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The assessment of the degree of order of brainmetabolismbymeans of a statisticalmechanistic approach applied
to FDG-PET, allowed us to characterize healthy subjects as well as patients with mild cognitive impairment and
Alzheimer's Disease (AD). The intensity signals from 24 volumes of interest were submitted to principal compo-
nent analysis (PCA) giving rise to a major first principal component whose eigenvalue was a reliable cumulative
index of order. This index linearly decreased from 77 to 44% going from normal aging to AD patients with inter-
mediate conditions between these values (r = 0.96, p b 0.001). Bootstrap analysis confirmed the statistical sig-
nificance of the results.
The progressive detachment of different brain regions from the first component was assessed, allowing for a
purely data driven reconstruction of already known maximally affected areas.
Wedemonstrated for the first time the reliability of a single global index of order in discriminating groups of cog-
nitively impaired patients with different clinical outcome. The second relevant finding was the identification of
clusters of regions relevant to AD pathology progressively separating from the first principal component through
different stages of cognitive impairment, including patients cognitively impaired but not converted to AD. This
paved the way to the quantitative assessment of the functional networking status in individual patients.
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1. Introduction

Spontaneous neuronal activity in resting state depends on dynamic
communication between brain regions resulting in both local segrega-
tion and long distance integration of neuronal processes. Several
functional networks with temporally and/or spatially coherent connec-
tions (Damoiseaux et al., 2006) have been identified in healthy subjects
by means of functional Magnetic Resonance Imaging (fMRI) and Posi-
tron Emission Tomography (PET). Brain connectivity has been assessed
by investigating the mutual correlations between pre-determined vol-
umes of interest (VOIs) (Huang et al., 2007; Nobili et al., 2008; Pagani
et al., 2009; Wang et al., 2007), between a seed region and the whole
brain (Gardner et al., 2014; Lee et al., 2008; Morbelli et al., 2012) or by
the combination of the two (Seeley et al., 2009). Submitting all brain
voxels to Independent Component Analysis has shown a strong func-
tional architecture agreement in resting and activation states (Smith
et al., 2009), dementia (Rombouts et al., 2009) and Amyotrophic Lateral
Sclerosis (Pagani et al., 2016) speaking in favor of neuronal circuits con-
stantly operating in healthy and pathological states.

The selective breakdown of intrinsic brain networks during the pro-
gression from the normal aging (NA) to mild cognitive impairment
(MCI) and Alzheimer's Disease (AD) has been observed by different
groups (Hahn et al., 2013; Liu et al., 2012; Sun et al., 2014; Wang
et al., 2007). These investigations have already been performed, using
fMRI approach, by other groups adopting complex network formalism
by means of graph invariants (Bullmore and Sporns, 2009; Eguiluz
et al., 2005). The analyzed graphs supporting both modularized and in-
tegrated information processing have brain areas as nodes, while the
existence of an edge between two areas corresponds to the existence
of a correlation between them, exceeding a pre-fixed threshold. More
recently Spetsieris et al. have described by PET and Scaled Subprofile
Model a longitudinal decay of default mode network in Parkinson's dis-
ease (Spetsieris et al., 2015).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.07.043&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2016.07.043
Journal logo
http://dx.doi.org/10.1016/j.neuroimage.2016.07.043
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


283M. Pagani et al. / NeuroImage 141 (2016) 282–290
The disruption of neural pathways causing disconnection in large-
scale brain organization has also been ascribed to the overall decrease
in the number of fibers connecting brain structures, thus lowering the
efficiency of information elaboration (Bozzali et al., 2011; Daianu
et al., 2013) which is consistent with the worsening of cognitive symp-
toms. Such a process favors local systems to take over on long-distance
brain connections and decreases intellectual abilities, (van den Heuvel
et al., 2009) which lead to a hypothesis of a continuum in the intrinsic
network degradation from normal aging to mild cognitive impairment
to AD dementia.

The above described approaches focus on statistical comparisons be-
tween VOIs' pairwise correlations at different degrees of severity of the
disease (Hahn et al., 2013) or, considering the between-area connectiv-
ity structure as a small-world network, concentrate on the effect of pa-
thology on graph invariants such as characteristic length or node
centrality (Liu et al., 2012). They do not include the possibility of
extracting explicit state variables relative to the brain-as-a-whole.

On the other hand, a classical statistical mechanistic definition of
systemdegree of order (Gorban et al., 2010), independent of any a priori
hypothesis on the underlying architecture of the system under investi-
gation, enables the transformation of a purely descriptive approach
into a physically grounded one (Gorban et al., 2010; Mikulecky, 2001).
This shift allows for both a quantitative definition of the amount of con-
nectivity and a thorough analysis of the dynamics by which different
areas lose contact with the main core of the functional network (‘giant
component’ in the complex network jargon). Placing brain functional
order dynamics in a statistical mechanistic perspective results in a char-
acterization of the transition pattern of the system, possibly consistent
with a progressive change typical of small-world connectivity
(Scheffer et al., 2012).

