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Recently there has been a considerable interest in polarized
proton(anti proton} physics extended to large Py s since this
provides an additional means of testing QCD, In particular it will
provide valuable information about factorization beyond the
leading logarithmic order. Already much work(l}has been done on
ii
LL
to both bean and target polarized longitudinally, This is depicted

what one might call reflected asymmetrics A y which refers

in Fig. 1 (a).
Recently,Experiments(z) have demonstrated that the polarization
of A'$ can be detected at transverse momentum beyond 2 GeV/c.

Together with a polarized F beam or polarized proton target, this

will  provide a valuable mean of measuring transmitted pglarization
A;i {see Fig, 1 (b)), which we shall argue can also be

calculated in the leading order of QCD.

The parton model has beenused with some striking succesa
in a large number of processes including hadron production at
large transverse momentum (A% —~ C +X ) . The main feature of
the naive parton model is the Factorization of parton densities

{distribution inside hadrons and fragmentation into hadrons}. In

the last two years or so it has been demonsbrated(3’4) that this
factorization holds in the leading order in (CD and in some
sense even beyond 3 the leading order.

The naive parton model factorization corresponds to being
able to split the discontinuity associated with the hard process
in question, blockwise into the Green's functions connected with
the various parton densities and elementary cross-scctions, the
whole process being linked together through the parton
momenta . This fact allows us to simply extend the parton analysis
te spin asymmetries at short distances, showing the way spin

information is transmitted between the different parts of the



process, Further, at least in the leading order in QCD, which
maintains the block-wise factorization, the same formulae hold ,
with the appropriate replacements of parton densities by the
scale dependent counterparts. The latter satisfy evolution
equations governed by anomalous dimensions., The way this works is
reviewed in reference (5) and we only briefly summarize it
here, Consider an arbitrary short distance process invelving
at least two visible hadrons A and B , with B in the initial or
final state, Denoting the associated parton densities by

Dy (x, sa, 1Y)

one can write the cross—-section in the form

-
D, (:,_, Sa, Sa) and respectively,

rr“'"(ra.u, Pm‘n:---)‘ > 7 ]4../Ju,, D;(", sa, 50 )

oo (1)
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where the corresponding elementary parton cross-section is

evaluated to lowestorder in QCD and one integrates over the

available parton phase space . By defining the helicity
x LY

differential or asymmetry A DA (54) Y é[ DA"(-) - I (e-)]

this cross section can be written in the form

b

?'c'ne(s,,‘,),_) =_/ 5 ) B ()
4 (g B AT
@ » . ab...
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Only the first term in Eq. (2) survives in the leading order of
Q€D since the remaining terms involve single asymmetrics of
collinear parton-hadron systems and/or single asymmeiries of the
Born parton cross sections, The double spin difterential of this

cross section is in leading order given by

AB... . ab. .
A8, (ase) s [0,8 D] (05 8,8, 5, (o A8, T (o) (3)

where

88,065) = 3 [T) - T - 0=+ o] a0 (0

Equation (3) corresponds to last term in Eq. (2}, the other
giving non-leading contributions, The double spin diftferentials

of the density functions satisfy the evolution equations

Aa 4, -ba (1,01, SA,S.) = A“A‘ D: {:(,C?.l , 54, s.L) +
. , (5)

4
Kbk § .
J]i‘_. ()/é_;?-_ A..d.. Fl;, (3,5,15.) Ands -Da(::_,k,s.‘.sg)

where the branching kernels are those of Ref. 0 and will be

given below for the cases we shall be interested in, D: G,Q:, $a, 50)
is the primordial distribution defined at some choscn scale G’.z .
Turning to the rcaction Ppp-—= A+ S+x , where 3 is an
optional away -side strange particle (A, K,...) Lrigger , we have
at large P the mechanisms shewn in Fig. 2. At least as we
go to large values of x¢ = 1"*/1? , the qq annihilation mechanism

