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Measurement of the Intrinsic Dissipation of a Macroscopic System in the Quantum Regime
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We report on the first measurements of the intrinsic dissipation in a macroscopic system cooled at
very low temperature (35 mK) and operating in the quantum regime. The system under study is an rf
SQUID with a high quality Josephson junction. Below 50 mK the tunneling probability of escape from
a metastable well vs applied flux presents a series of maxima due to energy level quantization. From
the shape of the tunneling probability we can evaluate the intrinsic dissipation related to the overall
system as well as the coherence time related to the Rabi oscillations in a future macroscopic quantum
coherence experiment. [S0031-9007(99)09476-4]

PACS numbers: 74.50.+r, 03.65.–w, 85.25.Dq
The success of quantum mechanics (QM) in predicting
the behavior of the microscopic world is undoubtedly one
of the most complete in the history of physics. Since
the very beginning of QM, however, there has been a
debate on the interpretation of QM predictions versus
the macrorealism (MR) predictions. The most famous
example is the paper by Einstein, Podolski, and Rosen
[1]. This problem, for the specific case of a macroscopic
object, was discussed by Leggett and co-workers [2,3]
who proposed an experiment to test Bell inequalities in
a system performing tunneling oscillation between two
macroscopically distinct states. The proposed system is
an rf SQUID that, biased by a half flux quantum, is
subjected to a double well potential with two degenerate
energy levels in the left and right wells. The variable
describing the system dynamics is the magnetic flux F

linked to the SQUID, related to the collective motion of
a macroscopic number of particles. In the past decade
there was a big effort in testing the behavior of Josephson
junctions and rf SQUIDs in the quantum regime ([4–8],
and references therein). For the macroscopic variables
describing these systems, both tunneling to a continuum
and resonant tunneling between distinct quantum levels
have been observed; however, a high degree of dissipation
was also observed, either because of the low quality of
the Josephson junction [7] or because of a strong coupling
with the environment [8]. Very low dissipation, instead,
is a mandatory requirement in any experiment aiming
either to detect the superposition of macroscopically
distinct states [namely, a macroscopic quantum coherence
(MQC) experiment, where also an ad hoc setup is required
[3,9,10] ] or to perform tests on quantum computing by
means of Josephson devices [11].

The quantitative analysis of the dissipation problem for
an rf SQUID in the quantum regime has been analyzed
by many authors [12–15]. If applied to the case of
an rf SQUID biased by a half flux quantum we can
write the conditional probability of measuring the flux
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at a time t in one of the two wells, once the system
has been prepared in the same well at a time t � 0
[13]: P�t� � cos�vt 2 w� exp�2t�t�� cos�w�, where v

is the tunneling frequency, w is the phase, and t is
the decoherence time. In the limit of low dissipation,
expressed by the condition on Leggett’s parameter aL ø
1 [3] and low temperature �T , T� � h̄v�pkBaL�, the
decoherence time can be written as [13]

t �
T�

vT
� �1.5 ms�

"
R
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# "
1 mK

T

#
. (1)

Now, setting the operating temperature at the base tem-
perature of a dilution refrigerator that is �mK, the deco-
herence time is determined essentially by the value of the
overall dissipation R.

In this Letter we report on the first measurements of
the intrinsic dissipation of an rf SQUID operating in the
quantum regime, and we show that the measured values
are in the range that allows one to perform, with success,
experiments involving macroscopic quantum coherence of
Cooper pairs.

