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|. Introduction and outline

& Hydrostatic approach widely used in Astrophysics [BINNEY-TREMAINE, 1987]

¢ Isothermal sphere for point particles [ANTONOV,1964],[LYNDEN-BELL,1968]

¢ Introduction of short-range repulsion [ARONSON-HANSEN,1972]

Key ingredients: Mean-field treatment of gravitational + Local equilibrium

& Statistical mechanics descriptions [PADMANABHAN, 1990] =-
Mathematical proofs in specific limits [MESSER-SPOHN, 1982], [KIESSLING-PERCUS, 1995]

RELIABILITY for a FINITE system ?

® 1. Model and auxilary systems

® 1ll. Scaling properties of the auxilary systems

® IV. Emergence of thermalization in the infinite system
® V. Hydrostatic description of the infinite system

® VI. Validity conditions for the finite system

¢ VII. Concluding comments



I1.1. Hard spheres with gravitational interactions

& We consider a gravitational model S made with

N identical hard spheres (m,o)
enclosed in a spherical box (A = 47 R3/3)

particle density n = N/A and mass density p = mn

& The corresponding Hamiltonian reads

N o2
P; 1
iy =32l S (e )
; m 2=
1=1 1#£]
v(r)=occforr <o , v(r)=—-Gm?/rforr>c

¢ No dispersion in shapes, sizes and masses

¢ No sticking leading to agregation



I1.2. Microcanonical description

S isolated , with fixed energy FE and no other conserved quantity .

& Microcanonical ensemble :

Distribution in phase space

fmicro(rla - I'N,P1, 7pN> — 5(E - HN)

Number of microstates

Q(E,N,A) =Cy / [ [d®rid®pid(E — Hy)

AN xR3N —

Equilibrium state of S dependson N,e = E/(GM?/R),n = mno3/6

o fmicro 1S @ stationary solution of evolution equations

o Q(E,N,A) isfinite foro > 0; itdiverges forc =0and N >3 [PoMEAU, 2007]



11.3. Auxiliary systems and the scaling continuous limit

& Sequence of similar auxiliary systems S, with N, — oo :

Ra = (Na/N)'Y/°R
ma = (Na/N)~2/5m
0a = (Na/N)~2/154
Ea = (Na/N)E

That scaling limit (SL) defines an infinite continuous medium S in a stationary

state controlled by the two independent dimensionless parameters
Dimensionless energy per particle e = E,/(GM2/R,) = E/(GM?/R)

Packing fraction n = mn,o3 /6 = mno3/6 .

¢ Inspired from the usual TL with now mass density fixed p, = mana = p

& Other limits in the canonical ensemble [MESSER-SPOHN, 1982]
and grand-canonical ensemble  [KIESSLING-PERCUS,1995] with G rescaled



I11.1. Bounds for the potential energy in the 5L

& For any allowed configuration, the potential energy of S,

___Z |rz

is larger than that of the collapsed configuration where the N, hard spheres make a

single cluster with size L., ~ N;/Saa, which is of order —Gm2N?2/L¢on. In the
scaling limit, this provides the classical version of H-stability

G N2/3m2
Z _CHS m Na
o

a

& For any allowed configuration, the potential energy should be
smaller than that of a homogeneous surface mass distribution Nam, /(47 R2),

GNm?

Ve < —
Na =""9R




I11.2. Extensivity of potential energy in the SL

7

& Thanks to the extensivity of its upper and lower bounds, the average potential energy of S,

G

r — /|

1
Vi) = =3 [, ard" o) (r.1)

should also be extensive in the scaling limit (like the potential energy of an
homogeneous sphere with mass density p).

& Extensivity consistent with the expected scaling behaviours for q,q’,... fixed
lim pa(qRa) = pg(g; €, m)

. 2
lim p$?) (Raq, Rad') = p29 (a,d';¢,7m)



I11.3. Fluctuations of the potential energy in the SL

& The fluctuations (V]%a) — [(Vn,)]? can be expressed as spatial integrals of

1/lr —r'|?,1/|r — ¢'||r — |, and 1/|r — ¢/||x"" — r'"’| weighted respectively by two-,
three- and four-body distribution functions. A simple estimation within the considered
scaling limit provides

(VR = (V)12 = o(N3)

& Accordingly, we will use in further estimations of averages involving Vi, the ansatz :

VN, — (Vn,) + Wn,

for most contributing configurations with Wy, = o(NNa) when Ny — oo
o Non-rigorous although quite plausible (possible subtle correlations with other variables)

o Confirmed by a posteriori estimations



IV.1. The inhomogeneous mass density

& The mass density of S, is

Na

pa(r) = ma (> 6(r; — 1))

1=1

Using fmicro, the standard integration over the momenta p; leads to

N,
pa(r) = B(Ea, Na, Aa) /N B [T [Ba — Vi, (r,v2, .. ey, )N/
Aa @ Llri—rj|>04 =2

& Introduce the gravitational potential ®(r|r2,...,ry, ) = @, —1(r) at r created by the
(Na — 1) particles located at ra, ..., rn, . Since