in Fig., 2 {(4) will be the primary source of strange particles,



because of the dominance of valence quarks as the parton momenta
% zo to unm.ty. At lower X however the gluon~gluon
mechanism (Fig. 2(b)) will be a non-negligible background.
Another source of strange quark jets is the hard

scattering off an 8 quark in the sea distribution of the P or
p (see Fig. 2(c)}, However this again is only likely to be
important at very small Xy . In any case the accompanying

strange particle 3 will be in the beam-target jet system, so

such a background cguld be eliminated by using the away side gtrigger

option . Finally gluons can fragment into a pair of

strange quarks, so the mechanism in Fig. 2(d), could also produce a A

or aﬁ.‘[‘his kind of process involves pair creatio. and subsequent
fragmentation into a pair of heavy strange particles; which will
also have the effect of pushing the A into the small X,
region, Further this background could also be eliminated by the
away side trigger option,
The principal mechanism in Fig. 2{a) leads to a very
large transmitted asymmetry A;:E for FF - A+X or
%r-* R+x in the leading order in QCD, given by the formula

Rxd
(written for the first case, the other case being simply related)

8,0 (@) bl &) 4 Bl o) a 6
y !‘E“ szp (“‘-‘?) br( ,Q) AID=(¢“?) 2 (f&)li""‘i (6)

Z‘ -D‘ * : i « BA ) y aF
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,: v

where the integration over the parton phase space is given by
Ao de i gy & (30E03) with §= xewes, fevapt

(t= (pa-pa)' ond o= (po-p)' ).
The value &*

and @ = Knfue Y
is taken to be of order P: in the
estimate we make . However its choice is clearly dependent
on the role of the next to 1leading order leogarithmic corrections
to which we shall turn in a moment, The basic Born qq-»s§

cross section is given by

& LA 4 LY (L
(3 Hess h;; : d‘(G)(fgzu) 7

E

and the transmitted asymmetry is

N a1 L2
a.} A (%)
w = o .
£t s
The corresponding reflected parton asymmetry is q{; =-4

whereas 41; varies anti-symmetrically between the values
~4 and +1 as a function of 2= -1?/.? {sce Fig. 3).

The helicity differentials of the parton
denzities will be principally determined by the primordial valuec at
some chosen scale Q: . As yet, we know nothing about these
functions e¢xcept for models based on phenomenological constraints,
However they are directly measurable in experiments like EF ~e'X
and in the case of the fragmentation functions in e - A+X
or e? —eA + X . For a detailed discussion we refer to Refs.
5 and 7. At this pointit isworth mentioming that from the very
crude approximation in which we write the asymmetry at fixed %+
in the form (AL) = (ca.my /¢ .D: a3 /¢ ) < ats
we see that if the measured asymmetry turns out to be large then
the spin differentials of both the valence guarks distributions

inside the proton {(i.e. antiproton) and the frammentation function

-



S A must necessarily also be large.
The models we have used to make estimates are the so called

(1) (8)

conservative model of Sivers et al, and the Carlitz-Kaur
model. The former is based in the idea that the leading valence
quark carries all the helicity {which is presumably true only as
x= 1 } and is normalized according to the Bjorken sum

rule {f;x (.d, .'D; - A;-D: +A2.D: - AZ.D:) = g“/(‘;‘,,, {i.e, the ratio
of axi;l vector and vector coupling constants).

We shall take the ansatz in Ref. t, namely 4, D; =.U(D:),.l.....¢
and A1D¢ = --35(5:)ukau . In the Carlitz-Kaur model,
on the other hand, the valence quarks loose their polarizaticens
as x-»0 through interactions with the sea. This has the effect

of polarizing the gluons. The detailed form we used is given in

v » 4 < 4
Ref. 9, i.e. AZ DP = (Dp - %DP and AZ DP = _é(bl‘ )v-fenu .

valence

We have no models for the spin differential of the fragmentation
= A . However again one expects the leading s quark to give
all its helicity to the A as x-+1 . We shall make the simple

