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Structure of Weak Interactions and Unwanted Processes
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A general discussion of the forbidden reactions such as p ~ e+y, p ~ e+e+e, p+N —+ e+S,p ~ e+y+y,
etc. which would arise from a possible nonlocal structure of the weak interactions is given. It is shown, by a
canonical transformation, that the dominating terms of the structure, in an expansion in terms of the inverse
of the average intermediate mass, do not contribute to any forbidden reaction. A discussion of the p —e
conversion process for a bound p is given, and the rate is calculated for a particular model.

INTRODUCTION

HE possibility of a nonlocal structure for the weak
interactions was erst pointed out recently by Lee

and Yang, who discussed the eGects of such a structure
on the p,-decay spectra. ' The analysis by Lee and Yang,
as well as the analysis by Bludman and Klein, ' were
phenomenological in character in that no particular
hypotheses were made concerning the origin of the
postulated nonlocal structure. In a later analysis by
Byers and Peierlss a nonlocal structure for p —+ e+v+v
was assumed to arise from the exchange of a massive
vector meson between the (lii) and the (ev) pairs.
Though such a structure, if it exists, will be present in all
weak processes, it is convenient to confine the discussion
of its eGects mainly to the processes resulting from the
coupling of the (pp), (ev) pairs. For other processes the
presence of strong interactions could make ambiguous
the separation of the proper nonlocal effects.

For convenience we shall refer to the direct eGects of
the structure on the weak processes as to the primary
eGects of the structure. It was first pointed out by
Feynman and Gell-Mann4 that the existence of a struc-
ture would also lead to new processes, such as a possible
muon decay into an electron and a gamma. Calculations
of such a process, assumiiig the intermediate vector
meson, were made by Feynman and Gell-Mann, 4 by
Feinberg, 5 who also estimates the rate for muon decay
into three electrons arising from internal conversion of
the gamma, and by Ebel and Ernst. ' Another process
that will also occur through the structure is the absorp-
tion of a negative muon by a proton with the emission of
an electron. For a negative muon in a bound orbit
around the nucleus the process may occur incoherently
on the single protons (and also possibly on the neu-
trons), and coherently through the direct conversion in
the Coulomb field of the bound muon into an energetic
electron. We shall refer to such indirect eGects of the
structure as to the secondary eGects of the structure.

' T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).' S. Bludman and A. Klein, Phys. Rev. 109, 550 (1958).' N. Byers and R. E. Peierls, Nuovo cimento 10, 520 (1958).
4 R. P. Feynman and M. Gell-Mann, reported at the Stanford

Meeting oi the American Physical Society, December, 1957 [Bull.
Am. Phys. Soc. 2, 391 (1957)g.' G. Feinberg, Phys. Rev. 110, 1482 (1958).

'H. E. Ebel and F. Ernst (unpublished).

The main purpose of the present note will be a general
discussion on the secondary eGects of the structure. In
Sec. 1 we discuss the general form of the nonlocality.
In Secs. 2 and 3 we show that the largest contribution to
the vertex does not produce any physical eGect and it
only amounts to a redefinition of the electron and muon
states. In Sec. 4 we discuss the remaining contributions,
and in Sec. 5 we apply the theory to the process of
conversion of a bound negative muon into an electron,
that would occur as a direct consequence of the existence
of a structure.

where p and x are the electron and muon field operators,
respectively. We are interested in the general form of
E($). Let us suppose that weak interactions are medi-
ated through a coupling of the form

Z'= J,(x)C,(x)+H.c. (2)

where J, is the usual weak vector-axial' current and
C, (a) an unspecified four-vector constructed from the
fields which participate in mediating the weak inter-
actions. The interactions (2) gives rise to an effective
Lagrangian

which couples the weak vector-axial current J„~ with
7 R. E. Marshak and E. C. G. Sudarshan, Proceedings of the

Padua-Venice Conference on Mesons and Newly Discovered
Particles, 1957 (to be published); R. P. Feynman and M. Gell-
Mann, Phys. Rev. 109, 193 (1958).