The rf SQUID can be described by a single dynamical
variable, the total magnetic flux F linked to the ring,
which is subjected to a potential U � �F 2 Fx�2�2L 2

�icF0�2p� cos�2pF�F0�, where Fx is the applied flux,
L is the SQUID inductance, ic is the junction critical
current, and F0 � h�2e is the flux quantum [16]. The
system equation is the same as a particle of mass C
(the junction capacitance) with friction coefficient 1�R,
subjected to the same potential. If the parameter bL �
2pLic�F0 is greater than one, this potential is a succession
of wells, corresponding to metastable flux states of the
SQUID, superposed to a quadratic term. If bL is large,
more than one metastable state is available to the system,
once the energy is given. In this paper we study the
process of escape from a metastable well. By sweeping
the externally applied flux, the potential barrier on one
side of the well is decreased, until, at a critical value
© 1999 The American Physical Society 5357
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of Fxc, the particle can overcome the barrier by thermal
fluctuations or quantum tunneling, and it rolls down along
the potential until it gets trapped in a nearby well. For
the rf SQUID, the characteristic F (i.e., the rf SQUID
response, read out through a nearby dc SQUID) versus Fx

(i.e., the sweeping external flux) is recorded. To measure
the statistical distribution of the switching values Fxc, we
used a well-known technique [17]: The sudden jump in the
characteristics, which corresponds to the critical applied
flux Fxc that produces a transition between metastable
states (minima in the potential well), triggers the data
acquisition system, so that the corresponding value of
the sweeping current is recorded and converted into a
flux value. The Fx sweep cycle is repeated �104 times;
the values are collected in a histogram, to estimate the
switching probability P�Fx�, from which the escape rate
out of the well and any other quantities related to P�Fx�
are calculated.

A schematic of the experimental setup is shown in
Fig. 1. The main chip, realized at the Istituto di Elet-
tronica dello Stato Solido-CNR using Nb�AlOx�Nb tech-
nology [18], is inserted into the mixing chamber of a
dilution refrigerator. The rf SQUID is a gradiometric
double loop device having an inductance L � 235 pH,
a critical current ic � 12 mA, and a capacitance C �
0.45 pF (measured by means of Fiske steps in a sepa-
rate experiment). Separate devices fabricated in the same
wafer as the test chip have allowed the measurement of
the junction critical current and quality and of the induc-
tance (this has been obtained by the critical current depth
modulation of a dc SQUID with identical geometry as the
rf). In some cases, we also interrupted the rf SQUID
loop after the measurement and contacted the junction, to
check the critical current value. Actually, once the flux
characteristic of the rf SQUID is acquired, the measure-
ment of period and hysteresis gives a direct evaluation
of the parameter bL: the reduction of the hysteresis due
to fluctuations in the value of Fxc can be taken into ac-
count by the subsequent data analysis and corrected with
a recursive procedure. The overall accuracy on the mea-
sured SQUID parameters can be estimated to 5%. The
flux from the rf SQUID is directly coupled, without any
flux transformer, to a nearby dc SQUID amplifier, built
FIG. 1. Schematic of the experimental setup.
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on the same chip, having inductance Ldc � 235 pH, shunt
resistance Rdc � 2 V, and critical current Idc � 12 mA.
A flux jump of the rf SQUID couples 15mF0 into the dc
SQUID, which, in turn, is read by a second dc SQUID.
The voltage output from the second dc SQUID, hence pro-
portional to the rf SQUID flux response, is sent to a dis-
criminator set at a reference level between the voltage
corresponding to two subsequent flux states of the rf
SQUID. The pulse from the discriminator provides the
trigger for a 16 bit analog-to-digital converter that reads
the current producing the rf SQUID external flux Fx .

