 GeV was found from a fit to the experimental value of the radiative decay

constant fJ/ψ = 405 MeV which enters in the J/ψ → e+e− decay width (f expt
J/ψ = 405 ± 17 MeV).

In our calculation we are using free quark propagators with an effective constituent quark mass (see, Eq. 4). This
imposes a very simple yet important constraint on the relations between the masses of the bound state and their
constituents. One has to assume that the meson mass MH is less than the sum of the masses of their constituents

MH < mq1 +mq2 (34)

in order to avoid the appearance of imaginary parts in physical amplitudes, which are described by the one-loop quark
diagrams in our approach. This is satisfied for the low-lying pseudoscalar mesons π, K, D, Ds, B, Bs, Bc and ηc and
also for the J/ψ but is no longer true for the excited charmonium states considered here. We shall therefore employ
identical masses for all excited charmonium states mcc = mJ/ψ=3.097 GeV (except for the ηc) in our matrix element
calculations but use physical masses in the phase space calculation. This is quite a reliable approximation because the
hyperfine splitting between the excited charmonium states and J/ψ is not large. For example, the maximum relative
error is (mψ(3836) −mJ/ψ)/mJ/ψ = 0.24.

The size parameters of the excited charmonium states should be determined from a fit to the available experimental
data for the two-photon and the radiative decays as was done for the J/ψ-meson. However, the calculation of the
matrix elements involving two photons will be very time consuming because one has to introduce the electromagnetic
field into the nonlocal Lagrangians in Eqs. 1-3. This is done by using the path exponential (see, our recent papers
[28] and [17]). The gauging of the nonlocal Lagrangian with spin 2 has not yet been done and is a project all of its
own. For the time being, we are calculating the widths of the semileptonic decays Bc → (c̄c) + lν by assuming an
identical size parameters for all charmonium states Λcc = ΛJ/ψ = 2.62 GeV.

In order to get a quantitative idea about the invariant form factors we list their q2min = 0 and q2max = (m1 −m2)
2

values in Table II.
We put our values of the decay rates in Table III together with those predicted in other papers. A number of

calculations are devoted to the Bc → ηclν and Bc → J/ψlν decays. All of them predict values at the same order of
magnitude. A study of the semileptonic decays of the Bc-meson into excited charmonium states was done in [6, 21]
within an approach which is quite different from our relativistic quark model. Concerning the electron-modes here is
quite good agreement with [6, 21] in the case of Bc → J/ψeν, ηceν, χc2eν. Our rates are a factor of 1.5 (1.8) larger
for Bc → χc0eν, hceν decays and our rate is a factor 1.6 smaller for Bc → χc1eν decay. Concerning the τ -modes here
is quite good agreement with [6, 21] in the case of Bc → χc0τν, hcτν decays but our rates are almost a factor of two
smaller for the other modes Bc → χc1τν, χc2τν.

The partial rate for Bc → J/ψ + l + ν is the largest. The partial rates into the P-wave charmonium states are all
of the same order of magnitude and are predicted to occur at ∼ 10% of the most prominent decay Bc → J/ψ+ l+ ν.
The decays of the Bc into D-wave charmonium state are suppressed. The τ–modes are generally down by a factor of
∼ 10 compared to the e–modes except for the transitions Bc → ηc, Bc → J/ψ and Bc → ψ(3836) where the τ–modes
are smaller only by a factor of ∼ 3 − 4.

In Table IV we list our results for the integrated partial helicity rates Γi (i = U,L, P, Ũ , L̃, S̃, S̃L). They are needed
for the calculation of the forward-backward asymmetry parameter AFB and, in the case of the decay Bc → J/ψ+l+ν,
for the calculation of the asymmetry parameter α∗ determining the transverse/longitudinal composition of the J/ψ in

the decay. The partial “tilde” rates Γ̃i are quite tiny for the e–mode as expected from Eq. (30) but are not negligible
for the τ–modes. This shows up in the calculated values for AFB in Table V. For the decays into spin 0 states AFB
is proportional to S̃L and thus tiny for the e–mode but nonnegligible for the τ–modes. For the decay into the other
spin states one has AFB(e−) = −AFB(e+) but AFB(τ−) 6= −AFB(τ+) as can easily be appreciated by looking at
Eq. (31). The forward-backward asymmetry can amount up to 40 %. The transverse and the longitudinal pieces of
the J/ψ in the decay Bc → J/ψ + l+ ν are almost equal for both the e– and the τ–modes (see Table IV). According
to Eq. (33) this implies that the asymmetry parameter α∗ should be close to −33% as is indeed the case as the entries
in Table V show. For the other two modes involving spin 1 charmonium states the transverse/longitudinal population
is quite different. For the transition Bc → χc1 the transverse mode dominates by a factor of ∼ 3 for both the e– and
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TABLE II: Predictions for the form factors of the Bc → (c̄c) tansitions.

q2 F+ F−

ηc 0 0.61 -0.32

q2max 1.14 -0.61

χc0 0 0.40 -1.00

q2max 0.65 -1.63

q2 A0 A+ A− V

J/ψ 0 1.64 0.54 -0.95 0.83

q2max 2.50 0.97 -1.76 1.53

χc1 0 -0.064 -0.39 1.52 -1.18

q2max 0.46 -0.50 2.36 -1.81

hc 0 0.44 -1.08 0.52 0.25

q2max 0.54 -1.80 0.89 0.365

q2 T1 T2, GeV−2 T3, GeV−2 T4, GeV−2

χc2 0 1.22 -0.011 0.025 -0.021

q2max 1.69 -0.018 0.040 -0.033

ψ(3836) 0 0.052 0.0071 -0.036 0.026

q2max 0.35 0.0090 -0.052 0.038

τ–modes whereas for the transition Bc → hc the longitudinal mode dominates by a factor of ∼ 13 and ∼ 7 for the e–
and τ–modes, respectively.