1. LIMITATIONS ON THE STRUCTURE

We examine in this section what limitations are im-

posed on the structure from general requirements. The
original nonlocal structure of the muon-decay inter-
action, specified by a kernel V, produces an eGective
muon-electron coupling, specified by a kernel E, simply
related to V, as illustrated in Fig. 1. We write the
eGective Lagrangian for the effective muon-electron
coupling in the form
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itself at different space-time points. We can write V in
the form

v,.(g) =(ol 7 L4, (P/2)y. t(—g/2)310). (4)

From known arguments' one then derives the repre-
sentation

&,.(~)= "d 'l ( ')~.(~ ')

+ps(m')6 pv (arm')$, (5)

where p~ and p2 are unknown spectral functions. The
kernel E, is given, apart from constants, by

2. LOWEST APPROXIMATION TO THE
ELECTRIC CURRENT

According to the Lagrangian i.", (1), a muon can be
annihilated at x+-,'$ and an electron created at x—-', P. A
unit of charge is thus carried between the two points,
giving rise, in the spirit of minimal electromagnetic
interactions, to an additional term in the electromagnetic
interactions. This term is, however, not fixed uniquely
from the form of the original nonlocal Lagrangian, be-
cause of the many possible trajectories for the electric
charge between the two points. To preserve gauge
invariance one finds that the Lagrangian (1) has to be
replaced by"

z(p) =&,s, ~ &(g)&.v,.(—p)~, (6) ~"()=- «e( --:r)&(&)x(*+-',&)

where a= sr (1+ps) and Sv'"~ is the neutrino propagator.
From (6) and (5) it follows that E($) can be written as

&(5)= h'k)F (F) (7)
~.(n)dn», (1o)

p (mr')+ p (ms')
(8)&G(f's) = dm'

P+m'+is
(9)

(8)&g(js) =m,m„' dm'
ps(m')

m'(m'+ f'+is)
(9')

f being the momentum transfer between the electron
and the muon. If pt(m') or ps(m') have contributions
also from low masses m' contained in the physical
interval for f's, the contribution from the poles in (9) and
(9') may produce effects simulating, in a reversible
theory, an apparent lack of time-reversal invariance.
On the other hand, such contributions from low mass
values would also manifest themselves in a strong mo-
mentum dependence of the coupling constant, according
to (9) and (9'). Such a strong momentum dependence is
certainly excluded by the present data. '

V
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where E is an unknown function. It may also be of
interest to report the effective interaction, B', for
p —v e+v+v as derived from (3) and (5).

'=() LG(v)( v" )(»" )-g(j')(-)(" )3, ()
where

where the integral is taken over an arbitrary trajectory
from x—sr) to x+-,'$. The prescription (10) is the
minimal modi6cation to preserve gauge invariance. Any
of our conclusions follows however from gauge invari-
ance alone, except for the particular model considered in
Sec. (4). We make the assumption that the spectral
functions p in (5) become appreciable only for very high
values of m' as compared to the momentum transfers
involved in the processes. Accordingly we can simplify
the form of the Lagrangian (10) by expanding p, x and
the integral over A„ in powers of $ and keeping the
lowest powers. As we have shown that E is an odd
function of $, the zero-order term will give no contribu-
tion, and the same holds for all even orders. Keeping the
first order terms, one obtains

~"(*)=-', ff~( )h~-v&)x(*),

where 8, is dered by

~„=& d~ ~,(~~)&(e).

The form of the Lagrangian (11)is independent of the
choice of the trajectory between x—

ran and @+sr), and
contains the electromagnetic fields in the usual gauge-
invariant combinations

a a
i}=——ieA and 8= +ieA. —

8$ Bx

(a) (b)
We can take our system as consisting of electrons,

Fro. 1. (a) Nonlocal structure for P ~ e+v+v. The nonlocality mupns and phptpns wjth the jnteractjpn term (11) jn
is speci6ed by a kernel V. (b) The induced p —e nonlocal vertex,
speci6ed by the kernel E. addition to their usual electromagnetic interaction. The

H. Lehman, Nuovo cimento 9, 342 (1954).' H. Kruger and K. M. Crowe, Phys. Rev. 113, 341 (1954).
' C. Bloch, Kgl. Danske Videnskab. Sebskab, Mat. -fys. Medd.

