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b TIRES, Center of Innovative Technologies for Signal Detection and Processing, via Amendola 173, 70126 Bari, Italy

c Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, via A.Valerio 2, 34127 Trieste, Italy

Received 11 August 2004; accepted 15 September 2004

Available online 12 October 2004
Abstract

In this paper we propose a particle classification system for the imaging calorimeter of the PAMELA satellite-borne

experiment. The system consist of three main processing phases. First, a segmentation of the whole signal detected by

the calorimeter is performed to select a Region of Interest (RoI); this step allows to retain bounded and space invariant

portions of data for the following analysis. In the next step, the RoIs are characterized by means of nine discriminating

variables, which measure event properties useful for the classification. The third phase (the classification step) relies on

two different supervised algorithms, Artificial Neural Networks and Support Vector Machines. The system was tested

with a large simulated data set, composed by 40GeV/c momentum electrons and protons. Moreover, in order to study

the classification power of the calorimeter for experimental data, we have also used biased simulated data. A proton

contamination in the range 10�4–10�5 at an electron efficiency greater than 95% was obtained. The results are adequate

for the PAMELA imaging calorimeter and show that the approach to the classification based on soft computing tech-

niques is complementary to the traditional analysis performed using optimized cascade cuts on different variables.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A typical modern experimental apparatus in

high energy physics and particle astrophysics pro-
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vides digitizations of the pattern of tracks gener-

ated by high energy collisions. After a phase of

online selection of good events, performed by a

real time trigger, a sample of events of given prop-

erties is selected and then physical variables are
measured. The amount of high complex informa-

tion contained in each event is often too large

to allow an unambiguous, efficient and robust
ed.
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Fig. 1. A schematic view of PAMELA apparatus: the magnetic

spectrometer, equipped with a silicon microstrip tracking

system, is complemented by a three-planes scintillator time-of-

flight system, a transition radiator detector and a silicon-

tungsten calorimeter. The magnetic spectrometer is surrounded

by a scintillator anticoincidence system.
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classification by means of simple statistical

analysis. For this reason, there has been growing

interest in applying techniques from pattern recog-

nition to off-line classification of high energy par-

ticles in physics experiments, to improve signal/
background discrimination [1–4]. Given a set

of events e 2 E, a pattern recognition system

must define an allocation function m : e 2 E !
f1; 2; . . . ; kg, so that m(e) is the class label and k

the total number of event classes. The aim of the

pattern recognition system is to select, among all

possible allocation functions, the one performing

the smallest classification error rate, i.e. the per-
centage of events which are assigned to a wrong

class [5].

Payload for Antimatter Matter Exploration and

Light-nuclei Astrophysics (PAMELA) is a satellite-

borne experiment devoted to investigate the matter

antimatter symmetry of the Universe and other cos-

mological topics through precise cosmic ray meas-

urements [6]. The primary aims of the experiment
include measurements of the energy spectra of �p,
e+ and light nuclei in the cosmic radiation. The

experiment will be performed on-board of the Rus-

sian Resurs-DK1 satellite, which will be launched

into space in 2005. Three years of data collecting

are expected. The apparatus is composed of:

• a permanent magnetic spectrometer, equipped
with a silicon microstrip tracking system, which

will determine the charge of the particles;

• a scintillator anticoincidence system, which will

reject particles out of the acceptance range of

the spectrometer;

• a scintillator time-of-flight system which will

provide the trigger and low energy particle

identification;
• a transition radiation detector, an electromag-

netic calorimeter and a neutron detector which

will perform the particle identification;

• a shower tail catcher scintillator located below

the calorimeter to detect particles escaping from

it and to provide an additional trigger for high

energy (P100GeV) electrons.

The apparatus, shown in Fig. 1, is approxi-

mately 1.3m high, has a mass of 450kg and a

power consumption of about 350W.
The PAMELA calorimeter will allow discrimi-

nation between electromagnetic, hadronic showers

and non-interacting particles. This means that the

problem of extraction of signal from background

is highly relevant the PAMELA calorimeter. In
this work a particle classification system based

on soft computing techniques is proposed for the

PAMELA calorimeter.

We will start by describing the imaging calorim-

eter data and then the particle classification system

in Sections 2 and 3. Supervised algorithms used in

this study are reviewed in Section 4. In Section 5

we present the application to simulated data and
the test results. We draw our conclusions in Sec-

tion 6.