Taking the central value of the CDF lifetime measurement τ(Bc) = 0.46 · 10−12 s [1] and our predictions for the
rates into the different charmonium states one finds branching fractions of ∼ 2% and ∼ 0.7% for the decays into the
two S–wave charmonium states J/ψ and ηc, respectively, and branching fractions of ∼ 0.2% for the deacys into the
P–wave charmonium states. Considering the fact that there will be a yield of up to 1010 Bc mesons per year at the
Tevatron and LHC the semileptonic decays of the Bc mesons into charmonium states studied in this paper offers a
fascinating area of future research.
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APPENDIX: CONVENTION FOR DIRAC γ-MATRICES AND THE ANTISYMMETRIC TENSOR IN
MINKOWSKI SPACE

We use the conventions of Bjorken-Drell. Thus we define the metric tensor and the totally antisymmetric ε-tensor
in Minkowski space by gµν = gµν = diag(+,−,−,−, ) and ε0123 = −ε0123 = 1. For the partial and full contractions
of a pair of ε-tensors one finds

εµ1µ2µ3µ4
εν1ν2ν3µ4 = −gν1µ1

gν2µ2
gν3µ3

− gν2µ1
gν3µ2

gν1µ3
− gν3µ1

gν1µ2
gν2µ3

+gν1µ1
gν3µ2

gν2µ3
+ gν2µ1

gν1µ2
gν3µ3

+ gν3µ1
gν2µ2

gν1µ3

εµ1µ2µ3µ4
εν1ν2µ3µ4 = − 2 (gν1µ1

gν2µ2
− gν2µ1

gν1µ2
)

εµ1µ2µ3µ4
εν1µ2µ3µ4 = −6 gν1µ1
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TABLE III: Semileptonic decay rates in units of 10−15 GeV. We use |Vcb| = 0.04.

This model [6, 21] [7] [8] [9] [12] [23]

Bc → ηc e ν 10.7 14.2 11.1 8.6 11±1 2.1 (6.9) 5.9

Bc → ηc τ ν 3.52 3.3±0.9

Bc → J/ψ e ν 28.2 34.4 30.2 17.2 28±5 21.6 (48.3) 17.7

Bc → J/ψ τ ν 7.82 7±2

Bc → χc0 e ν 2.52 1.686

Bc → χc0 τ ν 0.26 0.249

Bc → χc1 e ν 1.40 2.206

Bc → χc1 τ ν 0.17 0.346

Bc → hc e ν 4.42 2.509

Bc → hc τ ν 0.38 0.356

Bc → χc2 e ν 2.92 2.732

Bc → χc2 τ ν 0.20 0.422

Bc → ψ(3836) e ν 0.13

Bc → ψ(3836) τ ν 0.0031

εµ1µ2µ3µ4
εµ1µ2µ3µ4 = −24

We employ the following definition of the γ5-matrix

γ5 = γ5 = i γ0γ1γ2γ3 =
i

24
εµ1µ2µ3µ4

γµ1γµ2γµ3γµ4 =

(
0 I

I 0

)
,

Tr (γ5γ
µ1γµ2γµ3γµ4) = 4 i εµ1µ2µ3µ4 .

The leptons with negative charge (l = e−, µ−, τ−) are referred to as “leptons” whereas the positively charged
leptons l̄ = e+, µ+, τ+ are referred to as “antileptons”.
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[31] J. G. Körner, J. H. Kühn, M. Krammer and H. Schneider, Nucl. Phys. B 229, 115 (1983).



17

TABLE V: Forward-backward asymmetry AF B and the asymmetry parameter α∗.

Mode AF B(l−) AF B(l+) α∗

Bc → ηc e ν 9.64 10−6 9.64 10−6 -

Bc → ηc τ ν 0.36 0.36 -

Bc → J/ψ e ν 0.21 -0.21 -0.34

Bc → J/ψ τ ν 0.29 -0.05 -0.24

Bc → χc0 e ν 1.29 10−6 1.29 10−6 -

Bc → χc0 τ ν 0.38 0.38 -

Bc → χc1 e ν -0.19 0.19 -

Bc → χc1 τ ν -0.24 0.34 -

Bc → hc e ν 0.036 -0.036 -

Bc → hc τ ν 0.39 0.30 -

Bc → χc2 e ν 0.16 -0.16 -

Bc → χc2 τ ν 0.32 0.05 -

Bc → ψ(3836) e ν -0.21 0.21 -0.17

Bc → ψ(3836) τ ν -0.21 0.41 0.006


