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Abstract

A high Light Yield Liquid Argon chamber has been radiated with an Am/Be source for signal-to-background separation

level characterization in a Dark Matter Liquid Argon based detector. Apart from the standard nuclear recoil and electron

events, from neutron elastic interactions and gamma conversions respectively, an intermediate population has been

observed which is attributed to inelastic neutron scatters on Argon nuclei producing Argon recoil and simultaneous

gammas from nuclear de-excitation. Taking account of these events results in a better determination of the recoil-like to

electron-like separation based on the shape of the scintillation pulse. The results of this recent study as well as from a

previous study with a chamber with a lower Light Yield are presented.
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1. Introduction

Searching for Dark Matter in the form of WIMPs is of primary interest in the present astroparticle

physics scenario. Direct detection of Dark Matter using liquified noble gases (Neon, Argon and Xenon) as

the target medium is one of the most promising lines of development in experimental technology.

Argon in particular, due to its high scintillation photon yield, ease of purification and high abundance at rea-

sonable cost, represents a suitable medium and the feasibility of Ar-based detectors has been firmly proven

by the R&D study of the WArP collaboration [1]. Because Dark Matter particles are so elusive, any experi-

ment aiming to detect them must precisely understand and discriminate background events.

In Liquid Argon (LAr) this can be done using the potential offered by its scintillation characteristics which
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allow the implementation of Pulse Shape Discrimination (PSD) methods in order to maximize the back-

ground rejection. Therefore the choice, the study and the optimization of such techniques represents an

important step on the way to realize a successful experiment.

2. Scintillation Light in Liquid Argon

Ionization in liquid Argon is accompanied by the emission of scintillation light. Charged particles

interacting in LAr create free electrons (e−) and excited Ar molecular states (Ar∗2) which produce scintillation

radiation through de-excitation processes [2]:

Ar∗2 → 2 Ar + γ (1)

Therefore, free electron separation and light emission are the two features that characterize the use of LAr as

active medium [3]. The two processes are complementary and their relative weight depends on the strength

of the electric field (EF) applied to the active LAr volume [3]. The free electron yield (from ionization) rises

with the field value while the photon yield (from scintillation) decreases2.

The light emission is characterized by a rather narrow intrinsic spectrum (λ �128 nm with σλ � 3 nm)

in the extreme ultra-violet region (Vacuum-UV, VUV) [6] [7] and by a two-component exponential decay-

ing (fast from the Singlet and slow from the Triplet excimer state decay), with lifetimes τS= 4÷7 ns and

τT=1.3÷1.6 μs respectively [6] [8] [9]. In addition to these fast and slow components, an intermediate com-

ponent (with decay time around 40÷60 ns) has been also sometime reported in literature [9] [10] [11], the

origin of which was never definitively understood.

The relative amplitude ratio of the fast to the slow component in case of a mip is reported to be AS /AT=0.3

(i.e. AS=23% and AT=77% respectively) [9]; while for heavily ionizing particles the intensity ratio in-

creases (e.g. AS /AT=1.3 for α-particles and AS /AT=3 for nuclear recoils [12]).

This wide separation is an important feature of the scintillation signals in LAr, leading to define robust Pulse

Shape Discrimination criteria suitable for particle identification.

3. Pulse Shape Discrimination in LAr

Pulse Shape Discrimination is a background discrimination and rejection technique; in LAr detectors

the different ratio of fast to slow component for diverse particles results in two distinct rise-times of signals

produced by the recoil-like events (neutron or WIMP interactions) and electron-like events (electron and

gamma interactions), as shown in Fig. 1.

The very different shape of the two pulses is characteristic of the Argon scintillation light emission. This

feature is on of the main discrimination methods, which can be applied for signal (Ar-recoil) to background

(e-recoil) separation in LAr based detector.

As indicated before, PSD in LAr can be explained in terms of the properties of de-excitation of the

excited Ar∗2 dimers . In fact, the time evolution of the LAr scintillation light emission depends on the two

very different decay times of the Singlet and the Triplet dimer states respectively to the ground state and

their relative abundance in ionization process induced by different particles.

4. First PSD studies

Within the WArP R&D phase, early dedicated studies have been performed in 2007-2009 with the aim

of optimizing the PSD of β and γ background. For this task, a single phase (no electric fields applied

to the active volume) 4 liter LAr detector equipped with seven 2” PMTs (ETL - D749U) has been used

(photo-cathode coverage ∼ 12%); signals from PMTs have been directly acquired by a waveform digitizer

2For a minimum ionizing particle (mip) at low fields (e.g. 0.5 kV/cm) the free electron yield is Yion∼2.9×104 e−/MeV [4]. At the

same EF the photon yield is also high (Yph∼ 2.4×104 γ/MeV) [5]. The photon yield is maximum at null field, Yph(mip)� 4×104 γ/MeV.
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Fig. 1. Gamma-like event [Left] and Neutron-like event [Right], shown as sum of the raw waveforms collected by seven PMTs and
event integrals, calculated from 100 ns before the trigger to 7 μs after the trigger.

