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Abstract

A compact tunable source of soft X-rays could be realized combining a state-of-the-art electron source with an intense couter-
propagating laser pulse. If the source is operated in the quatum regime, the theoretical model predicts high monochromaticity
(single-spike) and unprecedented temporal coherence for the emitted radiation. Here we present numerical simulations of the com-
plete quantum model for an FEL with a laser wiggler in three spatial dimensions, based on a discrete Wigner function formalism
taking into account the longitudinal momentum quantization. The numerical model includes the complete spatial and temporal
evolution of the electron and radiation beams, with an explicit description of diffraction, propagation, laser wiggler profile and
emittance effects. The contribution of each interaction term is studied independently, and the 3D results are contrasted with the
1D quantum FEL model neglecting transverse effects. Finally the parameter space for possible experiments is characterized, and
a particular experimental case is discussed in detail.
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1. Introduction

In the quest of tunable and bright X-ray sources a novel
approach has been recently proposed consisting in operat-
ing a Free-Electron laser (FEL) in a weak interaction regime
where the discreteness of momentum exchange between
electrons and radiation becomes relevant. In this regime,
called quantum regime (1; 2), the theoretical model predicts
the possibility to operate in the self amplified spontaneous
emission (SASE) mode obtaining a nearly single spike spec-
trum and extremely long coherentX-ray pulses, overcoming
thus many limitations of conventional FEL sources (3; 4; 5).
A discussion of the main features of the longitudinal dy-
namics of a quantum FEL (QFEL) in the SASE mode op-
eration is presented elsewhere in these Proceedings (6), as
well as a description of the inclusion in the model of the
transverse dynamics based on the Wigner function for the
electron beam (7). It has been shown that, in order to re-
alize a QFEL, a laser wiggler must be used (8; 9). Such a
choice sets some stringent conditions on the electron and
laser beam parameters (10), which should be verified by nu-
merical 3D simulations. A numerical code QFEL3D has been

developed for integrating the the coupled QFEL equations
describing the interaction of the electrons with the radia-
tion field. The numerical scheme is based on a Fourier de-
composition of the Wigner function and on finite-difference
(FD) integration of the motion equations on a Cartesian
three-dimensional spatial grid. A combination of different
integration schemes were adopted in an operator splitting
algorithm. An explicit FD scheme coupled to a Runge-
Kutta stepper was used for integrating the interaction of
the field and the electron bunch (11). A cubic-interpolation
propagation (CIP) method was implemented for solving
the advection equation of the radiation field in the electron
bunch rest frame (12). The beam transverse motion was
tracked using a 2D Vlasov solver. A linear domain decom-
position technique was used for distributing the computa-
tion over a cluster of processors. Since the computation in-
volved large complex valued arrays of rank up to N = 7,
the computational kernel was written in F90. The commu-
nication between different nodes was implemented using
the MPI library. The front-end, the disk IO and link with
the graphics libraries was implemented using a C++ driver.
In this work we present the simulations results of QFEL
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model for a particular set of parameter, which indicate the
path to a laser wiggler experiment in the near future (10).
In the first section the 1D model is introduced and the con-
sistency of the new Wigner formulation with the previous
Schrödinger equation approach is assessed. The parameter
space is then characterized and the choice of the working
point is explained. A study of the 1D energy output is then
presented for determining the relation between the steady-
state solution and the average properties of the SASE op-
eration mode. In the subsequent section the results of 3D
simulations are presented, focussing on the relative impor-
tance of the new dynamical terms. The conditions neces-
sary to preserve the FEL resonance are then outlined, and
finally the conclusions are drawn.

2. 1D model

It has been shown that a Quantum FEL can be described
using a Wigner function approach in the 1D limit by the
following equations (13):
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Here the ws are the components of the discrete Wigner
function (14) labelled by the half-integer index s ∈ Z/2.
The variables and the parameters are defined accordingly
to the description of the model presented in (13). In partic-
ular θ = (kr +kL)z− c(kr −kL)t− δz̄ is the electron phase,
where kL = 2π/λL and kr = 2π/λr are the laser and radi-
ation wave numbers, respectively; p = mc(γ − γ0)/(~kr) is
the longitudinal momentum, in units of the photon recoil
momentum, ~kr, and δ = mc(γ0−γr)/(ρ̄~kr) is the detun-
ing, where γ0 and γr = [λL(1 + a2

