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We study the largest Lyapunov exponenand the finite size effects of a systemMffully coupled
classical particles, which shows a second order phase transition. Slightly below the critical energy
density U., A shows a peak which persists for very larjevalues(N = 20000). We show, both
numerically and analytically, that chaoticity is strongly related to kinetic energy fluctuations. In the limit
of small energyA goes to zero with atv-independent power lawt ~ /U. In the continuum limit
the system is integrable in the whole high temperature phase. More precisely, the bahavigr /3
is found numerically forU > U. and justified on the basis of a random matrix approximation.
[S0031-9007(97)05121-1]
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Recently, the interest in phase transitions occurring irone atU, = (E/N). = 0.75 [5]. Some results for the
finite-size systems and the study of the related dynamicdlLE of systems of moderate siz€8 ~ 100) have already
features has stimulated the investigation of the so fabeen published [6]. The model, though relatively simple,
obscure relation between macroscopic thermodynamicdlas very general properties which enable us to explore
properties and microscopic dynamical ones. In this respet¢he connections between phase transitions and dynamical
several papers appeared in the recent literature in variodsatures in finite systems. In particular, it could be relevant
fields ranging from solid state physics [1-7] to lattice for nuclear multifragmentation where one has 100-200
field theory [8] and nuclear physics [9,10], where thereparticles interacting via long-range (nuclear and Coulomb)
is presently a lively debate on multifragmentation phasdorces [11]. In this latter case a very similar caloric curve
transition [9—13]. The general expectation is that there ifhias been observed [12] and critical exponents have been
a close connection between the increase of fluctuations ateasured experimentally [13].

a phase transition and a rapid increase of chaoticity at the The main results of the Letter are as follows: (a) The
microscopic level. In several pioneering papers a differensystem is strongly chaotic just below the canonical tran-
behavior of the largest Lyapunov exponent (LLEWwas  sition energyU.. The peak inA(U), found in [6] for
found, according to the order of the transition [3,7,8,10].small systems, persists As— «. (b) The increase of the

In particular, a well pronounced peak in LLE has beenLLE is related to the increase of kinetic energy fluctua-
found for second order phase transitions, while a sharfions. (c) ForU — 0, A — 0 asU“ where the exponent
increase has been seen for first order phase transitions. imfound to beow = 0.5. Essentially no dependence on the
the former case some universal features have also beagstem size is observed in this regime. A similar result
found, i.e., different systems show the same behaviowas found for other systems [10,14]. (d) For> U.,,
when properly scaled [10]. In order to connect dynamicalh — 0 asN /3. This behavior is explained by means of
properties of systems of sizZ€ to bulk phase transitions, arandom matrix approximation [15]. (e) Long-lived qua-
one has to explore the continuum limit — . This, sistationary states are found in the critical region. These
unfortunately, is not always possible due to computer timestates look very similar to those recently obtained in [16]
limitations, and has been done very rarely. In this Letteland simulate a discrepancy between the canonical and the
we present numerical investigations of tNedependence microcanonical ensemble very similar to that one found
of the LLE up toN = 20000, a size for which we already in Refs. [17] and more recently by other authors [18—21].
observe a certain convergence to the continuum limit. W& he fact that they appear near a second order phase transi-
have investigated a toy model consisting Mfclassical tion might be related to critical slowing down.

particles moving on the unit circle and interacting via The Hamiltonian we consider is the following:
long-range forces [5]. This model shows a second order

phase transition from a clustered phase to a homogeneous H(g,p)=K +V, 1)
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where following numerical results for system sizes in between
N e & N = 100 andN = 20000.
K=> —pk V== >I[1-codg — ¢l In Fig. 1 we plot the caloric curve, i.e., the temperature
=2 IN 5= as a function o/, and we compare it with the theoretical

(2)  canonical prediction [5] (in the inset we show the mag-

are the kinetic and potential energies. The model describditization). Simulations performed starting from equili-
the motion ofN' particles on the unit circle: each particle Prated initial data, which are Gaussian in momenta at the
interacts with all the others. One can define a spin vectodiVen canonical temperature, agree very well with canoni-
associated with each partiaie; = (cogg;), sin(g;)). The cal predictions. In fact, it is possible to solve the station-
Hamiltonian then describe¥ classical spins similarly to @y VIasov equation, which represents the system in the
the XY model, and a ferromagnetic or an antiferromagnetidy — © limit, and obtain, under the factorization hypothe-
behavior according to the positive or negative sign ofSiS for the probability distributionP(q, p) = f(q)g(p),

e, respectively [5]. In the following we will consider and assuming(p) to be Gaussian

only the ferromagnetic (attractive) case and in particular 1 M codg — )