27, 8 (&952).
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total electromagnetic interaction is now given byiejA, zero order in Q. Let us introduce a spinor 0 with the
where electron 6eld and the muon field as components,

icj(x)=ic[PVp+X'rx+ &IPVax+ ~XVae ] (12)

In (12) we express the Heisenberg fields pp and X in
terms of the "in" fields y"& and x~', keeping only zero-
order terms in e and erst order terms in A. We find

The Lagrangian (14) can be written as
2(0) = F"'(0)&&o"'(0)+X"'(0)VX'"(0)

+O, pp&P) (0)pa~&P) (0) where
4[q—8+M]+ ~F„„F„„,

M= Mp+Mg+iypMp,

(17)

Pl
t+o,p&o&(0)p

' S~& &(—x) l p—lax&o&(x)dx
J & ax)

—8 "pa&'&(x)al y—lS&&»(x)dxyX"~(0). (13)
E gx)

If one now makes use of the equations of motions for
the "in" 6elds, [y(8/Bx)+m, ]rp"& (x)=0, and similarly
for x&P'(x) and of [y(B/8 )x+ m]S( )x= —3(x), one can
verify that the last three terms in (13) cancel exactly
and the total current j is thus given to this order by the
sum of the electron and muon currents alone. This re-
sult implies in particular that the Lagrangian (11) does
not contribute to p, ~ e+y, and the process is due to the
higher order approximations of the Lagrangian (10).
This fact was already noted by Gell-Mann and Feyn-
man. " It makes clear the smallness of the calculated
rate for the calculated rate for p —+ e+y. It is also clear
from our derivation that (11) does also not contribute
to p, ~ e+e+e, and to u+p —+ e+p. The same is true
also for more complicated processes such as p —+ e+y
+p. It is easy to show that such results are all conse-
quences of a theorem that we state and prove in the next
section.

3. EQUIVALENCE THEOREM

In this section we show that our system of electrons,
muons, and photons, with their electromagnetic inter-
actions, plus the interaction term (11), is equivalent up
to first order in such interaction to the system of
electrons, muons, and photons interacting with their
ordinary electromagnetic interaction only.

The total Lagrangian,

'p( Y~+m@) p x(V~+ l4)xm4FpvFÃ&

—p[@p (V&—v&)aX+H c ] (14)

can be simplified at the lowest order in 0', by trans-
forming the last term into

—,'[O', (m„poaX+m, ppa)X+ .H]c

by use of the equation of motion satisfied by p and x at

"M. Gell-Mann and R. P. Feynman, 195h' Annual International
Conference on High-Energy Physics at CER1V, edited by B.Ferretti
(CERN Scientific Information Service, Geneva, 1958), p. 261.

and the matrices 3fp, M&, and M& are two-by-two
matrices in the space of the spinors O'. In terms of Pauli
matrices,

M p ,'(m——„—+m,) ,'(—m„—m,—)o„(19)
M~ ——p'(m„+m, )[R(0',)a,—I(S)a„7, (19')

Mp ———-', (m„—m, )[R(e)o„—I(S)a,]. (19")

These equations show that the commutator of Mp with
M& (M&) gives essentially M& (M&), while the anti-
commutator gives essentially M& (Mp). We can now
show that there exists a unitary matrix U such that by
transforming the field operators according to 4= U4'
the Lagrangian takes the form:

%'[y8+M—p]%' p'F„.F„„, — (20)

as in the absence of the interaction term (11).In other
words, the addition of the interaction (11) amounts, up
to the erst order, only to a formal redefinition of the
electron and muon states, and of course no redefinition
of the masses is necessary at this order. Let us write

U=1+iU)+iypUp, (21)

where U~ and U2 must be Hermitian and of the order of
8, Eq. (20) is then equivalent to (17) provided there
exist two Hermitian matrices U~ and U~ such that

i[Mp, Uy]= —Mg,

{Mp,Up) = —Mp.