0)/4λr]
1/2 are the initial

and resonant electron energy in mc2 units, respectively; the
position along the wiggler z̄ = z/Lg is expressed in gain
length units Lg = λL/(8πρ

√
ρ̄), and the electron position

along the beam is z1 = (z − vrt)/(βrLc), where vr = cβr

is the resonant velocity and Lc = λr/(4πρ
√

ρ̄) is the coop-
eration length; ρ = (1/2γr)(I/IA)1/3(λLa0/4πσ)2/3 is the
FEL parameter, I is the beam peak current, IA ≈ 17kA
is the Alfvèn current, σ is the transverse rms beam size;
a0 = eE0/mc2kL and E0 is the laser electric field; A is
the slowly varying amplitude of the radiation field, defined
such that |A|2 = ǫ0|Er|2/(~ωrnb) is the average number of
photons emitted per electron in the electron beam volume,
Er is the radiation electric field, nb = I/(2πσ2ec) is the
electron density and ωr = ckr. The QFEL parameter ρ̄ =
ρ(mcγr/~kr) is approximately equal to the ratio between
the maximum classical momentum spread (of the order of
mcγrρ) and the photon recoil momentum ~kr, and yields
also the maximum number of photons emitted per electron
in a high-gain classical FEL.

It is worthwhile to recall that the above definitions are
consistent with a electromagnetic wiggler realized, for
instance, by a counter-propagating circularly polarized
laser pulse. The basic equations were further rescaled and
transformed before numerical implementation. Performing
a constant phase shift on the dynamical variables ws and
A, the detuning term ∝ δ is moved from the field equa-
tion onto the electron beam equation. Then the Wigner
components, which are functions of the periodic electron
phase θ, are expanded in a Fourier series ws(θ, z̄; z1) =
1

2π

∑∞
k=−∞ wk

s (z̄; z1)e
ikθ. We finally obtain the equations

that were solved numerically in the code
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This new set of equations were integrated both in the
classical (ρ̄ >> 1) and in the quantum regime (ρ̄ < 1) and
the solution was contrasted with the predictions of a previ-
ous model based on a Schrödinger equation for the electron
beam matter wave interaction with the radiation field(1). A
striking perfect match was found within the numerical pre-
cision of the computer hardware, confirming that the two
descriptions are indeed equivalent as far as the quantized
longitudinal FEL dynamics is concerned. Figure 1 presents
the evolution along the wiggler of the radiation field A and
the bunching parameter b for a steady-state run with ρ̄ =
0.1. The electron beam had an initial bunching b0 = 0.01
and no radiation seed was present. It is possible to see in
the linear scale the typical periodic pulsing of the radia-
tion field, and that A peaks at the value of 1, consistently
with the quantum scaling. Solid lines in the plot refer to the
Wigner model outlined above, whereas the markers corre-
spond the Schrödinger equation model.

z

|A|2

|b|

Fig. 1. Steady-state 1D models for ρ̄ = 0.1. Comparison of the
Wigner function model (solid lines) with the Schrödinger equation
model (markers).
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2.1. Definition of the working point

For exploring the QFEL dynamics with a laser wiggler
we chose a value of ρ̄ = 0.2, since this value lays in the
quantum regime (ρ̄ < 0.4), and the gain length is not ex-
ceedingly long for experimental purposes. We chose a laser
wavelength λL = 1µm (representative for instance of a
Nd:glass laser system), and we looked for an output reso-
nant wavelength λr = 2 Å. The mean electron energy was
set to 18 MeV (γr = 36). The electron beam had a beam
waist σ = 10µm, while the minimum rms laser radius R
was set to 20µm. With these parameters, and under the
assumption of transverse flat-top profiles for both the elec-
tron beam and the laser wiggler, it is possible to draw,
using the relations obtained in (10), the contour plots for
the quantum FEL parameter ρ̄ and for the gain length Lg

as a function of the laser power and of the beam current.
Figure 2 shows that the desired ρ̄ = 0.2 can be obtained
for a laser power in the range 1 − 10 TW, which is easily
accessible with present-day laser technology, while at the
same time keeping the beam current below 1 kA, in order
to avoid space charge instabilities as much as possible. The
gain length is comprised between 1 and 2 mm in that pa-
rameter window, as shown in Figure 3. In order to keep the
requirements on the laser system to a minimum, the cho-
sen working point was defined by a laser power of 1 TW
and a beam current of 884 A, corresponding to ρ̄ = 0.2
and Lg = 1.3mm. With this choice, the beam was 586 co-
operation lengths long. The interaction was taken over 10
gain lengths (z̄max = cτint/Lg = 10), with the beam waist
in the middle, z̄0 = 5. The minimum duration of the laser
pulse is therefore τL = 20 Lg/c ∼ 90 ps. The corresponding
laser energy is hence of the order of 90 J.

