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Lyapunov Instability and Finite Size Effects in a System with Long-Range Forces
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We study the largest Lyapunov exponentl and the finite size effects of a system ofN fully coupled
classical particles, which shows a second order phase transition. Slightly below the critical energ
density Uc, l shows a peak which persists for very largeN values sN ­ 20 000d. We show, both
numerically and analytically, that chaoticity is strongly related to kinetic energy fluctuations. In the limit
of small energy,l goes to zero with anN-independent power law:l ,

p
U. In the continuum limit

the system is integrable in the whole high temperature phase. More precisely, the behaviorl , N21y3

is found numerically forU . Uc and justified on the basis of a random matrix approximation.
[S0031-9007(97)05121-1]

PACS numbers: 05.45.+b, 03.20.+ i, 05.70.Fh
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Recently, the interest in phase transitions occurring
finite-size systems and the study of the related dynamic
features has stimulated the investigation of the so f
obscure relation between macroscopic thermodynamic
properties and microscopic dynamical ones. In this respe
several papers appeared in the recent literature in vario
fields ranging from solid state physics [1–7] to lattice
field theory [8] and nuclear physics [9,10], where ther
is presently a lively debate on multifragmentation phas
transition [9–13]. The general expectation is that there
a close connection between the increase of fluctuations
a phase transition and a rapid increase of chaoticity at t
microscopic level. In several pioneering papers a differe
behavior of the largest Lyapunov exponent (LLE)l was
found, according to the order of the transition [3,7,8,10
In particular, a well pronounced peak in LLE has bee
found for second order phase transitions, while a sha
increase has been seen for first order phase transitions.
the former case some universal features have also be
found, i.e., different systems show the same behavi
when properly scaled [10]. In order to connect dynamica
properties of systems of sizeN to bulk phase transitions,
one has to explore the continuum limitN ! `. This,
unfortunately, is not always possible due to computer tim
limitations, and has been done very rarely. In this Lette
we present numerical investigations of theN dependence
of the LLE up toN ­ 20 000, a size for which we already
observe a certain convergence to the continuum limit. W
have investigated a toy model consisting ofN classical
particles moving on the unit circle and interacting via
long-range forces [5]. This model shows a second ord
phase transition from a clustered phase to a homogeneo
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one atUc ­ sEyNdc ­ 0.75 [5]. Some results for the
LLE of systems of moderate sizessN ø 100d have already
been published [6]. The model, though relatively simp
has very general properties which enable us to expl
the connections between phase transitions and dynam
features in finite systems. In particular, it could be releva
for nuclear multifragmentation where one has 100–2
particles interacting via long-range (nuclear and Coulom
forces [11]. In this latter case a very similar caloric curv
has been observed [12] and critical exponents have b
measured experimentally [13].

The main results of the Letter are as follows: (a) T
system is strongly chaotic just below the canonical tra
sition energyUc. The peak inlsUd, found in [6] for
small systems, persists asN ! `. (b) The increase of the
LLE is related to the increase of kinetic energy fluctu
tions. (c) ForU ! 0, l ! 0 asUa where the exponent
is found to bea ­ 0.5. Essentially no dependence on th
system size is observed in this regime. A similar res
was found for other systems [10,14]. (d) ForU . Uc,
l ! 0 asN21y3. This behavior is explained by means o
a random matrix approximation [15]. (e) Long-lived qua
sistationary states are found in the critical region. The
states look very similar to those recently obtained in [1
and simulate a discrepancy between the canonical and
microcanonical ensemble very similar to that one fou
in Refs. [17] and more recently by other authors [18–2
The fact that they appear near a second order phase tra
tion might be related to critical slowing down.

The Hamiltonian we consider is the following:

Hsq, pd ­ K 1 V , (1)
© 1998 The American Physical Society
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where

K ­
NX

i­1

1
2

p2
i , V ­

e

2N

NX
i,j­1

f1 2 cossqi 2 qjdg

(2)

are the kinetic and potential energies. The model descri
the motion ofN particles on the unit circle: each particle
interacts with all the others. One can define a spin vec
associated with each particlemi ­ sss cossqid, sinsqidddd. The
Hamiltonian then describesN classical spins similarly to
theXY model, and a ferromagnetic or an antiferromagne
behavior according to the positive or negative sign
e, respectively [5]. In the following we will consider
only the ferromagnetic (attractive) case and in particul
e ­ 1. Results concerning the casee ­ 21 will be
discussed elsewhere [22]. The order parameter is the m
netizationM, defined asM ­ 1

N

PN
i­1 mi ­ sMx , Myd. It

is convenient to rewrite the potential energyV as

V ­
N
2

f1 2 sM2
x 1 M2

y dg ­
N
2

s1 2 M2d . (3)

The equations of motion can then be written as

d
dt

qi ­ pi ,
d
dt

pi ­ 2 sinsqidMx 1 cossqidMy .