The purpose of the present study was to analyze 18F-
Fluorodeoxyglucose PET (FDG-PET) data by a statistical mechanistic
approach in order to characterize the degree of order dynamics
across normal aging, subjects with MCI either converting to AD
(early MCI, eMCI, and late MCI, lMCI) or not (ncMCI), and patients
with mild AD dementia. This was made possible by quantifying the
progressive disruption of the main core network present in normal
aging and by identifying those brain regions in which such global
disconnection was more pronounced. We also checked the clinical
relevance of our theoretical physics-inspired model by a bootstrap
approach comparing the percentage of the variation explained by
the first principal component across the different groups.

The degree of correlation of the brain as a whole gives much more
robust results than single areas/nodes evaluations. This depends upon
the acceptance of the ergodic hypothesis that could, in principle, pro-
vide the basis for direct evaluations of the degree of order of brain me-
tabolism at the single patient level. In turn, this translates into the
assumption that patients inside a clinical class of severity are equivalent
to a single patient observed during different times within a stationary
clinical state. This implies that the degree-of-order we measure across
patients of the same class is equivalent to that derived from different
time points of the same patient. In turn, this could provide a rapid and
efficient prognostic system for ‘time-to-onset’ of AD.

2. Methods

2.1. Participants

Two hundred and twenty subjects composed thewhole study popu-
lation. They were 44 normal aged subjects (NA; mean age 69 ± 10; 32
Females), 28 MCI patients not converting to AD at 5 years follow up
after PET scan (not converting MCI, ncMCI; mean age 72 ± 6; 12 Fe-
males), 36 MCI patients that converted to AD later than 2 years since
PET scan (early MCI, eMCI; mean age 75 ± 7; 28 Females), 58 MCI pa-
tients that converted to AD within 2 years since PET scan (late MCI,
lMCI; mean age 76 ± 7; 36 Females) and 54 patients with mild AD
dementia at the time of PET scan (AD; mean age 73 ± 7; 36 Females).
These patients come from a prospective study started in 2008 including
patients with amnestic MCI, after secondary causes of deficit were ex-
cluded, and patients with mild AD dementia, who gave their consent
to undergo FDG-PET in the frame of a long-term observational study.
They all provided informed consent to be part of a longitudinally
followed cohort.

Although the proposed definition of eMCI and lMCIwas based on the
Standard Deviation (SD) from norms (i.e., lower than−1.5 SD= lMCI;
between −1.0 and −1.5 = eMCI) (Aisen et al., 2010) we choose a
temporal-based classification by defining as eMCI those patients
converting to AD dementia more than 2 years later the first visit and
lMCI those converting before this timeline. Actually the terms ‘early’
and ‘late’ (stage) essentially should refer to a temporal rather than to
a neuropsychological test score domain.

2.1.1. MCI patients
They were subjects referred to our memory clinic for a first diagnos-

tic assessment of a memory complaint. They underwent a complete di-
agnostic work-up according to current standards, including clinical and
neuropsychological examinations, blood and urine tests, morphological
(MRI) and functional (FDG-PET) neuroimaging. Patients underwent a
neuropsychological test battery, including: (i) categorical and phono-
logical verbal fluency; (ii) Trailmaking test A and B and Stroop color
and color-word test for executive functions; (iii) figure copying of the
mental deterioration battery (simple copy and copy with guiding land-
marks) and Clock Completion test to assess visuospatial abilities; (iv)
Rey Auditory Verbal Memory Test (RAVLT, immediate and delayed re-
call) and Corsi's block design to investigatememory; (v) digit span (for-
ward) and symbol-digit to asses attention and working memory.

To be included in theMCI group the patients had to be impaired in a
memory test, eitherwith (multi-domain amnesticMCI) orwithout (sin-
gle-domain amnestic MCI) impairment in other cognitive domains but
not demented, thus corresponding to the Petersen's MCI criteria
(Petersen and Negash, 2008). Moreover, they must be followed-up
with regular control visit at least for 5 years or until they developed
AD dementia. Exclusion criteria included previous or currentmajor psy-
chiatric disorder andneurological disease, severe and uncontrolled arte-
rial hypertension, diabetes mellitus, renal, hepatic or respiratory failure,
anaemia and malignancy. A depressive trait was not an exclusion crite-
rion, but a 15-item Geriatric Depression Scale (GDS) score ≤ 10 was re-
quired for inclusion. Patients withMRI evidence ofmajor stroke or brain
mass were excluded, with white matter hyperintensities, leucoaraiosis
and lacunae not constituting an exclusion criterion if the Wahlund
score was b3 in all regions(Wahlund et al., 2001). The modified
Hachinski ischaemic score (Loeb and Gandolfo, 1983) was lower than
3 in all patients. Patients fitting the criteria for vascular cognitive impair-
ment (Gorelick et al., 2011) were excluded. A subgroup of patients who
did not undergoMRI because of claustrophobia or the presence of ame-
tallic device were evaluated by Computed Tomography.

2.1.2. AD patients
Similar as MCI patients, these were patients at their first diagnostic

evaluation at our memory clinic, who were diagnosed as affected by
mild AD dementia at the end of the same diagnostic procedure applied
toMCI patients. The presence of dementiawas established by clinical in-
terview with the patient and informants, using the questionnaires for
activities of daily living (ADL), instrumental ADL (IADL), and the Clinical
Dementia Rating (CDR) scale. The Mini-Mental State Examination
(MMSE) was used to assess general cognition. Only patients with mild
dementia (i.e. with MMSE score ≥ 19) attributed to AD according to
the NIAAA criteria (McKhann et al., 2011) were included.