2.2. Energy output stability

Before moving onto the more complex three-dimensional
equations, it is worthwhile to extract from the simple 1D
model information about the sensitivity of the longitudinal
high-gain FEL dynamics with respect to the initial condi-
tions. In fact, 3D runs in SASE mode are noticeably ex-
pensive in terms of computational resources, whereas 3D
runs in steady-state approximation (i.e. assuming an infi-
nite beam length and neglecting propagation effects) are
more manageable.
Figure 4 presents a comparison of the output energy as a
function of wiggler length in the quatum regime ρ̄ = 0.2.
The reference case is the red line depicting the energy per
unit beam length E/Lb for the steady-state case. It is pos-
sible to see the first pulse of the train of hyperbolic secants,
which are the fingerprint of the steady-state dynamics (see
Figure 1). The normalized energy peaks after 6 Lg to the
value of 1, consistently with the adopted quantum scaling.
The energy goes then back to zero, since radiation can-
not escape the system, and it is reabsorbed by the electron
beam. The other curves all refer to the case of a electron

ρ̄

Fig. 2. Isocurves of the quantum FEL parameter ρ̄ as a function of
the beam current I and of the laser wiggler power P . The chosen
working point for ρ̄ = 0.2 was set at P = 1 TW and I = 884 A. The
other parameters can be found in the text.

L g[mm]

Fig. 3. Isocurves of the gain length Lg in the plane (I, P ). The
working point corresponds to Lg = 1.3 mm.

beam of finite length, namely Lb = 20 cooperation lengths.
If a resonant coherent seed is injected (green curve), it is
amplified by the FEL dynamics is a similar way to the
steady-state resonant case. The peak value is lower than 1
because radiation is continuously escaping from the beam
front, and therefore leaves the amplification medium. For
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z ≥ 8 the energy does not go to zero as in the infine-beam
case, and a second peak start to appear. This is due to the
super-radiant spike starting from the tail of the beam, and
progressively converting beam momentum into radiation
energy. This fact is clear in the blue curve representing the
case of a non-resonant coherent seed. Here the seed is not
amplified, and only the super-radiant spike instability is
growing, leading to a peak at z̄ ∼ 10. The last curve (black
line with error bars) depicts the output energy averaged
over 100 different SASE runs, where no seed was injected
and the phase of the bunching was varied randomly along
the beam. The normalized energy peaks in SASE mode af-
ter 9 gain lengths, and reaches about the 65% of the ref-
erence steady-state case. It is important to note that the
energy fluctuations at saturation are of the order of 10%.
In order to investigate the properties of the energy output
as a function of the beam length, a series of simulations
was performed varying the Lb parameter only, from 1 up to
1000 cooperation lengths. The energy curves were stacked
up with increasing beam length, and presented in Figures 5
and 6 as color maps for the normalized energy E/Lb. When
a resonant coherent seed was injected (Figure 5), the sys-
tem follows the steady state dynamics for Lb ≥ 50, peak-
ing at 1 after 6 gain lengths. Finite beam effects, such as
energy loss from the front and the super-radiant instabil-
ity, become significant for beam lengths shorter than 20
cooperation lengths. The average output of SASE opera-
tion mode (Figure 6) indicates that the system can deliver
up to 70% of the reference energy for Lb ≥ 50 after 9 gain
lengths. More noticeably the energy fluctuations become
lower than 10% for Lb ≥ 20. In summary, this set of sim-
ulations shows that for the case at study, i.e. for a beam
with Lb = 586, the steady-state solution of the equations
can be used to obtain a good estimation of both the output
energy and the required wiggler length for saturation. As
a rule of thumb, the SASE output will reach up to 70% of
the steady-state output, but will need a longer wiggler. In
our case, the radiated energy peaks before 10 gain lengths,
so that the required interaction length Lint = 10Lg is ade-
quate for SASE operation.

