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I. Introduction and outline

♠ Hydrostatic approach widely used in Astrophysics [BINNEY-TREMAINE, 1987]

• Isothermal sphere for point particles [ANTONOV,1964],[LYNDEN-BELL,1968]

• Introduction of short-range repulsion [ARONSON-HANSEN,1972]

Key ingredients: Mean-field treatment of gravitational + Local equilibrium

♠ Statistical mechanics descriptions [PADMANABHAN, 1990] ⇒

Mathematical proofs in specific limits [MESSER-SPOHN, 1982], [KIESSLING-PERCUS, 1995]

RELIABILITY for a FINITE system ?

• II. Model and auxilary systems

• III. Scaling properties of the auxilary systems

• IV. Emergence of thermalization in the infinite system

• V. Hydrostatic description of the infinite system

• VI. Validity conditions for the finite system

• VII. Concluding comments
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II.1. Hard spheres with gravitational interactions

♠ We consider a gravitational model S made with

• N identical hard spheres (m,σ)

• enclosed in a spherical box (Λ = 4πR3/3)

• particle density n = N/Λ and mass density ρ = mn

♠ The corresponding Hamiltonian reads

HN =
N

X

i=1

p
2
i

2m
+

1

2

X

i6=j

v(|ri − rj |)

v(r) = ∞ for r < σ , v(r) = −Gm2/r for r > σ

⋄ No dispersion in shapes, sizes and masses

⋄ No sticking leading to agregation
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II.2. Microcanonical description

S isolated , with fixed energy E and no other conserved quantity .

♠ Microcanonical ensemble :

• Distribution in phase space

fmicro(r1, ..., rN ,p1, ...,pN ) = δ(E −HN )

• Number of microstates

Ω(E,N,Λ) = CN

Z

ΛN×R3N

Y

i

d3
rid3

piδ(E −HN )

Equilibrium state of S depends on N, ε = E/(GM2/R), η = πnσ3/6

⋄ fmicro is a stationary solution of evolution equations

⋄ Ω(E,N,Λ) is finite for σ > 0 ; it diverges for σ = 0 and N ≥ 3 [POMEAU, 2007]
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II.3. Auxiliary systems and the scaling continuous limit

♠ Sequence of similar auxiliary systems Sa with Na → ∞ :

• Ra = (Na/N)1/5R

• ma = (Na/N)−2/5m

• σa = (Na/N)−2/15σ

• Ea = (Na/N)E

That scaling limit (SL) defines an infinite continuous medium S∞ in a stationary
state controlled by the two independent dimensionless parameters :

• Dimensionless energy per particle ε = Ea/(GM2
a /Ra) = E/(GM2/R)

• Packing fraction η = πnaσ3
a/6 = πnσ3/6 .

⋄ Inspired from the usual TL with now mass density fixed ρa = mana = ρ

⋄ Other limits in the canonical ensemble [MESSER-SPOHN, 1982]

and grand-canonical ensemble [KIESSLING-PERCUS,1995] with G rescaled
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III.1. Bounds for the potential energy in the SL

♠ For any allowed configuration, the potential energy of Sa

VNa
= −

1

2

X

i6=j

Gm2
a

|ri − rj |

is larger than that of the collapsed configuration where the Na hard spheres make a

single cluster with size Lcoll ∼ N
1/3
a σa, which is of order −Gm2

aN
2
a /Lcoll. In the

scaling limit, this provides the classical version of H-stability

VNa
≥ −CHS

GN2/3m2

σ
Na

♠ For any allowed configuration, the potential energy should be
smaller than that of a homogeneous surface mass distribution Nama/(4πR2

a),

VNa
≤ −

GNm2

2R
Na
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III.2. Extensivity of potential energy in the SL

♠ Thanks to the extensivity of its upper and lower bounds, the average potential energy of Sa

〈VNa
〉 = −

1

2

Z

Λ2
a

d3
rd3

r
′ρ

(2)
a (r, r′)

G

|r − r′|

should also be extensive in the scaling limit (like the potential energy of an
homogeneous sphere with mass density ρ).

