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We have applied the Microcanonical Fermionic Average method to QED5,, i.e. the Schwinger Model, to test its
applhicability to Asymptotically Free Theories. We present here the results of the simulations, compared to the
continuum results. Since the M.F.A. method allows the study of the whole 3,m; plane at very small computer
cost, we are able to verify the scaling of the chiral condensate at a high degree, and obtain the continuum result

within 3 decimal places. We present also results for the plaquette energy.

1. INTRODUCTION

The Microcanonical Fermionic Average (M.F.A.)
method for performing Lattice simulations with
dynamical fermions [1] is ideally suited for dis-
cussing the phase structure of theories with phase
transitions at finite couplings, and it has been ap-
plied so far in this context [2, 3].

The conventional wisdom, however, requires
that physically interesting theories are Asymptot-
ically Free ike QCD. It is then interesting to test
the applicabiity of the M.F.A. method to a the-
ory without phase transitions at finite coupling.

In this paper we present an analysis of the
Schwinger Model. We have chosen this model
because 1t 1s the simplest model with fermions 1n
which, hike more physical theories, the continuum
limit 1s approached at infinite lattice coupling,
and moreover is confining and exactly solvable in
the continuum at zero fermionic mass. We can
therefore compare the results of our ssmulations
with exact ones.

We have done so for the average plaquette,
which has exactly been computed in the lattice,
and for the chiral condensate i1n the non symmet-
ric (6 = 0) vacuum of the model.

The evaluation of the chiral condensate has
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been made easier by the fact that, in the M.F.A.
approach, the main computer cost resides in the

.evaluation of an effective fermioninc action at

fixed pure gauge energy, at my = 0. It is then
essentially possible, at no extra cost, to move in
the plane 3, m; to follow constant physics trajec-
tories in approaching the correct continuum lhimit.
This 1s easier in this model since here the Renor-
malization Group amounts to simple dimensional
analysis.

The results of this simulation demonstrate the
applicability of the M.F.A. method to Asymptot-
ically Free theories, and are interesting by them-
selves since they are the best numerical results
obtained in the Schwinger model so far.

2. THE METHOD

The M.F.A. method is fully described in [1],
and in these proceedings in [4]. It is essentially
based on the definition of an effective fermionic
action, which 1s the microcanonical average (with

respect to the pure gauge Energy) of the fermionic
determinant

e~ Sess(mins E) (det A:‘*’!—)E =
[[dU] det AF 6(Sgquge(U) — VE) 1
N(E) (1)

where N(F) is the density of states at energy E
and the above expression is written for n; flavours
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of staggered fermions. The effective action 1is
computed for a number of values of F, on con-
figurations separated by a large number of micro-
canonical sweeps, by finding all the eigenvalues
of the fermionic determinant at m; = 0, then in-

terpolating to reconstruct the (derivatives of) the
partition function.

3. THE SCHWINGER MODEL IN THE
CONTINUUM

We report here only the features of the model in
the continuum which are relevant for the present
study. QFE D, is confining, superrenormalizable,
and can exactly be solved at m; = 0.

It can be shown that the partition function of
the massless theory 1n the photonic sector is that
of a theory of free massive vector bosons. In par-
ticular the Green functions of purely bosonic op-
erators are the same in both theories. This fact
has been used for obtaining the average plaquette
in the lattice. ;

As for the chiral condensate, due to the rich
structure of the vacua (labeled by a parameter 6)
of the model, it 1s zero in the symmetric vacuum,
which is selected in the theory at ezactly m; =
0. If however the chiral hmit 1s obtained from
mjs; # 0, then the § = 0 vacuum 1is selected. In
this vacuum the chiral condensate is (with one
flavour) ' |

e’le

TV®

= 0.15995 (2)

1 -

while 1t diverges at zero flavour (z.e. the quenched
limit) and is zero with two flavours.

4. THE MODEL IN THE LATTICE

For the present simulation we use n; species
of staggered fermions, coupled to non compact

gauge fields. The results for the compact model
will be presented elsewhere. |

Since the continuum theory 1s equivalent to one
of a free, massive vector boson, the average pla-
quette of the Schwinger model can be compared
with that of the vector boson, which can be ex-

actly computed:

2 —cosp, —cosp,

1 _
(Bl = 2V Z 283 (1 —cospy) + 3)

PuPr

2
where (p, = - k,).
The continuum limit of the theory i1s reached at
B — o0o. Since 3 1s dimensionful, the limit must
be reached keeping fixed the dimensionless ratio
s = v/Bmy. This ratio defines constant physics
trajectories.

5. RESULTS AND DISCUSSION

We have performed simulations 1n lattices up
to 100°. We present here the results for the 642
lattice, where we have the best statistics (for a to-

tal of 70 Cray-equivalent hours). We will mainly
discuss the 1—flavour case. The effective action

has been computed at m; = 0 for 20 values of
the Energy (from 0.08 to 1.3). In the non com-
pact, abelian models, the density of states can be
computed analytically, since the underlying pure
gauge theory 1s quadratic.

The average plaquette is obtained as

_ JABEN(B)e P Fe S Bmnn)
B Z

and can be directly computed at my = 0.

In Figure 1 we report the value of (203 times)
the average plaquette energy (diamonds) com-
pared with the exact result of eqn (3). As can be

(E)L

seen, apart from small 3 where we are far from

the continuum limit, we have very good agree-
ment. The straight line is the quenched value
28(F) = 1. The chiral condensate

__ 1 [dEe=5ers 2. GF
($9) = o A

V. [dEeSeu (5)
cannot be directly computed at m;y = 0, so it
must be obtained as the limit m; — 0. To reach
the correct continuum value, this limit has to be
taken simultaneously with the 8 — oo one, keep-
ing the product /Bm; fixed.

This can be easily done with this method,
which does not require a separate simulation of
the fermionic part for each pair of parameters

(8, m).
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Figure 1. Average plaquette 64%, m; = 0, ny = 1.

In Figure 2 we report the value of the chiral

condensate for two values of the ratio —?ﬂ As 1t
can be seen, scaling sets up already near 8 ~ 1.

This procedure has been repeated for 12 values of
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Figure 2. Chiral condensate, 64°, 2 = 0.04,0.08

the ratio, and the values of the chiral condensate
In the scaling window so obtained have been re-
ported in Figure 3. The behaviour of:the conden-
sate 1s very clear towards the continuum value,
indicated 1n the figure as a circle. By fitting the
last points with a straight line, we obtain

(¥9) = 0.160 + 0.002 (6)

in perfect agreement with the theoretical value.
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Figure 3. Chiral condensate vs ™, n; = 1, errors
are smaller than symbols

We have also analyzed the zero and two flavours
ca.ses At zero flavours there is really no scaling
region, with the chiral condensate i Increasing at
large 3, indicating that it diverges as expected.
On the contrary in the two flavour case, the be-
haviour of the chiral condensate at finite mass in-
dicates a vanishing value in the chiral limit, again
in agreement with expectations.

In conclusion, we find no reason why the
M.F.A. method could not be succesfully applied
in realistic, Asymptotically Free theories.

As for the numerical results in the Schwinger
model, we believe that the potentialities of the
method have been fully exploited; in particular,
the fact that the mass dependence of the Dirac
operator has become trivial in this approach, al-
lows us to move easily in the parameter space.

All the above simulations have been performed
on the LNF Transputer Network .
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