Fig. 2. Scheme of the classification system: the different steps

(sensing, segmentation, feature extraction, classification, post-

processing) allow to take the decision starting from the data

detected from the calorimeter.
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2. Imaging calorimeter data

In this paper we propose a particle classification

system for the imaging calorimeter of the PAME-

LA experiment. The calorimeter [7] is a sampling
detector composed of 11 modules, each formed

by two series of: single-sided silicon plane (X

view), tungsten absorber, single-sided silicon plane

(Y view) for a total number of 44 silicon layers and

22 absorber layers. Nine 8 · 8cm2 silicon detectors

are placed in each silicon layer for a total area of

24 · 24cm2. The calorimeter has high granularity

both in the longitudinal (Z) and in the transversal
(X and Y) directions. In the Z direction the gran-

ularity is determined by the thickness of the absor-

ber layers; each tungsten layer is 0.26cm thick,

which corresponds to 0.74X0 (radiation lengths).

Since the tungsten layers are 22, the total depth

of the calorimeter is 16.3X0, which is not enough

to fully contain the high energy electromagnetic

showers, but is able to allow an accurate topolog-
ical reconstruction of the shower development.

The transverse granularity is provided by the seg-

mentation of the silicon detectors into 32 large

strips with a pitch of 2.4mm. Each of the 32 strips

of a detector is connected to those belonging to the

other two detectors of the same row (or column)

forming 24cm long strips. The number of electron-

ics channel per plane is 32 · 3 · 2 = 192, while the
total number of channels is 192 · 22 = 4224. These

technical characteristics make the calorimeter a

very powerful particle identifier detector: due to

its high granularity the calorimeter is particularly

suitable for reconstructing the spatial development

of a shower-event. Indeed, it has been designed to

extract the antiproton/positrons signal from the

large background generated by the electron/proton
flux. The expected background contamination for

this detector is of the order of 10�4 for p/e+ and
�p/e� measurements at a signal efficiency of 95% [7].
3. The classification system

The goal of the classification system is to iden-
tify electromagnetic and hadronic showers. The

presently proposed system is partitioned into com-

ponents shown in Fig. 2. After the sensing step the
segmentation isolates the block of a fixed number

N of consecutive silicon planes having the maxi-

mum number of hit strips. We named Sm the
sum of all hit strips over the N planes. As expected,

by plotting Sm vs N, a plateau was found in a

neighborhood of N = 10: for this reason N = 10

was fixed. In this way a bounded and space invar-

iant Region of Interest (RoI), containing the rele-

vant features for each event, is selected.

The feature extractor builds up a set of nine dis-

criminating variables which measure event proper-
ties useful for the classification. The set of nine

discriminating variables is the following:

• total energy released in the RoI;

• total energy released outside the RoI;

• total number of hit strips in the RoI;

• total number of hit strips outside the RoI;



Fig. 4. Energy deposit in a cylinder of 1 Moliere radius around

the track direction and outside the RoI vs. energy deposit in a

cylinder of 1 Moliere radius and in the ROI. Two separable

regions are evident and correspond respectively to electrons

(empty circle) and protons (full circle).
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• total energy released in a cylinder of 1 Moliere

radius around the track direction in the RoI;

• total energy released in a cylinder of 1 Moliere

radius around the track direction outside the

RoI;
• total number of hit strips in a cylinder of 1

Moliere radius around the track direction in

the RoI;

• total number of hit strips in a cylinder of 1

Moliere radius around the track direction out-

side the RoI;

• total energy released in the plane of maximum

interaction, i.e. having the higher energy
deposit.

For experimental data the track direction will

be obtained by means of the tracking detector,

whereas in our study it is set by the simulation.

Fig. 3 shows the energy deposited in a cylinder

of 1 Moliere radius around the track direction and

in the RoI for electrons and protons, whereas Fig.
4 shows the energy deposit in the RoI vs. the en-

ergy deposit outside the RoI for the whole data

set: two separable regions are evident and corre-

spond to protons and electrons.

After the feature extraction phase the data are

classified by means of two different supervised

algorithms:
Fig. 3. Energy deposit in a cylinder of 1 Moliere radius around

the track direction and in the RoI for electrons and protons.
• Artificial Neural Networks (ANN);

• Support Vector Machines (SVMs);

In this phase the supervised methods are used

for a fine discrimination between electromagnetic
and hadronic showers.
4. The Classification phase

4.1. Artificial neural networks

As supervised algorithms we have used stand-
ard multi layered neural network (ANN) [5] and

the Support Vector Machines (SVMs) [8]. Let us

consider a two layered feed-forward perceptron

[9]. The input layer has 9 neurons according to

the dimension of the feature space; the hidden

layer has a number of neurons varying from 2 to

10 and the output layer has only one neuron

which, in the training phase, is set to 1 when sig-
nals are submitted to the network and to 0

otherwise.

The output Vi of each neuron is a sigmoid

transfer function of its input ui ¼
P

jwijV j where
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the sum is taken over the outputs of the previous

layer:

V i ¼ gðuiÞ ¼
1

1þ e�bui
: ð1Þ

The weights are updated according to the gradient

descent learning rule with momentum [9]:

Dwnew
ij ¼ �g

oE
owij

þ aDwold
ij ð2Þ

where the error function

E ¼ 1

2

X

l

½fl � Ol�2; ð3Þ

is a measure of the distance between the network
outputs Ol and the target patterns fl = 1,0 respec-

tively for signal and control data. At each iteration

the error function reduces until a minimum is at-

tained, which may be a local or a global one.