♠ Extensivity consistent with the expected scaling behaviours for q,q′,... fixed

lim
SL

ρa(qRa) = ρg(q; ε, η)

lim
SL

ρ
(2)
a (Raq, Raq

′) = ρ2g(2)(q,q′; ε, η)
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III.3. Fluctuations of the potential energy in the SL

♠ The fluctuations 〈V 2
Na

〉 − [〈VNa
〉]2 can be expressed as spatial integrals of

1/|r − r
′|2, 1/|r − r

′||r − r
′′|, and 1/|r − r

′||r′′ − r
′′′| weighted respectively by two-,

three- and four-body distribution functions. A simple estimation within the considered
scaling limit provides

〈V 2
Na

〉 − [〈VNa
〉]2 = o(N2

a )

♠ Accordingly, we will use in further estimations of averages involving VNa
the ansatz :

VNa
→ 〈VNa

〉 +WNa

for most contributing configurations with WNa
= o(Na) when Na → ∞

⋄ Non-rigorous although quite plausible (possible subtle correlations with other variables)

⋄ Confirmed by a posteriori estimations
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IV.1. The inhomogeneous mass density

♠ The mass density of Sa is

ρa(r) = ma〈

Na
X

i=1

δ(ri − r)〉

Using fmicro, the standard integration over the momenta pi leads to

ρa(r) = B(Ea, Na,Λa)

Z

Λ
Na−1
a ,|ri−rj |>σa

Na
Y

i=2

d3
ri[Ea − VNa

(r, r2, ..., rNa
)]3Na/2−1

♠ Introduce the gravitational potential Φ(r|r2, ..., rNa
) = ΦNa−1(r) at r created by the

(Na − 1) particles located at r2, ..., rNa
. Since

VNa
(r, r2, ..., rNa

) = VNa−1(r2, ..., rNa
) +maΦ(r|r2, ..., rNa

)

we obtain in the SL

ρa(r) ∼ cst

Z

ΛNa−1

dµNa−1

Na
Y

i=2

θ(|ri−r|/σa−1) [Ea − VNa−1]3/2

»

1 −
maΦNa−1(r)

Ea − VNa−1

–3Na/2−1
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IV.2. Emergence of thermalization in the infinite system

• Rewrite

»

1 −
maΦNa−1(r)

Ea − VNa−1

–3Na/2−1

= exp



(3Na/2 − 1) ln

»

1 −
maΦNa−1(r)

Ea − VNa−1

–ff

Since maΦNa−1(r) = O(1) and Ea − VNa−1 = O(Na), the expansion of the
logarithm leads to

»

1 −
maΦNa−1(r)

Ea − VNa−1

–3Na/2−1

∼ exp



−
3NamaΦNa−1(r)

2(Ea − VNa−1)

ff

• Applying the fluctuation ansatz, we find in the SL

ρa(r) ∼ cst

2

4

Z

ΛN−1
a

dµNa−1

Na
Y

i=2

θ(|ri − r|/σa − 1)

3

5 exp



−
3Namaφa(r)

2(Ea − 〈VNa
〉)

ff

with φa(r) = 〈maΦNa−1(r)〉.

⇒ THERMALIZATION with T∞ = limSL 2(E − 〈VNa
〉)/(3Na)
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V.1. Hydrostatic picture for the infinite system

♠ The hydrostatic approach for S∞ is justified thanks to

• Local thermodynamical equilibrium is ensured by hard-core repulsion entirely.

• At the local scale, particles feel the mean-field gravitational potential

φa(r) = −

Z

Λa

d3
r
′ρa(r′)

G

|r′ − r|

• The local correlation length λHS is much smaller
than the characteristic variation length Ra of ρa(r).

♠ Accordingly, the hydrostatic equilibrium reads for the rescaled quantities
g(q; ε, η) = limSL ρa(Raq)/ρ and ψ(q; ε, η) = limSL φa(Raq)/(GMa/Ra) of S∞, as

∇q [g(q; ε, η)pHS(ηg(q; ε, η))] = −g(q; ε, η)∇qψ(q; ε, η)/T∗(ε, η)

where pHS is the dimensionless hard-sphere pressure (no gravitation ) and
T∗(ε, η) = T∞/(GM2/NR).
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V.2. A few remarks about the hydrostatic equations

♠ Once the SL has been taken, we can take the limit η → 0 where pHS(ηρ(r)/ρ) → 1.