Vn,(r,ra,..,rNy, ) = VN, —1(r2,...,rN, ) + Mma®(r|ra,...,rN,)

we obtain in the SL

N

Pa(r) ~ cst/ dun, —1 H O(|r;—r|/oa—1) [Ea — VNa—1]3/2 1 — a
ANa—1 i=2




IV.2. Emergence of thermalization in the infinite syst

Rewrite

B 3N, /2—1 B
{1_"” Na 1<“)] :exp{(3Na/2—1)1n {1_"” Na 1“')”
Ea— VN, -1 Ea— VN, -1

Since m,®n,—1(r) = O(1) and E, — Vi, —1 = O(Na), the expansion of the
logarithm leads to

{1 B maCI)Nal(r)] /2=t exb {_3Namaq)Na1(r) }
Ea— VN, -1 2(Ea — VN, —1)

Applying the fluctuation ansatz, we find in the SL

N r
pa(r) ~ cst [/ANl dun, —1 H O(lr; —r|/oa — 1)] exp {_szga —a(f/i i) }
a i=2 * *

With ¢a(r) = (ma® N, —1(r)).
= THERMALIZATION with Too = limgyz, 2(E — (V. ))/(3Na)



V.1. Hydrostatic picture for the infinite syste

& The hydrostatic approach for S is justified thanks to

Local thermodynamical equilibrium is ensured by hard-core repulsion entirely.

At the local scale, particles feel the mean-field gravitational potential

G

v —r

6alr) == [ &'pulr’)

a

The local correlation length Agg is much smaller
than the characteristic variation length R, of p,(r).

& Accordingly, the hydrostatic equilibrium reads for the rescaled quantities
g(a;e,n) = limgsy, pa(Raq)/p and ¢(q; e, n) = limsy, ¢pa(Raq)/(GMa/Ra) of So, as
Valg(ase,n)pus(ng(ase,n))] = —g(a;e,m)Vap(a;e,n)/T" (e, m)

where pyg is the dimensionless hard-sphere pressure (no gravitation ) and
T*(e,n) = Too/(GM?/NR).

m



V.2. A few remarks about the hydrostatic equations

& Once the SL has been taken, we can take the limit » — 0 where pig(np(r)/p) — 1.

= ISOTHERMAL SPHERE
[EMDEN,1907],[ANTONOV,1964],[LYNDEN-BELL,1968]

& Multiplicity of solutions for the hydrostatic equations
= PHASE TRANSITIONS [CHAVANIS, 2006]

& Breakdowns of the hydrostatic approach

For n = 0, when ¢ < —0.335... — No solutions

For e sufficiently negative and/or n sufficiently large — local cristalisation



V.3. Correlations and fluctuations in the SL

& Within the hydrostatic approach :

Mass distribution p, (r) varies on the scale R,

Correlations, like [pg(f)(r, r’) — pa(r)pa(r’)], decay over the hard-sphere local
correlation length Agg of order o,

& This implies :
The average potential energy is indeed extensive , (Vi) = Vzelr + Veorr With
Viett = O(Na) and Veorr = O(NZ/3).
Fluctuations behave as (Vg ) — [(V,)]? = O(Na)

¢ Fluctuations similar to that of an ordinary system with short-range interactions
at thermodynamical equilibrium



VI.1. Extensivity condition for the finite system

& According to the analysis for S,, Boltzmann-like factors also emerge
for the finite system S if

B 2
N L)
E—-VN_1

& That condition has to be fullfilled by the most probable configurations which determine theeq
equilibrium state of S. This provides

[(0;€,m)]
N[T*(e,n)]?

<1
o Fixed € and n — N large enough

o Fixed N — T*(e,n) large enough



VI.2. Fluctuation condition for the finite syste

& Another crucial step relies in the estimation of the a priori fluctuating exponential

3qu)N_1(I')
2(E — Vin_1)

exp | —

& Since a typical fluctuation of m® n_1 (r) is of order Gm? /o, we obtain the
weak-coupling condition

Gm?

ol

<1

which can be recast as
1

N2/3771/3T*(

<1
,1)

o Fixed N andn — T*(e,n) large enough
o Fixed N and T*(e,n) — m cannot be too small
¢ Analysis of validity of Antonov’s mean-field theory requires to introduce a finite 7

m



VI.3. Astrophysical examples

® Globularclusters : R~50pc , m~1Mg , N~610° , év~7kms™!
[BINNEY-TREMAINE, 1987]

Extensivity — YES

Fluctuations — NO
The hydrostatic approach FAILS in relation with the formation of binaries

# Gasofdust : o~15um , m~10"2g , N~ 1034
[KALAS-GRAHAM-CLAMPIN, 2005]

Extensivity — YES

Fluctuations — YES

The hydrostatic approach WORKS because objects are sufficiently light



VII. Concluding comments

& Validity conditions of the hydrostatic approach for the hard-spheres model
— Useful insights for astrophysical applications

A more complete analysis requires :

& Reliability of the model

Choice of o ?
Box versus self-confinement ?

Conservation of the total angular momentum — global rotation
[VOTYAKOV-HIDMI-DE MARTINO-GROSS,2002]

& Reliability of a microcanonical description and dynamical limitations

Relaxation times versus the age of the system

Existence of quasi-stationary states
[ANTONI-RUFFO-TORCINI,2004],[CHAVANIS,2005]

Possible ergodicity breaking
[CHABANOL-CORSON-POMEAU,2000],[POSCH-THIRRING,2000]
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