The dilution refrigerator is inserted into an aluminum
dewar surrounded by three m-metal and two aluminum
shields to provide both low and high frequency shielding.
All of the wires are coaxial cables with CuNi shield and
series CRC filters to provide high frequency attenuation.
In the case of the rf SQUID, however, the attenuation
requirements are less severe with respect to quantum effect
measurements in Josephson junctions, since there are no
direct connections with the external world. The problem
could arise for the electromagnetic coupling with a very
near conducting shield [8] (in our case, however, we have
a superconducting lead box). For our device the typical
dimension is of the order of less than 1 mm; the SQUID
can then be considered as a concentrated parameter device
and we can neglect the radiative processes. The small
coils coupling the SQUID with the external bias or the dc
SQUID have a very low coupling ��4 pH� and in practice
do not load the rf SQUID with their losses. As regards the
first dc SQUID magnetometer, the absence of peaks in
the experimental histograms shows that it does not affect
the rf SQUID with rf interference. This is due to the
smooth characteristics of the magnetometer and to the fact
that its working frequency is very low (of the order of a few
GHz) with respect to the energy level spacing (hundreds
of GHz). The normal resistance of the magnetometer,
referred to the input and hence to the rf SQUID, following
the calculation by Hilbert and Clarke [19], gives an upper
limit for the dissipation of about 2 GV. The conclusion
is that reasonably the system will be limited only by the
intrinsic dissipation of the device itself.

On this apparatus we made measurements of escape
from the metastable well to the nearest lower well. We
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first measured the histogram of the switching fluxes in
the function of temperature between 4.2 and 1 K finding
the expected behavior for a system described by a simple
Kramers model in the thermal regime [14,20]. After this
test, we made the same measurements below 50 mK:
At these temperatures we clearly observed the effects of
energy level quantization in the SQUID wells, showing
up as the appearance of peaks in the histogram of the
switching fluxes.

In the weak friction limit the energy levels are sharp
and well separated inside the potential well. The dynam-
ics of the escape process can be described by the master
equation for the probabilities rj of finding the “particle”
at the jth level [21]

≠rj�≠t �
X

�Wj,iri 2 Wi,jrj,i� 2 gjri ,

with j � 0, . . . , N ,
(2)

where Wi,j is the transition probability from the ith into
the jth level due to the interaction with the thermal bath,
and gj is the tunneling probability through the barrier.

The complete solution of this equation is not trivial;
however, we were not interested in the full description
of the escape process, but only in deriving an expression
to evaluate the system dissipation. Roughly speaking,
the appearance of a single peak in the histogram of the
switching probability is a manifestation of the fact that, at
that particular flux bias value, most of the escape process
is due to one particular level. Changing the flux bias, the
interested level also changes, passing through a region in
which two adjacent levels contribute in the same way.
A simplified approach, then, can consider the analysis
of only two adjacent peaks at a time, reconstructing the
whole histogram shape piece by piece.

The distribution of the escape probability f�X�, where
X is the normalized external flux �X � Fx�F0�, is equal
to f�X� � j �rj� �X, where �r �

P
�rn. To have a “peak” in

f�X� due to a generic inner level k is necessary so that the
population variation �rk relative to the k level can be larger
than all of the variations of the other levels in a narrow
region of X: j �rkj ¿ j �rjj (with j fi k). The range of X
where the escape process is relevant is very narrow (a few
percent of the quantum flux for our measurements), with
respect to the variation of the quantum escape rate gk;
therefore, we can expand the expressions of the energy
barrier height and of the attempt frequency around the
operating value of X. We can then analyze the peaks
relative to two successive levels �n, n 1 1� to derive an
expression for the corresponding escape rate. In this
approximation the upper levels �n 1 2, . . .� are empty,
and the lower levels �n 2 1, . . .� are still inactive, and we
can solve the master equation written only for the two
levels �n, n 1 1�. For the distance between the maxima
of j �rkj we have DXM � Xn11

M 2 Xn
M � 22p�h. The

quantity Wn11,n is given by [21] and is supposed constant
in the small region of X considered, while
Wn,n11 � Wn11,n exp

√
2

En11 2 En

kBT

!

� Wn11,n exp�22pu� , (3)

where Ei is the energy of the corresponding level and u �
Tc�Te. Tc � h̄v0�2pkB � 230 mK is the crossover
temperature between the classical and quantum regime
(v0 being the frequency of small oscillation in the well),
and Te is a parameter related to the level population.
Te represents the effective noise temperature of the
system only if the levels are populated according to a
Boltzmann distribution; however, the local population can
also be modified by nonthermal effects, for instance,
because of incomplete relaxation during the flux sweep
between two biasing cycles. Using these relations we can
describe the escape process with a function depending
on three dimensionless parameters �h, u, wd� related to
the physical quantities of the system �DX, Te, R�, where
wd � Wn11,n� �X � 1��RC �X�21 [21].