2.1.3. Controls
The control subjects were healthy volunteers who gave their in-

formed consent to participate to the study. Their healthy condition



284 M. Pagani et al. / NeuroImage 141 (2016) 282–290
was carefully checked by means of general medical history, clinical ex-
amination, and the same exclusion criteria as for patients, with the ex-
ception of cognitive complaints. MMSE was performed, and only
subjects with a normal score (i.e., N26) were considered. Moreover,
only subjects with a CDR of 0 were included. These subjects underwent
FDG-PET and MRI. Given these prerequisites, the control subjects were
chosenwith the selection criteria of being in the same age range, having
similar gender distribution and educational level as patients.

All subjects underwent the same neuropsychological test battery in-
cluding standard tests for attention, language, visuoconstruction, and
executive function in use in our laboratory. A Z-score lower than
−1.5, computed on the Italian normative values of each test and
corrected for age and education, was established for impairment in a
specific cognitive domain (Picco et al., 2014).

2.2. 18F-FDG PET protocol and preprocessing

FDG-PET was acquired according to the guidelines of the European
Association of Nuclear Medicine (Varrone et al., 2009). Briefly, subjects
fasted for at least 6 h. Before radiopharmaceutical injection, blood glu-
cose was checked and was b7.8 mmol/l in all cases. After 10 min rest
in a silent and obscured room, with eyes closed and ears unplugged,
subjectswere injectedwith approximately 200MBq of 18F-FDGvia a ve-
nous cannula. They remained in the room for 30 min after the injection
and thenmoved to the PET roomwhere scanning started approximately
45min after the injection. A polycarbonate head holder was used to re-
duce headmovements during the scan. Images were acquired bymeans
of a SIEMENS Biograph 16 PET/CT equipment with a total axial field of
view of 15 cm and no interplane gap space. Scan acquisition time was
15 min with 3-dimensional mode. Images were reconstructed through
an ordered subset-expectation maximization algorithm, 16 subset and
6 iterations, with a reconstructed voxel size of 1.33 × 1.33 × 2.00 mm.
Attenuation correctionwas based on CT scan. Dicom fileswere exported
and converted into Analyse files.

FDG-PET images were subjected to affine and nonlinear spatial nor-
malization into the Talairach and Tournoux's space using SPM8
(Wellcome Department of Cognitive Neurology, London, UK) imple-
mented in Matlab 7.5 (Mathworks, Natick, Massachusetts, USA). The
spatially normalized set of images was then smoothed with a 10-mm
isotropic Gaussian filter to blur individual variations in gyral anatomy
and to increase the signal-to-noise ratio. All the default choices of
SPM8 were followed with the exception of spatial normalization for
which the H2

15O template was replaced by a customized brain FDG-
PET one (Della Rosa et al., 2014).

2.3. Region of interest identification and data preprocessing

Meanmetabolic values were computed in 45 anatomical volumes of
interest (VOIs) in each hemisphere (90 VOIs) as defined by the AAL
Atlas (Tzourio-Mazoyer et al., 2002). An in-house created Matlab-
based script automatically processed mean FDG uptake from each of
the 90VOIs (Pagani et al., 2015).Within each subject VOIswere normal-
ized to the average intensity of the cerebellar one, known to be poorly
affected by AD pathology. Regions with similar anatomo-functional
characteristicswere furthermerged intometa-VOIs in order to decrease
the number of variables to be submitted to statistical analysis. The com-
putations were performed by the Matlab script in a single step lasting a
few minutes, rendering simple and friendly the whole process.

Twelvemeta-VOIs were constructed in each hemisphere: 1. Occiptal
Cortex (Calcarine/Lingual/Inferior Occipital/Middle Occipital/Superior
Occipital Gyri); 2. Thalamus/Putamen/Pallidum/Caudate; 3.
Parahippocampal gyrus/Amygdala/Hippocampus/Insula; 4. Orbito-
frontal Cortex (Inferior Frontal/Medial Frontal/Middle Frontal Gyri); 5.
Frontal Cortex (Middle Frontal/Superior Frontal/Superior-Medial Fron-
tal/Superior-Orbital Frontal/Inferior Frontal Gyri); 6. Cuneus/Fusiform
Gyrus/Precuneus; 7. Postcentral Gyrus/Precentral Gyrus/
Supplementary Motor Area; 8. Parietal Lobe (Inferior Parietal/Superior
Parietal Gyri); 9. Anterior Cingulate Gyrus, 10. Posterior Cingulate
Gyrus, 11. Temporal Lobe (Inferior Temporal/Middle Temporal/Superior
Temporal Gyri), 12. Temporal Pole (Middle Temporal Pole/Superior
Temporal Pole Gyri).

We also tested another anatomical parcellation (35 VOIs, bilaterally,
from the Wake Forrest University, WFU, Pick Atlas) besides the AAL
Atlas, to verify that results were not dependent on the initial VOI
choices, obtaining highly consistent results.