(Acqiris-U1080A) and then processed off-line [13].

Two radioactive sources have been used during the data acquisition: a 133Ba gamma source and a Am/Be

neutron (and gamma) source.

Events collected with the 133Ba source have been used to determine the Light Yield (LY) of the system (the

energy spectrum obtained for each run was compared with a MonteCarlo simulation): the light response of

the apparatus was stable during the test and a LY estimation of 1.52 ± 0.05 phe/keV has been obtained.

The Am/Be source, inducing both nuclear-recoil (from neutron interactions) and electron-recoil (from γ
conversion through photoelectric absorption or Compton scattering) events in the detector, has been used to

study the discrimination power of different PSD methods.

Different PSD techniques and their discrimination power have been applied to the whole of the collected

data (� 8.56 · 106 events), optimized and compared with each other: the F-prompt method was found to be

the most appropriate among those taken into consideration [13].

4.1. F-prompt discrimination method
The F-prompt (Fp) method represents a fast and easy way to perform pulse shape discrimination of

gamma-like and neutron-like events.

Taking V(t) as the sum of the waveforms collected for a given ionization event, the Fp parameter associated

to that event is defined as:

Fp =

∫ TFp

T0
V(t)dt

∫
T0

V(t)dt
=

S F

S 1

(2)

where S 1 is the total integral of the event pulse V(t) and S F (Fast signal integral) represents the integral of

the first part of the signal, up to an integration time TFp after the trigger T0. The integration time TF p of fast

integral S F has been optimized3 driven by the aim of maximizing the separation between nuclear recoil and

electron recoil in the Fp distributions and the best value was found to be 120 ns [13].

4.2. Data analysis of the first run
The F-prompt method was implemented to separate electron recoils from nuclear recoils. In Fig. 2 both

the Fp distribution for one of the runs belonging to the analysis data sample [Left] and a scatter plot of Fp

versus event energy (in photo-electron units) [Right] are shown. Two populations are clearly visible in the

3Considering a fast decay time of few ns and a slow decay time ∼ μs for LAr scintillation light emission TFp = 10 ÷ 20 ns can

be expected; a set value of TFp ∼ 120 ns can be ascribed to the presence of an intermediate decay component with τi ∼ 60 ns in the

LAr scintillation light. Taking into account an interval in which 80< TFp <150 ns, the choice of TFp ∼ 120 ns was obtained using two

different and indipendent methods leading to the same best result: the first based on a direct analysis of the Fp distributions, the latter

on the analysis of the average waveforms realized from electron recoil and nuclear recoil events [13].
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Fig. 2. Fp distribution [Left] and a scatter plot of Fp versus event energy (phe units) [Right].

plots: the first, clustered at higher Fp values, corresponds to nuclear recoil events, the latter, at lower Fp

values, is due to electron recoil events. In the middle, a third population of events with Fpγ<Fpi<Fpn has

been detected. We ascribed this intermediate population to the result of inelastic scattering of neutron on Ar

nuclei. The origin of the inelastic events can be better deduced when looking at the energy spectrum of the

Am/Be source used in the data taking, which emits a large part of the neutrons in the 2 ÷ 6 MeV energy

range (Fig. 3 [Left]) [14]; comparing it with the cross-section spectrum for different neutron interactions on

the 40Ar nuclei, one can observe that the inelastic scattering starts to be important at these energies (Fig. 3

[Right]). For an inelastic scattering event the nuclear recoil and the electron recoil induced by nuclear de-

excitation γ conversion come practically at the same time and share the energy of the incoming neutron: the

produced signal is thus a superposition of a gamma-like and a neutron-like signal and is characterized by a

Fp value in between that of an electron and nuclear recoil [13]. To validate the origin of this intermediate

component and to find the most appropriate fitting function able to reproduce the experimental Fp distribu-

tions, a MonteCarlo (MC) simulation was developed to reproduce the energy released in the detector by the

interaction of both neutrons and γ particles emitted by the Am/Be source [15]. Neutron interaction cross-

sections from the JENDL database [16] were used for the MC event generation and included the elastic and

inelastic channels. The results of the simulation confirmed the hypothesis of the intermediate population

in the Fp distribution resulting from inelastic neutron scatters; subsequently a fitting function Fittot, able

to reproduce the acquired data, has been found as a sum of two gaussian functions for the neutron and γ
populations with the addition of a convolution of a gaussian and an exponential function for the intermediate

population:

FitTot = Gγ ⊕Gn ⊕ (exp ⊗G)i (3)

In Fig. 4 real [Left] and simulated [Right] overall Fp distributions for events in the energy range

200< S 1 <260 phe with the superimposed fitting function for intermediate events have been shown. The

percentage of inelastic events with respect to the neutrons varies with the deposited energy rising from a

small contribution to a significant fraction of the number of neutron events at highest energies.