(4)

In order to calculate the LLE one must consider the limi

l ­ lim
t!`

1
t

ln
dstd
ds0d

, (5)

with dstd ­
qPN

i­1sdqid2 1 sdpid2 the metric distance
calculated from the infinitesimal displacements at timet.
Therefore, one has to integrate along the reference o
the linearized equations of motion

d
dt

dqi ­ dpi,
d
dt

dpi ­ 2
X

j

≠2V
≠qi≠qj

dqj , (6)

where the diagonal and off-diagonal terms are

≠2V

≠q2
i

­ cossqidMx 1 sinsqidMy 2
1
N

, (7)

≠2V
≠qi≠qj

­ 2
1
N

cossqi 2 qjd, i fi j . (8)

Expression (7) can also be written for convenience as

≠2V

≠q2
i

­ M cossqi 2 Fd 2
1
N

, (9)

whereF is the phase ofM. We have integrated Eqs. (4)
and (6) using fourth order symplectic algorithms [23
with a time stepDt ­ 0.2, adjusted to keep the error in
energy conservation belowDE

E ­ 1025. The LLE was
calculated by the standard method of Benettinet al. [24].
The average number of time steps in order to get a go
convergence was of the order106. We discuss in the
bes
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following numerical results for system sizes in between
N ­ 100 andN ­ 20 000.

In Fig. 1 we plot the caloric curve, i.e., the temperature
as a function ofU, and we compare it with the theoretical
canonical prediction [5] (in the inset we show the mag
netization). Simulations performed starting from equili-
brated initial data, which are Gaussian in momenta at th
given canonical temperature, agree very well with canon
cal predictions. In fact, it is possible to solve the station
ary Vlasov equation, which represents the system in th
N ! ` limit, and obtain, under the factorization hypothe-
sis for the probability distribution,Psq, pd ­ fsqdgspd,
and assuminggspd to be Gaussian

fsqd ­
1

2pI0sMyTd
exp

µ
M cossq 2 Fd

T

∂
,

gspd ­
1

p
2pT

exp

µ
2

p2

2T

∂
.

In the latter,I0 is the modified Bessel function of zero
order, andM the canonical equilibrium magnetization.
The equilibrium probability distributions found numeri-
cally are in fair agreement with these theoretical predic
tions. However, around the critical energy, relaxation to
equilibrium depends in a very sensitive way on the ini-
tial conditions adopted. When starting with “water bag”
initial conditions, i.e., a flat probability distribution of fi-
nite width centered around zero forgspd, and putting all
particle positionsqi at zero, we find quasistationary (long
living) nonequilibrium states. These states have a lifetim
which increases withN, and are therefore stationary in the

FIG. 1. Theoretical predictions in the canonical ensembl
(full curve) for T vs U in comparison with numerical
simulations (microcanonical ensemble) forN ­ 100, 1000,
5000, 20 000. The vertical line indicates the canonical critica
energyUc ­ 0.75. We plot also the microcanonical results for
the quasistationary states (QSS) in the caseN ­ 20 000 (full
circles). In the inset we show the magnetization vsU; again
the full line is the canonical theoretical prediction.
693
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continuum limit. We plot in Fig. 1 the caloric curve for
these states in the caseN ­ 20 000. The points plotted
are the result of an integration of0.5 3 106 time steps.
They are far from the equilibrium caloric curve aroun
Uc, showing a region of negative specific heat and a co
tinuation of the high temperature phase (linearT vs U re-
lation) into the low temperature one. It is very intriguin
that this out-of-equilibrium quasistationary states indica
a caloric curve very similar to that one found for first or
der phase transitions in Refs. [17–21]. In that case, ho
ever, the corresponding states are stationary also at fi
N . The coexistence of different states in the continuu
limit near the critical region is a purely microcanonical e
fect. It arises after the inversion of thet ! ` limit with
the N ! ` one and could be considered as the typic
signature of critical slowing down.

We have studied how finite-size effects influence th
behavior of the LLE. In Fig. 2(a) we plotl as a function
of U for various N values. In the limit of very small
and very large energies, the system is quasi-integrable,
Hamiltonian reducing to that of weakly coupled harmon
oscillators in the former case and to that of free rotators
the latter. In the region of weak chaos, forU , 0.25, the
curve has a weakN dependence. Thenl changes abruptly
and a region of strong chaos begins. In Ref. [5] it wa
observed that in betweenU ­ 0.2 andU ­ 0.3 a different
dynamical regime sets in and particles start to evapor
from the main cluster. A similar regime was found i
Ref. [10]. This behavior is also similar to that found in
Ref. [3] at the solid-liquid transition. In this region of
strong chaoticity we observe a pronounced peak alrea
for N ­ 100 [6], which persists and becomes broader fo

FIG. 2. (a) Numerical calculation of the largest Lyapuno
exponent as a function ofU for various system sizes:N ­ 100,
1000, 5000, and 20 000. (b) Kinetic energy fluctuations
U. The vertical line indicates the canonical critical energ
Uc ­ 0.75.
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N ­ 20 000. The location of the peak is just below the
critical energy atU , 0.67 and depends very weakly on
N . At variance with what is suggested in Ref. [10] the
peak does not grow withN.