2.4. General theoretical frame, methods and strategy of analysis

The degree of order is a state variable largely used for the character-
ization of systems dynamics (Chandler, 1987) defined as the amount of
internal correlation. Any system has a peculiar behavior of decreasing
(or increasing) its degree of order when stressed by an external force.
This behavior, depending on the particular structural features of the sys-
tem, can take the form of either an abrupt transition or a smooth decay,
corresponding the latter to a trajectory optimally fitted by a straight
line. A well-studied and clear example of the above two alternative be-
haviors is the folding process of protein molecules that can be
subdivided into two-state (abrupt transition) and multi-state (quasi-
linear dynamics) (Tan et al., 1996).

Gorban et al. (Gorban et al., 2010) and more recently Scheffer et al.
(Scheffer et al., 2012) demonstrated the universal character of such dy-
namics ranging from physics to physiology and economics. Heteroge-
neous networks in which the components differ and where
incomplete connectivity causes modularity tend to have adaptive ca-
pacity in that they adjust gradually to changes. All such cases result
into a smooth degradation of the network when stressed by an external
factor. By contrast, in highly connected and homogenous networks,
local losses tend to be repaired by subsidiary inputs from linked units
until at a critical stress level the system collapses (Scheffer et al., 2012).

This ends up into twomain classes of degradation (i.e. loss of order)
of networks, strictly depending on their wiring architecture. Highly
modular and heterogeneous networks (nodes with highly varying con-
nectivity degree) show a smooth degradation, while highly connected
homogeneous networks undergo sharp transitions.

The construction of a synthetic measure of the degree of order of the
brain as a whole was straightforward in the case of FDG-PET data. For
each clinical severity level, principal component analysis (PCA on the
correlation matrix) was applied to the data set having as statistical
units the patients and as variables the mean intensity in the meta-
VOIs. The analysis was performed separately for each severity group.
All different groups had the same correlation structure characterized
by a main first principal axis acting as ‘size’ component (all positive
loadings, thus representing the behavior of the brain as a whole)
(Darroch and Mosimann, 1985; Jolicoeur and Mosimann, 1960). This
allowed for a direct quantification of the degree of order of the brain
in terms of the first eigenvalue (Lambda 1) of the PCA solution
expressed in terms of percentage of total variance explained by the
first principal component (Giuliani et al., 2001; Gorban et al., 2010).
The formal identity between the amount of correlation and the degree
of order of a system derives from the mathematical definition of algo-
rithmic complexity (Soofi, 1994). The invariance of degree of order dy-
namics at different brain partition choices is demonstrated in Suppl. Fig.
1, where both the strict correlation between degree of order of VOI and
meta-VOI (top panel) and their collinear decrease across disease sever-
ity (bottom panels) are reported.

The detachment of brain areas from the global connectivity compo-
nent was evaluated by Oblique Principal Component Analysis (OPC)
(Jolliffe, 2002; Sethi, 1971) as applied to all meta-VOIs loadings on the
first principal component of PET data of the different groups of patients.

OPC is a divisive clustering procedure for variables. The variables (in
our case, the brain areas loadings on PC1 of groups with increasing se-
verity) are subdivided into classes with the constraints of obtaining



Fig. 1.The dynamics of the loss of order along the clinical status. Y-axis: variance explained
by the first component; X-axis: disease severity. NA: normal aging; ncMCI: MCI patients
not converting to AD at 5 years follow up; eMCI: MCI patients that converted to AD later
than 2 years; lMCI: MCI patients that converted to AD within 2 years; AD: patients with
mild AD dementia. The point distribution around the center of mass corresponds to
bootstrap simulation.
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most internally correlated clusters (maximal correlation between vari-
ables within the same cluster) while at the same time minimizing the
between-cluster correlation (minimal correlation among variables
pertaining to different clusters). The procedure stops when reaching a
maximum of the ratio between the within-cluster and the between-
cluster correlation. The composition of different clusters of meta-VOI
was checked a posteriori: the presence of well-known AD affected
areas in rapid decay cluster (areas whose loading starts to decrease al-
ready at ncMCI stage) is a proof-of-concept of the biological relevance
of the obtained partition. Data inspected by OPC do not explicitly con-
tain information about the entity of the metabolism in different areas.
The loadings correspond to the correlation coefficient between the
areas and PC1, thus they estimate the degree of integration of each
area with global brain metabolism.

Each loading derives from the group specific PCA. Given that we
have 5 disease severity groups, each area is defined by 5 values, each
one correspondent to its loading with PC1 of the specific group. This al-
lows to have a consistent representation of each area in terms of its par-
ticipation to PC1 across the 5 severity classes. OPC collects in the same
class areas having the same PC1 loading profile across the 5 classes.

We supplemented the analyses by computing a confidence level es-
timation with the bootstrap technique on the degree of order for each
clinical class. This allowed for an assessment of discrimination power
among different cognitive severity classes which might cross-check
the clinical relevance of our physicalmodel. It isworth stressing themu-
tual independence between Bootstrap analysis (only based on Lambda
1) and OPC partition that constitutes a global descriptive analysis of
the contribution of the various clusters of areas to PC1.