In Fig. 2 we show the experimental data for the
distribution of probability vs the normalized flux together
with the fit for two pairs of subsequent peaks; the best
fit gives, as explained below, a value of Te � 0.5 K
and R � 4 MV. In Fig. 2(a) we show the temperature
dependence of the fit; we can see that the effect of Te

is a horizontal shift of the lower part of each peak, a
feature that is quite insensitive to the particular value of
the resistance. In Fig. 2(b) we show the effect of varying
the resistance R, showing that we can reasonably assign

FIG. 2. Experimental data (open squares) of the switching
probability f�X� vs the external normalized flux X � Fx�F0.
The continuous lines represent the theoretical predictions of a
two-peak analysis for a value of Te � 0.5 K and R � 4 MV.
In (a) we keep R � 4 MV and change the parameter Te. In
(b) we keep Te � 0.5 K and change R.
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FIG. 3. Experimental data (open diamonds) and theoretical
predictions of the escape rate for a multiple-peak analysis.

the quoted value for the equivalent resistance R. We then
extended the model to describe all of the peaks of the
escape process. In Fig. 3 we show the best fit obtained
with this model applied to the data for Te � 0.5 K and
R � 4 MV on the escape rate G�X� �

P
gnrn�

P
rn.

The determination of the fitting parameters in this case
is less precise; however, the best fit with parameters Te, R
agrees well with the experimental data.

From the flux coordinate of the peaks in the switching
data we can estimate that approximately 20–30 levels
are in the well, the exact number being related to the
uncertainty of the experimental SQUID parameters; of
these levels, during the measurement the upper 3–4 are not
active for the escape process, while the two immediately
below contribute most. From the fit of Fig. 2 we can
derive the following values for the three parameters: h �
900, u � 0.5, and wd � 300 (in our measurements �F �
1750F0 s21). As a consistency test we can also calculate
the quantity h from the definition h � d�DU�h̄v��dX.
In this case we find a value between 800 and 900 that
agrees with the value obtained from the fit of the data.
This value also fits well the spacing between the two levels.
The value of Te found from the fit is about 0.5 K, much
higher than the thermodynamical temperature; this could
be related to the enhanced population of the interested
levels due to the incomplete relaxation of the system from
the previous switch event: in fact, the typical relaxation
times are of the same order of magnitude (1 ms) as the
period of the biasing flux sweep.

The value R � 4 MV, which represents the resistance
associated with the overall equivalent dissipation of our
system, is the first measurement reported, to our knowl-
edge, for a very low dissipative �aL ø 1� macroscopic
quantum system. We can use Eq. (1) to infer a value of
the decoherence time at the operating temperature of a
typical MQC experiment (4 mK). Assuming (pessimisti-
cally) that the resistance does not increase at all by low-
ering the temperature from 35 to 4 mK, we calculate
t � 1.5 ms, sufficient to detect a coherent oscillation for
a tunneling frequency of a few MHz.
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In summary, we measured the escape rate out of one of
the flux states for an rf SQUID cooled at a temperature
of 35 mK, and we saw clear evidence of quantized energy
levels in the potential describing the SQUID dynamics.
To evaluate the system dissipation, we used a simple
model to fit the peaks due to energy level quantization
in the escape rate of the SQUID, deriving a value of R �
4 MV for the intrinsic system resistance. An independent
evaluation of the system parameters agrees with those
derived from the fit, also describing quite well the level
spacing. The obtained value for the system dissipation is
very promising for the realization of MQC measurements,
and for future tests on quantum computing with Josephson
devices.
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