⇒ ISOTHERMAL SPHERE
[EMDEN,1907],[ANTONOV,1964],[LYNDEN-BELL,1968]

♠ Multiplicity of solutions for the hydrostatic equations

⇒ PHASE TRANSITIONS [CHAVANIS, 2006]

♠ Breakdowns of the hydrostatic approach

• For η = 0, when ε < −0.335...→ No solutions
• For ε sufficiently negative and/or η sufficiently large → local cristalisation
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V.3. Correlations and fluctuations in the SL

♠ Within the hydrostatic approach :

• Mass distribution ρa(r) varies on the scale Ra

• Correlations, like [ρ
(2)
a (r, r′) − ρa(r)ρa(r′)], decay over the hard-sphere local

correlation length λHS of order σa

♠ This implies :

• The average potential energy is indeed extensive , 〈VNa
〉 = Vself + Vcorr with

Vself = O(Na) and Vcorr = O(N
1/3
a ).

• Fluctuations behave as 〈V 2
Na

〉 − [〈VNa
〉]2 = O(Na)

⋄ Fluctuations similar to that of an ordinary system with short-range interactions
at thermodynamical equilibrium .
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VI.1. Extensivity condition for the finite system

♠ According to the analysis for Sa, Boltzmann-like factors also emerge
for the finite system S if

N

»

mΦN−1(r)

E − VN−1

–2

≪ 1

♠ That condition has to be fullfilled by the most probable configurations which determine theequilibriumstate
equilibrium state of S. This provides

[ψ(0; ε, η)]2

N [T∗(ε, η)]2
≪ 1

⋄ Fixed ε and η → N large enough

⋄ Fixed N → T∗(ε, η) large enough
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VI.2. Fluctuation condition for the finite system

♠ Another crucial step relies in the estimation of the a priori fluctuating exponential

exp

»

−
3NmΦN−1(r)

2(E − VN−1)

–

♠ Since a typical fluctuation of mΦN−1(r) is of order Gm2/σ, we obtain the
weak-coupling condition

Gm2

σT
≪ 1

which can be recast as
1

N2/3η1/3T∗(ε, η)
≪ 1

⋄ Fixed N and η → T∗(ε, η) large enough
⋄ Fixed N and T∗(ε, η) → η cannot be too small
⋄ Analysis of validity of Antonov’s mean-field theory requires to introduce a finite η
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VI.3. Astrophysical examples

♠ Globular clusters : R ≃ 50 pc , m ≃ 1 M⊙ , N ≃ 6 105 , δv ≃ 7 kms−1

[BINNEY-TREMAINE, 1987]

• Extensivity → YES

• Fluctuations → NO

The hydrostatic approach FAILS in relation with the formation of binaries

♠ Gas of dust : σ ≃ 15 µm , m ≃ 10−9 g , N ≃ 1034

[KALAS-GRAHAM-CLAMPIN, 2005]

• Extensivity → YES

• Fluctuations → YES

The hydrostatic approach WORKS because objects are sufficiently light

Angel Alastuey, Laboratoire de Physique, ENS Lyon, CNRS, France – p. 16/17



VII. Concluding comments

♠ Validity conditions of the hydrostatic approach for the hard-spheres model
→ Useful insights for astrophysical applications

A more complete analysis requires :

♠ Reliability of the model

• Choice of σ ?
• Box versus self-confinement ?
• Conservation of the total angular momentum → global rotation

[VOTYAKOV-HIDMI-DE MARTINO-GROSS,2002]

♠ Reliability of a microcanonical description and dynamical limitations

• Relaxation times versus the age of the system

• Existence of quasi-stationary states
[ANTONI-RUFFO-TORCINI,2004],[CHAVANIS,2005]

• Possible ergodicity breaking
[CHABANOL-CORSON-POMEAU,2000],[POSCH-THIRRING,2000]
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