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Abstract

We present an explicit solution of a simply stated, yet unsolved, combinatorial
problem, of interest both in quantum field theory (Feynman diagrams enumeration,
beyond the planar approximation) and in statistical mechanics (high temperature
loop expansion of some frustrated lattice spin model).
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The problem of counting the number of rooted loops (closed path starting from a given

point) according to their length and area, on an hypercubic lattice, in the limit of infinite

dimensionality, was addressed by Parisi et al. [1, 2]. They were investigating spin mod-

els with frustration but without any quenched disorder, in order to test the conjecture

that such deterministic models could behave at low temperature as some suitably chosen

spin-glass model with quenched disorder. They considered the frustrated Spherical and

XY models in the limit of large dimensionality D of the lattice, where the saddle point

approximation becomes exact. In their analysis of these models, they showed that the

high temperature expansion (i.e. loop expansion) can be nicely rewritten by using the

q-oscillator algebra [3], where q measures the frustration per plaquette and varies contin-

uously on the real interval [−1, +1], between the fully-frustrated case (q = −1, fermionic

algebra) and the ferromagnetic case (q = 1, bosonic algebra). The frustration was in-

duced on the infinite-dimensional hypercubic lattice through an applied Abelian lattice

gauge field producing a static and constant external magnetic field suitably oriented to

give the same magnetic flux ±B for any plaquette of the lattice. Such a magnetic field

having the same projection over all the axis, up to the sign, in Refs. [1, 2] these signs

were chosen randomly in order to avoid the selection of a preferred direction. The usual

unfrustrated ferromagnetic spin interaction is obtained for B = 0. Non-vanishing val-

ues of B induce a frustration around each plaquette, which is maximal for B = π, the

fully-frustrated case.

In the framework of the high temperature expansion, the free energy of such models

is expressed as a sum over the contribution of loops of increasing length 2k:

βF =
∞∑

k=0

β2k

2k
Gk . (1)
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Each loops encloses a number of plaquettes; in the case of the models considered in [1, 2],

for each loop the magnetic field yields a weight, proportional to exp(iBA), where A is

the sum of plaquettes with signs depending on the orientations. The total contribution

of all loops of length 2k is given by Gk. Due to the average over orientations and loops,

the quantity Gk is a polynomial in the variable q = cos B, the coefficient Gkl of ql being

given by the number of loops of length 2k and area l †; Gk(q) is of order k(k − 1)/2, given

by the maximal area encloseable by a loop of length 2k. The coefficients Gkl can also be

interpreted as the number of Feynman diagrams with 2k external points, which are joined

pairwise by lines (propagators) intersecting l times. These diagrams also occur in the

topological (large N) expansion of Matrix Models [4], where the planar limit corresponds

to no intersections, i.e. to the q = 0 case. Equivalently, in simple graphical terms, they

just can be seen as the number of way of connecting pairwise 2k points on a circle with k

chords intersecting exactly l times. In the following we shall refer to this last picture. In

Ref. [1], the enumeration of such diagrams was investigated. In particular, a recursion

relation was found for the coefficients of the polynomial Gk(q) – a sort of Wick theorem

– which can be nicely expressed by the algebra of the q-oscillators aq, a
†
q:

aqa
†
q − qa†qaq = 1 . (2)

These operators [3] act on the Hilbert space spanned by the vectors: |m〉, m = 0, 1, ...,

as follows,

aq|m〉 =
√

[m]q |m− 1〉 , aq|0〉 = 0 ,

a†q|m〉 =
√

[m + 1]q |m + 1〉 , [m]q =
1− qm

1− q
. (3)

†The area of a loop is defined as the minimal area of a surface of lattice plaquettes which have that
loop as boundary.
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Using the recursion relation, the weighted multiplicities of the diagrams of eq. (1) were

neatly written as an expectation value over the ground state of the q-oscillators [1, 2]:

Gk(q) = 〈0|(a†q + aq)
2k|0〉 . (4)

The authors of Refs. [1, 2] did not exploit the consequences of this result, preferring

to turn themselves to numerical investigation of the models they were interested in. As a

consequence, till now only the two limiting cases Gk(0) and Gk(1) were explicitely known;

when q = 1 it is only a matter of counting the way of connecting 2k points on a circle,

with no restrictions, and this is simply the number of pairings of 2k objects: (2k − 1)!! .

When q = 0 we are in fact evaluating the planar limit of the zero-dimensional 2k-point

Green function of a matrix model in the limit of vanishing interaction [4]. In simple

graphical terms this correspond to the number of way of joining pairwise 2k points on a

circle with non intersecting chords. In other word, this is just one of the many possible

definition of Catalan numbers (see, e.g. [5]), given as:

Gk(0) =
(2k)!

k!(k + 1)!
. (5)

But the number Gkl of way of connecting pairwise 2k points on a circle, with exactly l

intersections (i.e. the coefficient of ql in Gk(q)) is not so easily accessible. In Refs. [1, 2],

they were found by direct enumeration of the graphs on a computer. In [6], an explicit

form of a generating function for coefficients Gkl was presented, but then the explicit

evaluation of such coefficients relied upon heavy symbolic manipulations. We shall now

present instead a simple, easy to evaluate, formula for a generic coefficient Gkl.