Data belonging to the analysis data sample have been divided into 26 energy bins of variable size: a

5 phe bin width is choosen for event energies 40< S 1 <100 phe, 10 phe bin width for 100< S 1 <200 phe

and 15 phe bin width for 200< S 1 <260 phe; thus, the smallest energy interval includes event consisting of

40 ÷ 45 phe, while the largest bin including events in the range of 245 ÷ 260 phe.

A fit with the FitTot function defined in Eq. (3) has been performed for each distribution at every energy bin

and 〈Fp〉 values for the gamma and neutron gaussian populations have been extracted; these are reported in

Fig. 6.
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Fig. 3. Primary neutron spectrum for the Am/Be source [Left] and cross-section for different interactions on the 40Ar [Right].

Fig. 4. Real [Left] and simulated [Right] overall Fp distributions for events in the energy range 200< S 1 <260 phe with the
superimposed fitting function for intermediate events.

5. New measurements at high Light Yield

In order to test the results obtained in the previous test, a new measurement with the same single phase

LAr detector (no electric fields), refurbished with four 3” High Quantum Efficiency (HQE) PMTs (Hama-
matsu R11065)4 and a new DAQ system (signals from the 4 PMTs have bee directly acquired by means a

new fast waveform digitizer CAEN V1751 [17]), has been performed.

For this test, the chamber was radiated again with an Am/Be source to explore the detector response to

neutrons; in addition blank runs and runs with 241Am have been acquired to control the environmental

background and to evaluate the detector LY respectively. Compared with the previous test, set-up modifi-

cations resulted in obtaining a much higher Light Yield with LY=6.35 phe/keV±5% (to be compared with

∼1.5 phe/keV) [18]. These new detector parameters allowed to test the signal-to-background separation

capability obtainable in particular at lower recoil energies improving the sensitivity and the precision of the

measurement with the Am/Be source.

5.1. Data analysis of the new test
The data was taken during a short neutron run in February, 2011. For the neutron background separation

analysis 20 · 106 Am/Be events were collected including 1.5 · 106 neutron candidate events. The percentage

4The second test set-up is equivalent in size and photo-cathode coverage to the first.
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of neutron events in the data was approximately twice as high (over 7%) as in the previous measurements

(3.5%) [13]. The much higher statistics and the new DAQ system allowed performing background subtrac-

tion.

After the basic cuts were applied to the data, the surviving events were divided into 93 energy bins

chosen to contain a similar number of entries. This resulted in much wider bins in the upper end of this

spectrum. Then, for each bin, the same Fp distribution model (Eq. (3)) established in the first test was fitted.

Also in this case the intermediate population was present (Fig. 5 [Right]) (due to the extended dynamic range

of the new wfm recorder in use with this test the neutron events were not saturated until over 2000 phe)

(Fig. 5 [Left]) [19].

Fig. 5. The Fp vs S 1 plot with the nuclear/neutron recoils and electron/gamma recoils (full range of the detected energies is
shown) [Left]; F-prompt distribution in the interval 545 < S 1 < 560 phe [Right].

5.2. Results and comparison of the performed tests
As in the previous measurement, the Fp discrimination technique described above was applied to the

analysis data samples acquired during the two tests. The positions of the gamma and neutron peaks for each

of the energy bins resulted in mean values of the F-prompt parameter 〈Fp〉 for given energy values.

This allowed plotting the estimated 〈Fp〉 value both for nuclear recoil-like and electron recoil-like events

as a function of the event energy [keV] for both the performed tests, which is presented in Fig. 6. Errors

reported are only statistical, defined as the standard deviation obtained, for each energy bin and for each

population, from the 〈Fp〉 values; systematic errors are still under investigation.

It is worth noting that the 〈Fp〉 values of the gamma and neutron populations become closer with lower

energy, implying a worse separation in that region. This effect seems to be independent of the fitting method

applied or the integration window of both the signal and its fast components and has in fact been observed

by other experimental groups [22].