(22)

(22')

We have seen that one can satisfy these two conditions
by taking Uz of the form (constant) XMp and U& of the
form (constant) XMp.

4. THE ELECTROMAGNETIC VERTEX

The general form of the p ~ e—y vertex will be

A-(k)( l~. l.)
=A (k)ur&»[a(k')a pkp+ib(k')7 +c(k')k ]u&», (23)

where k= p& —p', ur, '& is the spinor for the left-handed
electron (we neglect m, ), u&» is the spinor for the muon,
and a, b, and c are form factors depending on k'. Gauge
invariance requires k (e J lp)=0, which gives, using
the Dirac equation, ur, &»[—b(k') (m„—m, )+c(k')k']u&»
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=0. The general form of the vertex is then

A (k)NI&' u(k')o„pkp

+c(k') k + y I'». (24)

For real photons A k =0 and k'=0, so that only the
0.

p term contributes. '
The discussion in the preceding sections shows that

the main contribution to the secondary sects produced
by the structure comes from the third order terms in the
multipole expansion of (10). Such terms cannot be
calculated unambiguously because of their dependence
on the integration path from x—s$ to x+ sr). A different
approach to the problem with speciGc physical models~'
does also not lead to unambiguous predictions because
of the delicate dependence of the result on the treatment
of the divergent integrals. It may be instructive here to
derive the effective Lagrangian with the simplest as-
sumption of a straight-line path for the current through
the nonlocality; such a choice makes the 6eld A only
appear in the combinations 9 and 8. Let us neglect the
electron mass and call yl, the left-handed electron,
Ip j sp. The Lagrangian (10) can then be approxi-
mated as

independent a and c in (24) given by a=(3ie4ri„B)/
2(2rr)' and c= —(e444„B)/2(27r)'

ses4L [ B1G14r'ri+B2G2Pjg (28)

where n is the unit vector in the direction of the electron
momentum (we use a plane wave for the electron); n
and P are Dirac matrices; Gi and Gs are given by

Gi=3im„(r. m)E(r) exp( —ir n4ri„) f(r)dr, (29)

Gs —— p(r) exp( ir nm„—)f(r)dr, (29')

5. PHYSICAL PROCESSES

The presence of a i4 ~ e—y vertex (24) will give rise
to unwanted processes such as 14

—+ e+y, i4 ~ e+e+e,
p+X~e+E, p, ~e+y+y, etc." We shall fix our
attention here on the process of conversion of a negative
muon, captured in the lowest atomic orbit around a
nucleus, into an energetic electron. " The process can
occur by a coherent mechanism, i.e., the bound muon
changes into an electron of same total energy, with the
Coulomb field absorbing the excess momentum; or it can
occur incoherently on a single proton in the nucleus.
The general. form of the matrix element for the coherent
transition in the electric Geld of the nucleus is

Z"(*)=-',Bq...gyr, [——',a„41,a,+ 4'1, 4'1, a,

—4i„a,s,+-;a,ri.a,gyiX, (25)

since the first order term (11) has been eliminated by a
canonical transformation, that will not affect the re-
maining contributions up to the first order in weak
interactions. In (25), Brl„,i is defined by

(26)

which can be satisfied by taking for p, ,) the totally
symmetric isotropic fourth rank tensor, 8„8,&+8„& i,

+a,qa„. For the case of an external electromagnetic &eld
the Lagrangian (25) can be written as

2"(x) =g'B(pr, ( 6rr4„s+6rri„eF po p-
4iey. (aF.p/amp)—)x (27).

The term 6444„' in (27) does not give rise to any transi-
tion. This is obvious for transitions between free-particle
states, and one can see that it is also true for states in the
external field by noting most easily that the solutions
q (x) and x(x) belonging to the same energy eigenvalue
E are the eigensolutions of the same Hermitian operator
$p;(a/ax;) y4E iey„A„J—, but —they belong to the two
diferent eigenvalues m, and m„and thus they are
orthogonal. The vertex from (27) corresponds to energy-

where E(r) is the electric field of the nucleus, f(r) is the
radial muon wave function, and p(r) is the nuclear
density; 8& and 82 depend on the speciGc form of the
vertex (24). In the particular model leading to the
Lagrangian (27) one has Bs Bi. The probab——ility of the
coherent process can be written as