The standard deviation of the kinetic energy pe
particle ssKdy

p
N is plotted in Fig. 2(b). In the low

energy region this quantity is in agreement with the ca
nonical calculationssKdy

p
N ~ U. In correspondence to

the Lyapunov peak, we observe also a sharp maximum
kinetic energy fluctuations, though finite-size effects ar
stronger for the LLE than for kinetic energy fluctuations
Thus, probes of chaotic behavior (LLE) and thermody
namical quantities (e.g., kinetic energy fluctuations) see
to be strongly related. We discuss here an intuitiv
interpretation of the relation between LLE and kineti
fluctuations. Each of the linearized equations (6) contai
diagonal (7) and off-diagonal (8) terms. Since the off
diagonal terms result from a sum of incoherent terms, w
can, in a first approximation, neglect them. The diagon
term is of orderM2 [see Eqs. (7) and (9)] and average
to kM2l ­ T 1 1 2 2U. If this term would be constant
in time, the LLE would be zero. In fact, in this case on
gets the equations for uncoupled harmonic oscillator
However, there are fluctuations, which give a nonze
coupling, whose standard deviationssM2d is related to
the one of the kinetic energyssM2d ­ 2ssKdyN, consid-
ering the relationshipT ­ 2kKlyN. This indicates that
the LLE is strictly related to kinetic energy fluctuations
but this relation is not simple and quite difficult to extrac
analytically (some indications in this sense were recent
proposed also in Ref. [14]). In the low energy phas
sU , 0.25d it is possible to work out a more stringent
relation. In this case, the components of the tange
vector sum up incoherently to give for the average grow
a term of the size

p
N M2. It is then quite natural to

associate the Lyapunov exponent to the inverse time sc
given by the fluctuations of the average growth

l2 , ss
p

N M2d , 2
ssKd
p

N
. (10)

Then, substituting the canonical estimation for kineti
energy fluctuations in Eq. (10), we getl ~

p
U. We have

tested numerically this prediction [see Fig. 3(a)]. The1y2
power law at smallU values is fully confirmed. We have
checked numerically that off-diagonal terms (9) canno
be completely neglected—especially in the strong chao
region. This latter important remark is also relevant fo
the application of a recently derived formula for the LLE
[7] (see also [22,25]). A similar power law behavior wa
also found for other systems [26].

At variance with theN-independent behavior observed
at small energyU, strong finite-size effects are presen
aboveUc. In Fig. 3(b) we show, forU . Uc, how the
LLE goes to zero as a function ofN. We also plot
in the same figure a calculation of the LLE using
random distribution of particle positionsqi on the circle
in the equations for the tangent vector (6). The agreeme



VOLUME 80, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 26 JANUARY 1998

.

FIG. 3. Behavior of the largest Lyapunov exponent (LLE) fo
U much smaller (a) and much greater (b) thanUc ­ 0.75. In
panel (a) LLE shows a universal law which can be fitted b
a 1y2 power law (full line). NoN dependence is found. In
(b) the LLE, for differentN and energies, is compared with
a calculation done with a random choice of particle position
(diamonds). The latter follow a power law with an exponen
21y3 (dashed line) (see text).

between the deterministic estimate and this random mat
calculation is very good. We find also thatl scales as
N21y3, as indicated by the fit in Fig. 3(b). This can be
explained by means of an analytical result obtained for th
LLE of product of random matrices [15]. If the elements
of the symplectic random matrix have zero mean, the LL
scales with the power2y3 of the perturbation. In our
case, the latter condition is satisfied and the perturbati
is the magnetizationM. SinceM scales asN21y2, we
get the right scaling ofl with N . This proves that the
system is integrable forU $ Uc asN ! `. This result is
also confirmed by a recent, more sophisticated theoretic
calculation [25].

In conclusion, we have investigated the Lyapunov inst
bility for a system with long-range forces showing a secon
order phase transition. We found strong finite-size effec
in the LLE. The LLE is peaked just below the critical en
ergy, where kinetic fluctuations are maximal. Away from
the transition region, the LLE goes to zero with universa
scaling laws which can be explained by simple theoretic
arguments. We think that this toy model contains all th
main ingredients to understand the general behavior of t
LLE in more realistic situations.
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