3. Results

3.1. Order degree dynamics

Submitting to PCA the intensity values of the 24 meta-VOIs esti-
mated for each subject of the five groups of our dataset and computing
the eigenvalue of the first component of each group (Lambda 1), re-
sulted in the dynamics shown in Fig. 1. The linear decay of the degree
of order (percentage of variance explained by the first component) is
consistent with a highly modular architecture of brain metabolism
(Scheffer et al., 2012). The percentage of total variance explained by
the first principal component was 77.08 in NA, 71.00 in ncMCI, 64.08
in eMCI, 54.97 in lMCI and 44.01 in AD, r = 0.96, p b 0.001.

The dynamics of Lambda 1 on simple VOIs (not aggregated in meta-
VOIs) show the same monotonic behavior of degree of order irrespec-
tive of the initial preprocessing (Supplementary Fig. 1). Using the
functional parcellation of the WFU Pick Atlas resulted in dynamics
superimposable to the analyses performed using AAL for segmenting
both VOIs and meta-VOIs.

3.2. Oblique principal component (OPC) analysis

OPC, applied to the distribution of brain areas on the first principal
component in different groups of patients, generated a five-Cluster parti-
tion of the meta-VOIs set as the optimal classification. This partition ex-
plained 91% of the total variance. Thus, it can be considered a faithful
representation of the different patterns of loading decline across stress
variable. Table 1a reports the composition of different Clusters in terms
of meta-VOIs and reports the centrality of each area with its own Cluster
in terms of R-square. The two most populated classes (Clusters 1 and
4) were largely superimposed (Inter-Cluster correlation = 0.88), which
indicates largely coincident loading dynamics (Table 1b).

The profiles of loadingswithin thefirst component for different Clus-
ters are reported in Fig. 2 and their topographic representation on brain
surface in Fig. 3a and b. It should be stressed that the observed Cluster
structure emerged from a purely data-driven mode based solely on
the loading of single meta-VOIs on the first component relative to
each disease severity class.

Clusters 1 and 4 correspond to meta-VOIs whose detachment from
the main component (whole brain metabolism) follows a smooth
decay along the axis of increasing severity (Fig. 2). Cluster 1 containing
most of the typical regions of the Alzheimer hypometabolic pattern
(Table 1a), has its lowest load on Principal Component 1 (PC1) in ADpa-
tients while MCI patients of all groups, including ncMCI show a similar
loading. In other words, Cluster 1 distinguishes AD dementia from
predementia AD. On the other hand, Cluster 4, including some of the
main association cortices, depicts the transition across several stages
of AD severity with a high linearity since loading progressively de-
creases with cognitive decay.

Clusters 2 and 5 were closely related to global brain metabolism
throughout the entire dynamics, while cluster 3 points to areas with a
highly non-linear loading dynamics.

3.3. Consistency between brain metabolism ordering and diagnosis

The last step of the analysis was to check the ability of degree of
order to account for the clinical differences between the severity classes.
The data setwas analyzed by a bootstrap procedure to estimate the var-
iability of Lambda 1. The estimated discrimination power of Lambda 1
(Fig. 4) indicates that the degree-of-order metric has strong potential
for being considered a clinical indicator since the Area Under the
Curve (AUC) differentiating ncMCI from the other groups was 64% for
NA, 84% for eMCI, 98% for lMCI and 100% for AD.

4. Discussion

The study presents robust evidence, analyzing the progressive dis-
ruption of themain core network present in normal aging, that themet-
abolic structure of the brain loses its connectivity during the transition
to mild AD. This decay from a high to a low degree of order is progres-
sive and strongly correlated with clinical severity, ranging from a



Table 1a
Themost detailed (maximal number of Clusters) classification of brain areas in terms of their dynamics of relation with the ‘giant component’ of brainmetabolism as such. The clustering
procedure halts when a further subdivision generates too near (i.e. too correlated each other) Clusters to be discriminated. R-square is a measure of each area centrality with respect to its
own Cluster, the greater the R-square, the greater the centrality of the area.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Meta-VOI R2 Meta-VOI R2 Meta-VOI R2 Meta-VOI R2 Meta-VOI R2

AMY_HIPPO_INS_L
AMY_HIPPO_INS_R
CUN_PRE_CUN_FUS_L
CUN_PRE_CUN_FUS_R
PRE_POST_CENTR_R
PARIETAL_R
CINGULATE_R
TEMPORAL_POLE_L
TEMPORAL_POLE_R

0.9731
0.9525
0.9443
0.9678
0.8510
0.9942
0.8759
0.9143
0.9577

CINGULATE_L
THALAMUS_L
THALAMUS_R

0.8498
0.8856
0.7621

PAL_CAU_PUT_R
PRE_POST_CENTR_L

0.7466
0.7466

OCCIPITAL_L
OCCIPITAL_R
PAL_CAU_PUT_L
ORBITO_FRONTAL_L
ORBITO_FRONTAL_R
PARIETAL_L
TEMPORAL_L
TEMPORAL_R

0.9092
0.9549
0.9155
0.9498
0.9326
0.9700
0.9067
0.9242

FRONTAL_L
FRONTAL_R

0.9876
0.9876
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percentage of variance explained by the giant component of the corre-
lation network of 77% in normal aging to 44% in mild AD dementia.
The dramatic loss of order along the cognition severity transition is
strictly monotonic (Pearson r= 0.96), pointing to a highly modular ar-
chitecture of brain connection networks. The first step in the decay of
order takes place between NA and the states of heterogeneous causes
of cognitive deficit but that do not progress to dementia. Themost obvi-
ous and probably the most frequent of those causes is moderate cere-
brovascular disease that is not severe enough to fit the criteria for
Vascular Cognitive Impairment but that together with other co-factors
(such as drug therapy, chronic systemic diseases, low education,
masked depression) may be enough to impair the brain metabolic con-
nectivity compared to NA.