3. 3D simulations

The one-dimensional QFEL model describing the quan-
tized longitudinal dynamics between radiation and elec-
trons was expanded including the transverse dynamics (7).
This new set of equations allow the electron beam to focus
and expand after passing through the waist, and the radia-
tion to diffract away from the lasing volume. The transverse
profile of the laser wiggler was also explicitly included, since
the radius of the beam and that of the laser focal spot are
comparable for the chosen working point.
Three new terms were added to the electron equation (1),
which becomes
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Fig. 4. Normalized radiation energy E/Lb as a function of wiggler
length for the following cases: steady-state mode (red curve), reso-
nant coherent seed (green), non-resonant coherent seed (blue), SASE
mode averaged over 100 shots (black line with error bars). The last
three cases are for a beam 20 cooperation lengths long.
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Fig. 5. Normalized radiation energy E/Lb as a function of wiggler
length and of beam length for the case of a resonant coherent seed.
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Fig. 6. Normalized radiation energy E/Lb as a function of wiggler
length and of beam length averaged over 100 SASE runs.
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where x̄t = xt/σ is normalized transverse vector and p̄t is
the corresponding transverse momentum as defined in (7).
Moreover a = Lg/Zr is the diffraction parameter, and Zr =
4πσ2/λ is the Rayleigh range of the emitted radiation with
a transverse radius equal to the electron beam radius. The
emittance parameter is b = Lg/β∗, where β∗ = σ2γr/ǫn

and ǫn is the normalized beam transverse emittance. The
parameter ξ = a2

0/(1 + a2
0) is related to the laser wiggler

parameter a0, and the laser transverse profile is described
by g(x̄t, z̄). It can be seen that setting b = 0 and g ≡ 1, i.e.
for a collimated beam and a uniform wiggler, equation (5)
reduces to the one-dimensional beam equation.
The field equation was extended by adding a diffraction
term proportional to the a parameter, and the source term
due to the beam bunching was integrated over the trans-
verse momentum and weighted according to the transverse
wiggler profile g
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In the simulations the initial electron beam was described
by a thermal state of energy mc2γ, and the transverse phase
space distribution w0 was set proportional to exp{−|x̄t +
bz̄0p̄t|2/2−|p̄t|2/2}. Setting a0 = 0 and therefore switching
off the FEL interaction, it was checked that the b p̄t ·∇x̄t

ws

term correctly describes the evolution of a gaussian beam
with the waist position at z̄ = z̄0, and whose beam section
scales as σ(z) = σ

√

1 + [(z − z0)/β∗]2 in free space.
In order to address the relative importance of the new

transverse terms introduced in the model as well as the
differences between 1D and 3D evolution, we investigated
separately the effects of each term by switching off deliber-
ately the others in the simulations. Let us rewrite the beam
equation as
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where, for sake of clarity, we introduced χ = ξ
2ρ

√
ρ̄

and

η = b2

4a . In the following we present the dependence of the
emitted radiation energy on the laser wiggler profile g, on
the resonance detuning induced by change of the wiggler
parameter, and of the detuning caused by the beam emit-
tance.

3.1. Laser wiggler profile

Firstly the case of a TEM00 Gaussian laser wiggler was
studied. Here the laser amplitude was set to
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Fig. 7. Radiation energy as a function of wiggler position varying
the laser wiggler focal spot σL = R/σ. The reference case (thick red
line) corresponds to a uniform wiggler.
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Fig. 8. Radiation energy as a function of wiggler position varying
the laser wiggler Rayleigh range Z̄L = ZL/Lg . Energy saturation
occurs before the wiggler end for Z̄L ≥ 2.

g(x̄t, z̄) =
1

[1 − i(z̄ − z̄0)/Z̄L]
exp

[ −|x̄t|2
4σ2

L[1 − i(z̄ − z̄0)/Z̄L]

]