€ = 1. Results concerning the case= —1 will be flg) = mexify
discussed elsewhere [22]. The order parameter is the mag- mlo(M/T)

netizationM, defined aM = & >V, m; = (M,, M,). It 1 P

is convenient to rewrite the potential energyas g(p) = 27T exp( 2T>'

V= N [ - (M? + M2)] _ N (1 - M?). 3) In the latter, I, is the modified Bessel function of zero
2 . Y 2 order, andM the canonical equilibrium magnetization.
The equilibrium probability distributions found numeri-
. y cally are in fair agreement with these theoretical predic-
a a ' tions. However, around the critical energy, relaxation to
a9 P ar '’ Sinlgi) M. + cosqi)My . equilibrium depends in a very sensitive way on the ini-
(4) tial conditions adopted. When starting with “water bag”
initial conditions, i.e., a flat probability distribution of fi-
nite width centered around zero fgf p), and putting all
1 d(@) particle positions;; at zero, we find quasistationary (long
A= !ﬁ]o 7 In m ’ ®) living) nonequilibrium states. These states have a lifetime
which increases witlV, and are therefore stationary in the

The equations of motion can then be written as

In order to calculate the LLE one must consider the limit

with d(r) = \/ §V=1(5ql-)2 + (8 p;)* the metric distance
calculated from the infinitesimal displacements at time

Therefore, one has to integrate along the reference orbit ]
the linearized equations of motion 06 L i
d d 92V :
— 0q; = Opi, —0pi = — 04;, 6
dr °1 P ar °F ; dqidq; 1 ©) 05 .
where the diagonal and off-diagonal terms are 04 + 4
Y . 1 = i
—5 = codq)M; + sin(g)M, — —, (7) 0.3 -«
9qi N L i
Theory (c.e.)
EXa% 1 0.2 o N=100 |
= —— g P i v N=1000
9q;9q; N cosdgi ~ 4;); LE ®) 0 N=5000
. . _ 01 4 N=20000 1
Expression (7) can also be written for convenience as ; o----@ N=20000 QSS
azv 1 OO L | L I 1 | L | ) | 1 | 1 i | 1
—5 = Mcodg; — D) — —, 9) 0.0 0.1 0.2 03 04 05 06 0.7 0.8 09

where® is the phase oM. We have integrated Egs. (4) FiG. 1. Theoretical predictions in the canonical ensemble
and (6) using fourth order symplectic algorithms [23] (full curve) for 7 vs U in comparison with numerical
with a time stepAr = 0.2, adjusted to keep the error in simulations (microcanonical ensemble) fof = 100, 1000,
energy conservation beIOV\AfEE —10-5. The LLE was 5000, 20000. The vertical line indicates the canonical critical

. energyU,. = 0.75. We plot also the microcanonical results for
calculated by the standard method of Benegtiral. [24]. the quasistationary states (QSS) in the cAse= 20000 (full