To compare the results from the two performed tests, they have both been translated into units of en-

ergy using the respective Light Yields measured using radioactive gamma emitting sources. For the neutron

population an additional correction was applied to the respective Light Yield due to the quenching of scintil-

lation light from nuclear recoils. The quenching factor was assumed to be equal to 0.25 and constant in the

whole energy range [21]. A second correction was needed to take into account the different contamination

of the liquid Argon used in both measurements. Impurities in liquid Argon, especially O2 and N2 can affect

the Light Yield, mainly for the slow component [11] [20], which affects the value of the S 1 integral but not

that of S F in Eq. 2 and so would systematically shift the Fp values. Due to a significant N2 contamination

in the second run5 [18] a corrective factor has been applied to the presented Fp values.

Compared to the first run, data acquired with the new set-up showed a much wider energy range due to

the higher Light Yield (in lower energies) and higher full scale range of the new board (higher bins), but

5The value of τT ∼ 1100 ns of the 2011 test to be compared with τT � 1350 ns for the 2009 run
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also a slightly worse neutron-to-gamma separation. The shifting down of the neutron population could be

due to the fact that with the new set-up the optimum integration time for the fast component was found to

be shorter (100 ns vs 120 ns) than in the old test.

Fig. 6. F-prompt vs Energy [keV] for neutrons and γ events compared for the two performed tests.

5.3. Comparison with reference data

The results presented in Fig. (6) from our measurements and analysis can be compared with a reference

data set published in 2008 by Lippincott et al. [22].

Those results refer to a detailed PSD study in LAr performed by irradiating with a D-D neutron-generator

(En=2.8 MeV) a ∼3.1 lt LAr cell featuring a Light Yield of 4.85 phe/keV. PSD level has been determined

with the F-prompt method. Compared to our analysis, the integration time of the fast component in the Fp

definition (Eq. 2) was set to a lower value (90 ns instead of 120 ns and 100 ns, as in our first and second test

respectively) and the fitting function for the Fp distributions included the sum of two gaussian functions for

the neutron and γ populations.

Numerical data from that analysis as reported in [22] are displayed in Fig. 7 together with our results (first

and second test) in the full energy range [Left] and with a zoomed view in the low energy interval up to

100 keVee of recoil energy [Right].

In the range of overlapping energies (Fig. 7 [Right]) the 〈Fp〉 values for γ’s very closely superimpose

with each other. Neutron data show instead a systematically higher separation from γ in our data compared

to the reference data reported in [22].

A wider n-to-γ separation is of great importance for LAr based detectors as directly reflects in a more

extended sensitivity (e.g. in the standard mass vs. cross-section plot in use for WIMP-DM search character-

ization).

A dedicated study for the identification of possible systematic effects in our measurement is currently

under way. It is worth mentioning that applying the same procedure of [22] (same integration time and two

gaussian fit function) for the F-prompt analysis of our first data set, overlapping results have been obtained

for both neutron and γ data. This strengthens our hypothesis of the need to take into account the presence

of the intermediate Fp population due to inelastic neutron scattering (becoming relevant at neutron energies

in the few MeV range).

Further studies with our second recent data set are on-going and necessary to definitively clarify this issue.
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Fig. 7. The Fp vs Energy [keV] : comparison of the nuclear/neutron recoils and electron/gamma recoils separation power among
the two performed tests and data referred to [22] [Left]; comparison between last run and data from [22] at lower energy bins
[Right].

6. Conclusions

Dedicated tests have been performed to estimate the signal to background separation in a single phase

Liquid Argon based detector by means of Pulse Shape Discrimination methods. The Argon cell was exposed

to an Am/Be source.

In a first run the detector with a rather modest Light Yield of ∼ 1.5 phe/keV was used to compare various

PSD algorithms; an optimized version of the commonly used F-prompt method has been found to be the

most efficient.

The optimization required to take into account the presence of a third intermediate population, in addition

to those corresponding to neutron and gamma events, in the Fp distribution. We ascribe this type of events

to inelastic scattering of neutron on Ar nuclei. The energy spectrum of the Am/Be source and the neutron

inelastic cross-section in this range justify this hypothesis. A MonteCarlo simulation of the energy released

in the detector by the interaction of neutrons emitted by the Am/Be source further confirms the presence of

the intermediate Fp population. To take into account this feature of the F-prompt experimental distribution

an empirical function to fit the data has been appropriately defined. This in turns allows for a better neutron

to gamma separation as a function of the deposited energy.

A second test using the same detector with an increased LY∼ 6.3 phe/keV has been recently performed. The

much higher LY during this last run allowed to studying the separation down to very low energies deposited

in liquid Argon.

Further dedicated study for the identification of possible systematic effects in our measurement is still under

way as well as comparison with other available reference data.

The wider n-to-γ separation extended in the low energy range leads to a better background rejection power.

This effect immediately reflects in a higher sensitivity in the direct detection of WIMP-DM particles.
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