Patients that converted to mild AD at different times following PET
examination had a decreasing degree of order. This suggested that
their metabolic status at the time of PET was predictive of conversion,
which was largely irrespective of the time occurred. This also implies
that any perceived abrupt transition in patient clinical status does not
depend on a change in an underlying singularity in brain metabolism
connectivity but is rather a consequence of reaching a threshold value
by a substantially constant decay. This constant connectivity decay
rate must be interpreted as a gross average over the whole set of brain
areas. To examine more in detail whether this caused a detachment
from global brain metabolism of specific areas we applied OPC to load-
ing dynamics of different brain areas.

The loss of global connectivity during the transition fromNA to AD is
an index of decline of the integration between different brain regions
present at NA. Such decay is likely proportional to the progress of the
pathological spreading of AD and speaks in favor of a higher anatomo-
functional segmentation upon neurodegeneration leading to modules
scarcely correlated with each other. In this respect, the loading profile
of Cluster 1 containing most of the classical brain regions pertaining to
the AD hypometabolic pattern (precuneus, cingulate cortex, medial
temporal lobe structures) clearly separated AD dementia from all MCI
stages and the latter from NA. As such, these regions are confirmed to
be able to reveal the metabolic aspects of AD pathology, and are more
involved in overt dementia, but they are unable to show the progression
Table 1b
Between Cluster Pearson correlation coefficients. Cluster 1 and Cluster 4 that are both
monotonically decreasing their loading along disease severity are very correlated each
other.

Cluster 1 2 3 4 5

1 1.00000 0.20550 −0.30464 0.87784 0.48373
2 0.20550 1.00000 −0.05450 0.60614 0.47501
3 −0.30464 −0.05450 1.00000 −0.12159 −0.37934
4 0.87784 0.60614 −0.12159 1.00000 0.65450
5 0.48373 0.47501 −0.37934 0.65450 1.00000
of the severity of damage until time to conversion. It is likely that the
mechanisms leading to hypometabolism in these areas are already ac-
tive while the cognitive symptoms appear to decline only later in the
course of disease.

Cluster 4 showed a different behavior as it progressively lost its cor-
relation with the giant component across all subject groups. It includes
most association cortices, bilateral occipital, orbitofrontal, temporal cor-
tex and left parietal cortex. Most of these areas are not strictly included
in theAD signature but theirmetabolic/perfusion levels correlate to var-
ious extents with the neuropsychological decline inMCI aswell as in AD
patients (Nobili et al., 2005; Nobili et al., 2008). Therefore these areas
are expected to show a more linear relationship with the advancing se-
verity of disease and to be good markers of disease progression. These
association cortical areas can also be affected by hypometabolism in
other neurodegenerative diseases, such as frontotemporal dementia
(Caroppo et al., 2015), dementia with Lewy bodies (Ishii et al., 2007)
and Amyotrophic Lateral Sclerosis (Pagani et al., 2014).

The presence of thalamus in Cluster 2 could be unexpected as tha-
lamic hypometabolism is not an usual finding in early AD patients.
Fig. 2. Graphical depiction the profile of each Cluster in terms of loading dynamics. Y-axis:
loading on the first principal component; X-axis: disease severity. NA: normal aging;
ncMCI: MCI patients not converting to AD at 5 years follow up; eMCI: MCI patients that
converted to AD later than 2 years; lMCI: MCI patients that converted to AD within
2 years; AD: patients with mild AD dementia.



Fig. 3. Topographic representation of Cluster 1 (a) and Cluster 4 (b) on brain surface. The AAL regions corresponding to Cluster 1 and Cluster 4 (see Table 1a) have been superimposed to
the Montreal Neurological Institute template in the coronal (top left), sagittal (top right) and transversal (bottom) views.
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However, the thalamus is affected by relevant atrophy in AD (Canu
et al., 2011; Yi et al., 2016), paralleling hippocampal atrophy (Stepan-
Buksakowska et al., 2014). Moreover, thalamic hypometabolism could
also result, at least partially, from partial volume effect.

Our results are consistent with several previous investigations
performed by fMRI in which the highly interconnected networks
have been assessed in the healthy state and in AD by a graph analysis
whose basic theoretical paradigm is the small-world wiring
architecture(Boccaletti et al., 2006; Sun et al., 2014). This paradigm
roughly corresponds to graphs in which the shortest path length
(the minimum number of edges to be traversed for connecting two
Fig. 4. ROC curves for NA (blue), eMCI (red), lMCI (yellow) and AD (violet) versus ncMCI.
Both curves and areas under the curves (AUC) are estimates computed on bootstrapped
distributions. NA: normal aging; ncMCI: MCI patients not converting to AD at 5 years
follow up; eMCI: MCI patients that converted to AD later than 2 years; lMCI: MCI
patients that converted to AD within 2 years; AD: patients with mild AD dementia.
nodes) is minimized by the contemporary presence of a strong mod-
ularity (domains made by areas more strongly connected among
them than with areas pertaining to other modules) and high-
betweeness nodes connecting different domains (Boccaletti et al.,
2006).

