DMFCI University of Catania and LNS-INFN

A. Musumarra

Measuring total reaction cross-sections at energies near the coulomb barrier by the active target method

DREB09

<u>Why to measure σ_R around the Coulomb barrier ?</u>

 i) Following the trend of σ_R along the Li (^{6,7,8,9}Li) isotopic chain at low energy we can reveal changes in structures (e.g. ⁶⁻⁹Li isotopes).

ii) At such energies we expect rapid variations of the real and imaginary part of the optical potential (Threshold Anomaly). Measuring σ_R we can put constraints on optical model parameters.

Zadro et al. PRC in press

How to measure σ_R

Direct Technique A silicon detector used as an active target

Charged Particle vs Silicon Detector

Experimental set-up 2000 scattering chamber at LNS-INFN

MCP efficiency - LiF coated emitter foil

Pile-up rejection - double rejection technique

$$\overline{\sigma}_{R} = \frac{\int_{0}^{E_{\text{max}}} \sigma_{R}(E) \left(\frac{dR(E)}{dE} \right) dE}{\int_{0}^{R_{\text{max}}} dR} = -\frac{\frac{m \cdot \log(1 - P_{r})}{m \cdot \log(1 - P_{r})}}{\rho \cdot N_{A}R_{\text{max}}}$$

$$\stackrel{\text{m=mol-weight (28)}}{= -\frac{m \cdot \log(1 - P_{r})}{\rho \cdot N_{A}}} = -\frac{10^{-4}}{\rho \cdot N_{A}R_{\text{max}}}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{$$

Conclusions

- ${\boldsymbol \cdot}$ Warner technique very effective in $\sigma_{\!\scriptscriptstyle R}$ determination near the Coulomb barrier
- Specific reaction channels can be disentangled (Fusion Transfer) by very low intensity beam (10³ pps)
- Technique sperimentally checked for the ⁷Li+²⁸Si system @ E(⁷Li) 12-16 MeV
- Work in progress for the ⁸Li+²⁸Si system

Thank you

Measuring total reaction cross-sections at energies near the coulomb barrier by the active target method

A. Musumarra^{a,b,*}, P. Figuera^a, F. De Luca^{a,c}, A. Di Pietro^a, P. Finocchiaro^a, M. Fisichella^{a,c},
 M. Lattuada^{a,c}, A. Pakou^d, M.G. Pellegriti^{a,c}, G. Randisi^{a,c}, G. Scalia^{a,c}, C. Scirè^a, S. Scirè^a,
 V. Scuderi^{a,c}, D. Torresi^{a,c}, M. Zadro^e

^a INFN, Laboratori Nazionali del Sud, Catania, Italy

^b DMFCI dell'Università di Catania, Italy

^c Dipartimento di Fisica e Astronomia dell'Università di Catania, Italy

^d Department of Physics, The University of Ioannina, Greece

^e Rudjer Bošković Institute, HR-10002 Zagreb, Croatia