The second term in (2), the so called momentum

term [10], represents a sort of inertia which is

added in order to let the weights change in the

average downhill direction, avoiding sudden oscil-
lations of the wij around the minimum: this term

allows the network to reach the solution more

quickly. The network parameters we have used

are: learning rate g = 0.01, momentum parameter

a = 0.1–0.3 and gain factor b = 1.

4.2. Support vector machines

In this section we briefly sketch the SVMs algo-

rithm and its motivation. We start from the simple

case of two linearly separable classes. We assume

that we have a data set fðxi; yiÞg
N
i¼1 of labelled

examples, where yi 2 {�1,1}, and we wish to deter-
mine, among the infinite number of linear classifi-

ers that separate the data, the one that has the

smallest generalization error. Intuitively, a good
choice is the hyperplane that leaves the maximum

margin between the two classes, where the margin

is defined as the sum of the closest distances of the

hyperplane from the closest point of the two

classes.

In the case of two non-separable classes we can

still look for the hyperplane that maximizes the

margin and minimizes a quantity proportional to
the number of misclassification errors. The trade
off between margin and misclassification error is

controlled by a positive constant parameter C that

has to be chosen beforehand. In this case it can be

shown [11] that the solution to this problem is a

linear classifier f ðxÞ ¼ signð
PN

i¼1kiyix
Txi þ bÞ

whose coefficients ki are the solution of the follow-

ing Quadratic Programming (QP) problem:

Minimize:

W ðKÞ ¼ �KT1þ 1

2
KTDK ð4Þ

Subject to the following constraints:

KTy ¼ 0 ð5Þ

K � C1 6 0 ð6Þ

�K 6 0 ð7Þ
where (K)i = ki, (1) i = 1 and Dij ¼ yiyjx

T
i xj. It

turns out that only a small number of coefficients

ki are different from zero, and since every coeffi-

cient corresponds to a particular data point, this

means that the solution is determined by data

points associated with non-zero coefficients. These

points, called support vectors, are the only ones

which are relevant to the solution of the problem:
all the other data points could be deleted from the

data set and the same solution would be obtained.

Intuitively, the support vectors are the data points

that lie at the border between the two classes.

Their number is usually small, and Vapnik showed

that it is proportional to the generalization error of

the classifier [12].

Since it is unlikely that any real problem can
actually be solved by a linear classifier, the tech-

nique has been extended in order to allow for

non-linear decision surfaces. This is easily done

by projecting the original set of variables x in a

higher dimensional feature space: x 2 Rd) z(x) =

(/1(x),. . .,/n(x)) 2 Rn and by formulating the lin-

ear classification problem in the feature space.

The solution will have the form f ðxÞ ¼
signð

PN
i¼1kiyiz

TðxÞzðxiÞ þ bÞ, and therefore will

be nonlinear in the original input variables. At

this point one has to face two problems: (1) the

choice of the features /i(x), which should be

done in a way that leads to a rich class of decision

surfaces; (2) the computation of the scalar product
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zT(x)z(x i), which can be computationally prohibi-

tive if the number of features n is very large. A pos-

sible solution to these problems consists in letting

n go to infinity and make the following choice:

zðxÞ ¼ ð ffiffiffiffiffi
a1

p
w1ðxÞ; . . . ;

ffiffiffiffi
ai

p
wiðxÞ; . . .Þ ð8Þ

where ai and wi are the eigenvalues and eigenfunc-

tions of an integral operator whose kernel K(x,y) is

a positive definite symmetric function. Having this

choice the scalar product in the feature space be-

comes particularly simple because:

zTðxÞzðyÞ ¼
X1

i¼1
aiwiðxÞwiðyÞ ¼ Kðx; yÞ ð9Þ

where the last equality comes from the Mercer–

Hilbert–Schmidt theorem for positive definite

functions. The QP problem that has to be solved

now is exactly the same as the previous one, with

the exception that the matrix D has now ele-
ments Dij = yiyjK(xi,x j). As a result of this choice,

the SVM classifier has the form f ðxÞ ¼
signð

PN
i¼1kiyiKðx; xiÞ þ bÞ. Many choices of the

kernel function have been proposed and employed

in several applications, for example the polyno-

mial kernel of degree m has the form

K(x,y) = (1 + x Ty)m, whereas the RBF Gaussian

kernel is K(x,y) = exp( �kx � yk2).
5. Application to simulated data and test results