The present approach allowed us to go deeply into in the phenome-
non of connectivity loss from both a theoretical and a pathophysiologi-
cal perspective. The presence of a leading component explaining the
77% of total variance of FDG-PET in normal aging and decreasing to
44% in mild AD is a proof of the possibility to unequivocally define the
degree of order of the brain-as-a-whole by a single measure.

It is worth noting that all areas have positive and near-to-unit load-
ings with PC1: this points to the character of ‘global statistical measure’
of brain metabolism integration of PC1 eigenvalue. On the contrary,
minor components have both positive and negative loadings so indicat-
ing relatively minor differential balances for specific local circuits. Since
components are each other orthogonal by construction, a ‘general’ brain
metabolic tone (PC1) goes hand-in-hand with local correlation circuits
(minor components). The great majority of network analyses of brain
metabolism deals with local circuits; the main novelty of our work is
to focus on the ‘global mode’ (PC1).

This not only allowed for an easier development of quantitative (and
robust) indexes potentially useful in early diagnosis with respect to the
plethora of local between-ROIs pairwise correlations, as in graph analy-
sis, but in principle paves the road for a physics-inspired approach to
every disease forwhich a brain FDG-PET examination is clinically appro-
priate. The possibility to define a suitable degree-of-order as synthetic
descriptor in other pathophysiological conditions could allow a fine
monitoring of disease evolution in otherfields ofmedicine. Furthermore
the very large AUC areas, in particular those between ncMCI and eMCI
and between ncMCI and lMCI confirm both the sensitivity of our analy-
sis to detect subtle disruption of the brain networks and the consistency
of the correlation of a FDG-PET patternwith the time needed to develop
AD when at the MCI stage.

The present investigation introduces two novelties in brain net-
working research on AD. This is the first time in which a global network
analysis on a heterogeneous population of MCI and AD patients is per-
formed by FDG-PET. This is consistent with the work of Friston et al.
(Friston et al., 1993) reporting an analysis on six normal subjects in
which the first component accounted for 71% of total variance, very
close to the 77% found in normal aging in the present study. Such agree-
ment is even more remarkable if we consider that Friston's results
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originated from an analysis performed on 500.000 voxels considered as
single variables. Unlike fMRI, in which the input data are variations of
signal during timewith a resolution of a few seconds,metabolic analysis
using cross-sectional FDG-PET data is based on patients' data in which
each image represents themeanmetabolic activity recorded from a sin-
gle subject during about 30min. of tracer uptake. The different nature of
the input signals results in a conceptual difference between the net-
works extracted using fMRI and FDG-PET. The interregional correlations
found by fMRI involve dynamic functional connections being basically
time-driven with the meaning of temporal inter-correlations defined
as temporal coherence between the low-frequency (b0.1 Hz) signal of
spatially remote brain regions. Furthermore, fMRI-based networking
which mainly reflects blood flow distributions might result in different
patternswhen investigated by FDG-PET (Di et al., 2012). Neurodegener-
ative processes integrate activity in networks, rather than in isolated re-
gions. In AD as well as in other neurodegenerative disorders, long-
distance interregional metabolic correlations between brain regions
are impaired by the degeneration of neurons and white matter fibers
(Fischer et al., 2015; Sorg et al., 2007). Such disengagement involves
spatially connected synaptic activities that are affected by common
pathophysiological processes which appear in two or more regions,
possibly due to misfolded protein propagation across structural
pathways (Iturria-Medina and Evans, 2015). The reorganization of
reciprocal connections implies that local compensatory networks
take over, increasing the anatomical and functional segregation of
brain processes, which seems to be confirmed by our results of
higher modularity during the course of the disease. FDG-PET, inves-
tigating metabolic spatial connectivity, captured the distributed
regional networks built on anatomical and functional similarities
specific to the progressive conversion from MCI to AD, beyond the
low-frequency similarities between short-time local perfusion
correlations disclosed by fMRI.

The second important aspect of the present study is the inclusion of
MCI patients that both converted and did not convert to AD in addition
to NA subjects and patients with overt AD. These intermediate classes
are those in which a biomarker as FDG-PET can mostly help clinicians
establish diagnosis and management. The common clinical challenge
is not to distinguish NA subjects from patients with overt AD, but rather
to discriminate among MCI patients those who will convert to AD from
those who will not and possibly when (in which time range) they will
convert. This challenge exist for both clinicians and neuropsychologists
but also for the nuclear medicine physician due to frequent ‘false posi-
tive’ findings in visual FDG-PET reading, mainly due to atrophy or sub-
cortical cerebrovascular pathology that lead to cortical disconnection
phenomena.