The average number of time steps in order to get a googircles). In the inset we show the magnetizationivsagain
convergence was of the ordéf®. We discuss in the the full line is the canonical theoretical prediction.
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continuum limit. We plot in Fig. 1 the caloric curve for N = 20000. The location of the peak is just below the
these states in the cagé= 20000. The points plotted critical energy atU/ ~ 0.67 and depends very weakly on
are the result of an integration 6f5 X 10° time steps. N. At variance with what is suggested in Ref. [10] the
They are far from the equilibrium caloric curve around peak does not grow withv.
U., showing a region of negative specific heat and a con- The standard deviation of the kinetic energy per
tinuation of the high temperature phase (lindavs U re-  particle o(K)/+/N is plotted in Fig. 2(b). In the low
lation) into the low temperature one. It is very intriguing energy region this quantity is in agreement with the ca-
that this out-of-equilibrium quasistationary states indicatenonical calculationr(K)/+/N « U. In correspondence to
a caloric curve very similar to that one found for first or- the Lyapunov peak, we observe also a sharp maximum of
der phase transitions in Refs. [17-21]. In that case, howkinetic energy fluctuations, though finite-size effects are
ever, the corresponding states are stationary also at finisgronger for the LLE than for kinetic energy fluctuations.
N. The coexistence of different states in the continuumrhus, probes of chaotic behavior (LLE) and thermody-
limit near the critical region is a purely microcanonical ef- namical quantities (e.qg., kinetic energy fluctuations) seem
fect. It arises after the inversion of the— oo limit with to be strongly related. We discuss here an intuitive
the N — « one and could be considered as the typicainterpretation of the relation between LLE and kinetic
signature of critical slowing down. fluctuations. Each of the linearized equations (6) contains
We have studied how finite-size effects influence thediagonal (7) and off-diagonal (8) terms. Since the off-
behavior of the LLE. In Fig. 2(a) we plot as a function diagonal terms result from a sum of incoherent terms, we
of U for various N values. In the limit of very small can, in a first approximation, neglect them. The diagonal
and very large energies, the system is quasi-integrable, thierm is of orderM? [see Egs. (7) and (9)] and averages
Hamiltonian reducing to that of weakly coupled harmonicto (M?) = T + 1 — 2U. |f this term would be constant
oscillators in the former case and to that of free rotators inn time, the LLE would be zero. In fact, in this case one
the latter. In the region of weak chaos, fdr< 0.25, the  gets the equations for uncoupled harmonic oscillators.
curve has a weakK dependence. Thenchanges abruptly However, there are fluctuations, which give a nonzero
and a region of strong chaos begins. In Ref. [5] it wascoupling, whose standard deviatienM?) is related to
observed that in betwedn = 0.2 andU = 0.3 a different  the one of the kinetic energy(M?) = 20(K)/N, consid-
dynamical regime sets in and particles start to evaporatering the relationshigd® = 2(K)/N. This indicates that
from the main cluster. A similar regime was found in the LLE is strictly related to kinetic energy fluctuations,
Ref. [10]. This behavior is also similar to that found in but this relation is not simple and quite difficult to extract
Ref. [3] at the solid-liquid transition. In this region of analytically (some indications in this sense were recently
strong chaoticity we observe a pronounced peak alreadyroposed also in Ref. [14]). In the low energy phase
for N = 100 [6], which persists and becomes broader for(U < 0.25) it is possible to work out a more stringent
relation. In this case, the components of the tangent
vector sum up incoherently to give for the average growth

095 S a term of the size/N M2. It is then quite natural to
« associate the Lyapunov exponent to the inverse time scale

0.20 | @ ©0 4 o 7 given by the fluctuations of the average growth
0.15 | gﬁf @00 K

< A i Vg A2~a(\/ﬁM2)~2$_). (10)
o1 B o Vv VN
0.05 ‘@v Df = N Then, substituting the canonical estimation for kinetic
oood®™®” |0 energy fluctuations in Eq. (10), we getx /U. We have

tested numerically this prediction [see Fig. 3(a)]. THe
power law at small/ values is fully confirmed. We have

03 [ (b) ON=100 4

¥ N=1000 checked numerically that off-diagonal terms (9) cannot

S ON=5000 — 2 .
> 02 | atoo0o | | be completely neglected—especially in the strong chaotic
= - region. This latter important remark is also relevant for

.':4_/ Yo 5 the application of a recently derived formula for the LLE
B 01 f ©C0000 0 [7] (see also [22,25]). A similar power law behavior was

oV i B g also found for other systems [26].
1 L 1 1 D . . . .
0'00_0 02 04 06 08 10 12 1.4 At variance with theN-independent behavior observed
U at small energyU, strong finite-size effects are present

) i aboveU,.. In Fig. 3(b) we show, foly > U,., how the
FIG. 2. (a) Numerical calculation of the largest Lyapunov| | g goes to zero as a function df. We also plot
exponent as a function @f for various system sizes! = 100, '

1000, 5000, and 20000. (b) Kinetic energy fluctuations vsin the same fig_ure a calqulation'(')f the LLE u_sing a
U. The vertical line indicates the canonical critical energy’@ndom distribution of particle positiong on the circle
U. = 0.75. in the equations for the tangent vector (6). The agreement
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