To this purpose let us first introduce the xq coordinate representation, xq = a†q + aq,

xq|x〉 = x|x〉, which is given by the so-called continuous q-Hermite polynomials [8, 9].

3



These are defined by:

Hn(x) = 〈x|n〉 Cn , Cn =
(
[n]q!

)1/2
C0 , (6)

where the normalization constant C0 is fixed by H0(x) = 1 and the q-factorial is

[n]q! = [n]q [n− 1]q . . . [1]q , [1]q = [0]q = 1 . (7)

These polynomials satisfy, of course, a three-term recursion relation in the index n:

xHn(x) = Hn+1(x) + [n]q Hn−1(x) , n ≥ 1 . (8)

x ranges over the interval x ∈
[
−2/

√
1− q, 2/

√
1− q

]
, and a convenient convenient

parametrisation is

x =
2√

1− q
cos θ , θ ∈ [0, π]. (9)

More properties of these q-Hermite polynomials can be found in Ref. [8], where they

are defined as Hn(cos θ) = (1 − q)n/2Hn(x). The most important property for us is the

orthogonalizing measure νq(x) [7, 8, 9]:

∫ 2/
√

1−q

−2/
√

1−q
νq(x) dx Hn(x) Hm(x) = δn,m [n]q! , (10)

νq(x) =

√
1− q

2π
q−1/8 Θ1

(
θ

π
, q

)

=

√
1− q

π

∞∑
n=0

(−1)nqn(n+1)/2 sin[(2n + 1)θ] (11)

where Θ1(z, q) is the first Jacobi theta function.

Polynomial Gk(q) may now be rewritten as

Gk(q) =
∫ 2/

√
1−q

−2/
√

1−q
νq(x) x2k dx . (12)
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Indeed, using the explicit form (11) of the integration measure, performing the integration

and playing a little bit with indices, we may write

Gk(q) =

(
1

1− q

)k k∑
l=0

(−1)l

(
2k + 1

k − l

)
2l + 1

2k + 1
ql(l+1)/2 . (13)

We now only need to perform explicitely the division of the polynomial of degree

k(k + 1)/2 defined by the sum in the previous formula. To this purpose, let us state the

following

Theorem‡: Let P (q) =
∑N

l=0 plq
l be an integer coefficient polynomial of degree N

in q, exactly divisible by (1 − q)k. Then A(q) = P (q)/(1 − q)k is an integer coefficient

polynomial of degree N − k whose coefficients are simply expressed in terms of the pl’s

as follows:

A(q) =
N−k∑
l=0

alq
l , al =

l∑
i=0

(
k + l − 1− i

k − 1

)
pi . (14)

We therefore readily get a simple closed expression for Gkl:

Gkl =
imax∑
i=0

(−1)i

(
k + l − 1− i(i + 1)/2

k − 1

)(
2k + 1

k − i

)
2i + 1

2k + 1
, l ≤ k(k − 1)

2
,

(15)

where imax is the largest integer i satisfying i(i + 1)/2 ≤ l. Because of their definition as

counting numbers, all Gkl should be positive integers. This fact is indeed not apparent

from (15), and we are not able to present a rigorous proof of this statement, nevertheless

be are convinced of its validity. Sensibleness arguments rely upon the intrinsic positivity

of (4) and its derivatives with respect to q. In our opinion, the main flaw of (15) is

however that the Gkl are expressed in terms of differences of large numbers, and this

makes their evaluation for asymptotically large values of k an hard task.

‡We are unfortunately unable to quote any reference. We are of course convinced this theorem has
been enounced long time ago. The only proof we have been able to give, absolutely inelegant, is by direct
verification. We do not believe it is worth being presented here.
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We have computed explicitely with Mathematica [10], through formula (15), which

is very efficient, all values Gkl for k ranging from 1 to 9, and verified that they indeed

match the results of Ref. [2] which were found by direct enumeration of the graphs on a

computer.

In conclusion, we have presented an explicit solution to a combinatorial problem which

could hardly be addressed directly; our solution, which makes use of the mapping to the

physical problem of the q-oscillator proposed in [1], is somewhat indirect; in this very fact

resides, in our opinion, its main interest: a new strategy is proposed to attack non trivial

combinatorial problems, whenever recurrence relations are known, but not explicitely

solved: the mapping upon the known solution of some physical problem opens the way

to an explicit analytic solution.
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