The high analogy of the metabolic pattern of non-converters to that
of NA - as expressed by the lowAUCbetween the two classes - paves the
way for a prognostic use for our statisticalmechanisticmodel, especially
considering the neat discrimination between ncMCI and converters.
Hence, it is of utmost importance to be able to establish a significant pre-
diction algorithm to link PET-based description of patients to their clin-
ical severity. This step is crucial for shifting from a general description of
the natural history of AD to a prospective diagnosis.

The smooth and progressive decrease of order of brain metabolism
depicted in Fig. 1 confirms the idea that the spreading loss of integration
across the brain is a crucial landmark of AD. Moreover, the capability of
the degree of order of FDG-PET data to predictwith a reasonable level of
accuracy whether or not a conversion to dementia will occur after some
years validates the present methodology and encourages the imple-
mentation of similar innovative ways of analyzing neuroimaging data
in neurodegenerative disorders.

These findings furthermore highlight the relevance of FDG-PET for
predicting conversion to dementia in MCI patients in the era of amyloid
biomarkers since the presence of amyloidosis supports the presence of
AD pathology but cannot accurately foresee if and when a subject
with amyloidosis will eventually develop dementia.
Moreover, unlikemulticenter studies, in this investigation diagnoses
were very uniform in that they were performed by the same clinicians.
All FDG-PET scans were also performed with the same camera. There-
fore the likelihood that inhomogeneous subject samples and camera ac-
quisitions could have impacted on data variability and results
robustness is quite small. On the other hand, patients in the two groups
of MCI converters and in the AD-dementia groups developed dementia
when they were older than 65 (‘late-onset Alzheimer dementia’ LEOD)
and they were all affected by amnesic syndrome. Therefore the present
data especially reflect LEOD andmay not be generalizable to early-onset
AD patients in whommemory deficit can bemilder and FDG-PET deficit
more severely affects neocortical areas.

The general theoretical bases of our approach, can be understood
from thermodynamics. The advantage of a thermodynamic-like ap-
proach resides in the possibility to get easy-to-use and generalizable
statistical description (in our case the amount of variance explained
by PC1) to appreciate the transformations of a complex system of
which the mechanistic details are largely unknown (Mikulecky, 2001).
It has to be noted that the largest eigenvalue of the between areas cor-
relation, more than a network order index, must be intended as the
first global thermodynamic measure of brain metabolism order. As a
matter of fact the robustness and invariance to different partition,
while surely favorable for global order estimation, are sub-optimal for
specific network analyses that, in turn, ask for sensitivity to topological
details. The use of the first eigenvalue of correlationmatrix as global de-
scriptor of order for different systemswasfirst described inGorban et al.
(2010). More recently an fMRI investigation implementing the graph
spectral entropy method in a psychiatric disorder (Sato et al., 2013)
used eigenvalue/eigenvectors for the optimal spectral decomposition
into modules (clusters) of the entire brain network built upon the mu-
tual correlations among 351 ROIs. The authors applied a mathematical
approach very similar to ours but focusing on the splitting of the brain
network into Clusters while we focus on the generation of a global esti-
mate of the amount of between ROIs correlation. What is remarkable in
Sato et al. paper is the robustness of the four Cluster solution to different
choices of patients. The robustness of eigenvector methods relies on the
extreme redundance of between areas correlation matrix defining a
system with relatively low effective dimensionality by means of an
N(N-1)/2 distinct elements array (being N the number of ROIs). This ro-
bustness is still more evident (and more cogently related to our ap-
proach) in the results reported in Friston et al. (1993).

From thermodynamics we mutuated the ergodic hypothesis, origi-
nally set forth by Ludwig Boltzmann (Boltzmann, 1898) stating that
the time spent by a system in some region of the phase space is propor-
tional to the size of this region. A dynamic system is ergodic if, broadly
speaking, it has the same behavior averaged over time as averaged
over the space of all the system's states (phase space). The ergodic hy-
pothesis is implicit in many computational physics studies. We assume
that the average of a process parameter over time and the average over
the statistical ensemble are the same. If the ergodic hypothesis holds
true, the degree-of-order we measured in terms of correlation across
patients of the same class, will give identical results of correlation be-
tween different time points of the same patient (within a time frame
in which we can safely assume the practical invariance of disease sta-
tus). The bootstrap approach can be considered as a first (albeit largely
preliminary) step toward the validation of ergodic hypothesis.

The strong monotonic decrease we observed between the variance
explained by the first component and time-to-conversion (Fig. 1)
might lead to the possibility of a direct prognostic estimation of the de-
gree of order of brain metabolism measured at the single patient level
by means of consecutive PET scans. In principle, even a relatively small
number of scans could prove useful thanks to the robustness of our sta-
tistical description, which summarizes the correlation network into a
single metric.

In conclusion, the proposed methodology suggests a specific global
connectivity-based biomarker able to identify AD pathology in its
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various phases. The statistical mechanistic approach confirmed the net-
work degeneration hypothesis and demonstrated for the first time by
FDG-PET a progressive disruption of the giant component from NA to
mild AD through different stages of cognitive impairment, including pa-
tients cognitively impaired but not converting to AD. If further vali-
dated, this statistical approach might provide a novel way to assess
the functional networking status in patients and aid the clinician in fore-
seeing the evolution of mild cognitive impairment to overt dementia.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.07.043.
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