(8)

where σL = R/σ, Z̄L = ZL/Lg, ZL = 4πR2/λL, R is the
minimum rms laser radius, and the focal plane is located at
the beam waist position z̄0. Figure 7 presents a series of 3D
steady-state simulations highlighting the dependance of the
emitted radiation on the ratio of the laser radius over the
beam waist. Here we neglected emittance and diffraction
effects (a and b = 0), and the laser was not diverging (Z̄L =
∞). We chose as reference case (red line) that of a uniform
wiggler g = 1, corresponding to a focal spot of infinite
radius σL = ∞. The renormalized energy peaks after 7 gain
lengths, instead of 6 as in 1D steady-state case, due to the
fact that the gain is lower in the beam halo and therefore
saturation occurs there later on in the wiggler. It can be
seen that, when the laser radius is 5 times the beam waist,
σL = 5, the system can recover up to 98% of the energy
output given by a uniform wiggler. For σL = 2 the output
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Fig. 9. Radiation energy as a function of wiggler position for different
laser wiggler configurations. The reference case g = 1 is plotted in
light gray. The effects of resonance detuning due to the χ term is

presented for a Gaussian beam with χ = 0, 1, 10, 20, and for a flat-top
laser pulse (green line with diamonds) with χ = 100.

reaches 86% of the uniform case, whereas for tighter focal
spots the energy output drops considerably. By varying the
divergence of the laser wiggler (see Figure 8), it can be
seen that for a laser with Rayleigh range longer than 5 gain
lengths, Z̄L > 5, the extracted energy is more than 95%
of the reference. For this set of parameters, the case Z̄L =
2 can be considered as marginal, since the energy cannot
reach saturation within the prescribed interaction length.

The χ factor can have a dramatic effect on the FEL dy-
namics, since near the chosen working point it can be found
that χ & 100. This means that the term χ(1−|g|2) rapidly
brings out of resonance the electrons where the laser am-
plitude drops from its maximum value, both radially and
longitudinally. Figure 9 shows that for a Gaussian beam
and for χ = 10 the system goes already out of resonance.
In order to overcome this problem, a laser with a tailored
transverse profile could be used. We adopted the flattened
Gaussian beam (FGB) proposed in (15). The amplitude
g(r, z̄) of an FGB is presented in Figure 9. By using a FGB
of relatively lower order N = 8, it was possible to recover
more than 95% of the reference energy even in the case of
χ = 100, as shown in Figure 9.

3.2. Detuning caused by emittance and diffraction

In the beam equation (7) the term proportional to η =
b2

4a is responsible for FEL resonance detuning induced by
the combined effects of beam emittance and of radiation
field diffraction. A sensitivity study was carried out near
the working point by varying the value of η, and observing
the energy output of the system in steady-state operation.
Figure 11 shows that η must be less than unity in order
to preserve the resonance condition. Giving that at the
working point the field diffraction parameter a is 1.6 ×
10−4, the emittance parameter b must be less than 0.025,

r

z

Fig. 10. Laser field amplitude |g(r, z)| for a Flattened Gaussian Beam
of order N = 4.
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Fig. 11. Dependence of the radiation energy on the emit-
tance and diffraction effects for different values of the factor
η = 0, 0.1, 0.5, 1, 2, 10.

which correspondes in our case to an upper limit on the
normalized emittance ǫn < 0.07 mm-mrad.

4. Conclusions

In summary, we have presented a series of 3D simula-
tions for a quantum FEL with a laser wiggler, including
in the computation the effects of beam emittance and of
radiation diffraction. The spatial profile of the laser field
was explicitly taken into account, as well as the beam en-
velope evolution. Analysing the energy stability of a series
of SASE runs, it was found that the steady-state solution
of the QFEL dynamics can used as a reliable indication of
the average energy output of a typical SASE shot, when the
beam is many cooperation lengths long, Lb > 50, as in our
reference case. Using a Gaussian pulse for the laser wiggler,
it was found that up to 80-90% of the uniform wiggler en-
ergy output could be obtained if the Rayleigh range ZL is
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longer then 5Lg and the laser rms radius R is between 2 and
5 times the beam waist σ. The resonance detuning induced
by the spatial variation of the wiggler parameter a0 can
have dramatic effects for tightly focussed Gaussian laser
pulses. A possible cure would be to employ pulse tailoring
techniques, which can produce flatter pulse profiles in the
radial direction without introducing excessive phase fluc-
tuations in the laser field. Finally it was found that beam
emittance and field diffraction effects can have a significant
impact on the system performance. For our working point,
a stringent requirement was found on the normalized emit-
tance of the beam, namely ǫn ≤ 0.07 mm-mrad.
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