( es

~(z) = 4 I

—l~'I G, (z) I'I B +3[1+F(z)]BiI' (30)

The dependence on Z is contained in Gs(Z), defined by
(29'), and in F(Z), which can be easily derived from Gi
and 62. An important simpliGcation occurs in the limit
in which one can take the muon wave function as a
constant in the integrals. In this limit Gs(Z) becomes
the Fourier transform of the nuclear form factor at the
relevant momentum transfer, as measured from electric
scattering experiments, and F(Z) is identically zero.
This is the approximation used by Weinberg and
Feinberg, " and it certainly holds for su%ciently light
elements. With this approximation 8(Z) has a maximum

"See, for instance, the review article by R. Gatto, in Fortschr.
Physik 7, 147 (1959).

"After this paper was submitted, a note by S. Weinberg and
G. Feinberg appeared in Phys. Rev. Letters 3, 111 (1959),dealing
extensively with this problem. We have therefore abridged this
section to deal only with a few points not examined in the paper by
Feinberg and Weinberg, to which we refer for more complete
dIscussron.
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around Z= 30 since G2(Z) is known to have a maximum
there. For heavier elements G2(Z) is no longer approxi-
mated by the Fourier transform of the nuclear form
factor, and F(Z) cannot be neglected. One finds that
F(Z) is negative and very small for light elements but
becomes large and positive for heavy elements. For Pb
one finds for F(Z) values between 2.5 and 5 depending
on the nuclear model and on the muon wave function.
Phenomenologically the most interesting case would be
B&))B&,since the term with 8& is already severely limited
from the present upper limit for p ~ e+y. In this case
the only relevant form factor is G2(Z). The probability
for the incoherent effect can easily be evaluated by
noting that it occurs by the same mechanism as ordinary
muon absorption with emission of a neutrino, and a
close examination shows that the ratio of the two
processes is a constant independent of Z, apart from
negligible minor sects. For the model leading to the
Lagrangian (27) one can compute the relation between
the total branching ratio, 8, for (bound p, )+nucleus
+e, among all p-captures, and the branching ratio E'
for p ~ e+p in p-decay. One Ands a general increase of
R by increasing Z, essentially because of the importance
of the term F(Z). For Z=10 the relation is R=0.9
)&10 ' R', for Z=30, R=2.8&(10 ' R', as calculated
with a Coulomb wave function and a Fermi shape for
the nucleus, for Pb one finds R=16)&10 ' R' with the
Wheeler wave function" and a square nuclear model.

' J. A. Wheeler, Revs. Modern Phys. 21, 133 (1949).

0. CONCLUSION

A possible nonlocal structure of the weak interactions,
for instance for p, —+ e+i+v, would lead to primary
effects such as deviations of the Anal spectra from those
predicted in the local theory, and to secondary sects,
namely to the existence of processes such as p, ~ e+p,
p —+ e+e+e, p+p~ p+e, p~e+y+y, forbidden in
the local theory. Under the hypothesis, supported by
the present experiments, that a possible structure, if it
exists, is due to rather large intermediate masses, we can
show that the dominant terms of the structure do not
contribute to any secondary effect. In fact such terms
can be transformed away through a canonical trans-
formation. Their only effect consists in an unobservable
redefinition of the electron and muon states. This
circumstance makes the rates for secondary reactions
such as p -+ e+y, p, -+ e+e+ e, p+ N ~p+X, p ~ e

+y+p, etc., anomalously small. The calculation of the
next terms of the structure contributing to the second-
ary reactions cannot be performed unambiguously.
With a simpli6ed model we 6nd figures of the order of
10 ' between the branching rate for muon captures
giving muon-electro' conversion and the branching rate
for p, —& e+y in free p decay. Considering the present
impossibility of producing reliable theoretical estimates
for the rates of the secondary reactions, the most con-
venient way to conclude on a possible structure for
weak interactions seems to be a very accurate measure-
ment of the muon-decay spectra, unless the structure
originates from very high intermediate manes.