It is well known that the experimental data can

be different from the data used for the learning

phase of the classification system. For this reason
Table 1

Comparison among electron/proton discrimination capabilities by me

Technique Validation Proton contamination · 10�5 at
93%

Proton

96%

ANN Unbiased 1.5 ± 0.6 3.3 ±

ANN Bias 10% 2.0 ± 0.7 3.3 ±

ANN Bias 20% 1.5 ± 0.6 3.5 ±

ANN Bias 30% 1.52 ± 0.7 3.5 ±

SVMs Unbiased 0.4 ± 0.3 1.74 ±

SVMs Bias 10% 1.7 ± 0.6 4.8 ±

SVMs Bias 20% 5.2 ± 1.1 15.7 ±

SVMs Bias 30% 19.5 ± 2.1 69.6 ±

The performance indicator is the proton contamination at electron effi
it is particularly useful to consider classification

systems with a very high generalization power.

We analyzed this important topic by: (i) testing

two different supervised algorithms; (ii) using vali-

dation data, which simulate experimental data
with different behavior respect to the training data

(biased data).

This study has been performed using a data set

obtained by means of CERN-GEANT 3.21 offi-

cial collaboration simulation code GPAMELA re-

lease 4.01 [13]. The data set used for this study is

composed of 5 · 105 electrons and 5 · 105 inter-

acting protons with a momentum of 40GeV/c,
with the PAMELA electromagnetic calorimeter

reproduced in the simulation as in the final flight

version.

The selected learning data set is composed of

8 · 103 electrons and 8 · 103 protons and used

for the training of the classification systems. A val-

idation set composed of the remaining same

amount (4.92 · 105) of electrons and protons is
used for the performance estimate. Moreover three

additional different data sets, obtained from the

validation data set, have been used. They have

been generated by introducing a random bias

in the original data set up to the 10%, 20%

and 30% of the original value. If xi(i 2 {1 . . .N})
are the N unbiased original data points, each rep-

resented by 9-dim vectors, the biased yi data points
have been obtained randomly shifting them one by

one around the original value up to ±10%, ±20%

or ±30%, i.e. yi = xi + xisi Æ p, where ri 2 [�1,1] is
randomly extracted and p = {0.1,0.2, 0.3}.
ans of ANN and SVMs for unbiased and biased validation data

contamination · 10�5 at Proton contamination · 10�5 at
99%

0.8 25.7 ± 1.9

0.8 28.0 ± 2.5

0.9 18.5 ± 2.0

0.9 18.6 ± 2.0

0.6 11.7 ± 1.6

1.0 15.6 ± 1.8

1.8 70.9 ± 3.9

3.9 524.3 ± 10.6

ciency 93%, 96% and 99%.



Fig. 6. Proton contamination vs. electron efficiency on biased

data up to 30%: SVMs (circle), ANN (square) and FLD

(triangle).
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The results obtained are shown in Table 1. The

electromagnetic and hadronic showers detected by

the calorimeter can be distinguished, using the par-

ticle classification system here proposed, with a

signal greater than 95% and a background con-
tamination in the range 10�4 to 10�5.

We can make further considerations: the system

based on SVMs assures the higher classification

performances. Similar results can also be obtained

by means of ANN and the Fisher linear discrimi-

nant (FLD) [14] (see Fig. 5).

In the hypothesis of experimental data different

from the data used for the learning phase of the
classification system, system based on support vec-

tor machines or FLD appear less adequate. In-

deed, in this case the classification power of

ANN is very stable also with 30% biased data, as

shown in Table 1. These results show the trend

of SVMs and FLD to overfit data. Moreover,

the performances obtained with ANN using biased

data are better than the results obtained with SVM
or FLD. Fig. 6 shows the results obtained on 30%

biased data using all the three methods.

It is worth pointing out that, in all cases, the

performance obtained by classifying the data of

the imaging calorimeter with the particle classifica-
Fig. 5. Proton contamination vs. electron efficiency on unbi-

ased data: SVMs (circle), ANN (square) and FLD (triangle).
tion system proposed here, are appropriate for the

specific requirement of the PAMELA experiment.
6. Conclusions

We have presented a particle classification sys-

tem for the imaging calorimeter of the PAMELA

experiment. The results show that the system can

provide an accurate and efficient selection of elec-
tromagnetic and hadronic showers. In particular,

different classification algorithms have been tested,

on unbiased and biased data sets. Artificial neural

networks gives the best performances and seem to

be more stable than support vector machines. In

both cases the particle classification system gives

a proton contamination in the range 10�4 to

10�5 with an electron efficiency greater than 95%.
The results appear significantly good for the the

application of the particle classification system to

the PAMELA satellite-borne experimental data

and suggest a complementary use of these strate-

gies together with the traditional cascade cuts

analysis, which require a more complicated elabo-

ration step for the choice and the tuning of cut

combinations. Methods like SVMs and ANN have
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the great advantage, once trained, they provide an

immediate classification.
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