=A

ansatz 4, ﬁf = b “. The curve we plot can be scaled down according

- —A . .
to one's choice for AZEA relative to D, . The above primordial

2 -
distributions evolve away from &, with the following kernels

in Eq. {(5)

8, Pofe)a (g)[ é"'f';‘ ‘3 :(H}j ,
(9)
8, P 3)] # - (2]

By virtue of the fact that the driving asymmetry of the
L4 »
subprocess is antisymmetric about Beryy. = 40" in the C¢M , the

full asymmetry also vanishes at §, 10’ and is a non trivial

"33 =

function of th”_ . Tn Fig. 4(a) and (b} we give the asymmetry
. .
as a functien ot for respectively & =60 and %'34 = 3o
I‘ t”.

. . . —A -
For the fragmentation function D; we assume a form ngﬁ)~ U—tf-

-

In each case we show the predictions of the two extreme models
we discussed above, In Figs, 4(a) and (b) we have not shown the
effect of the gluon contribution (Fig. 2(b}) which depletes
the asymmetry, This effect is shown For the conservative model
in Fig. 4(c) as a function of x; , where as cxpccted the
asymmetry vanishes as L BN

If in addition to the trausmitted asymmeotry , the reflected

asymmetry is measured with the polarized protoen i,e, ?‘f-a A+X ;
i
then we have some additional information, In particular 2, =-1

for the 4f-—» s¢ mechanism so the overall asymmetry is proportional

to < (8.2)>/< D> and

if

A, - {Dpy £ A;B,A) <4_:f> (10)
ALl &by <BY)

Hence, in an average sense this is proportional to the transmitted
asymmetry ¢g . For completeness we show the expected reflected
asymmetry of this reaction in Fig, 5.

The estimates we made were in the lcading order in QCD.
However it is expected from the analysis of Drell-Yan by
Altarelli, Ellis and Martinelli'!®) and a recent analysis'!') op
non leading effects in large P, processes, that these may play
a non negligible role. On the other hand there arc statcments in
the literature(lz), that the all grders factorization theorcm
in reference (3) impliesg that one can always write a

factorized formula of the type

AB... - b
o* = f by B, .. o' (11)

where each object can be systematically expanded in powers of =
beyond the leading order . This statement has however many
ambiguities, not least the one cxhibited in Eq. (1}, where the

additional spin correlation terms (involving single spin

K



asymmetries) should enter, It is therefore important to examine
polarization asymmetries at large P s to check how spin
information is trasmitted between the pieces, which one supposes
factorize . This will improve our understanding of what
precisely is meant by Tactorizatiosa beyond the leading
order. Concerming the latter, some interesting suggestiorshave

recently (13,14,15)

been  made ,that the most important next
to leading order correction to the parton densities as x-f

can be incorporated in the evolution equations by the simple
substitution (K)}- o (&Y~ {corresponding to Ko ke ¥,
so the punning coupling constant appears also under the
integration over the parton momentum # (sec Eq. (§5) for the
structure of the evolution equations). In addition by modifying
(ive. @ =@ (=, ..) ) in

Eqs. (7) and (11} one can absorb the effects of the anext to

e with a function f{n,“,"j
leading logarithms in the large P process, a point stressed

in reference (11}. The double asymmetry measurement is an ideal
testing ground for sich a proposal, because it has to work in
both the numerator and denominator in formulae 1like Eq. (6.
Since, if it does not, the asymmetry will clearly be sensitive to
the choice of r , because of the claim in reference (11} that
the next to leading logarithms can have a large effect on the

large Py eross-section (i.e. the denominater in Eq. (6))

depending on how we choose the variable Gz . This means we can try
0 minimize the effects in the denominator, However, if the
procedure is arbitrary , it is likely to affect the numerator

differently . The same applies to the suggestion in references

(131,14,15) for the evolution equations,

For the above reasong we believethe studies of asymmetries
will be a very frmitful means of understanding the parton factorization
property of QCD, which underwrites much of the present day

phenomenclogy,
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