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ABSTRACT With the expansion of the use of frequency response analysis (FRA) as a reliable tool for
fault detection in transformers, more capabilities of this method are discovered every day. So that today the
number of transformer faults that can be identified by FRAmethod has also increased. One of themost critical
steps in fault detection with FRA is to distinguish faults and classify them in different classes. In this paper,
well-known intelligent classifiers (probabilistic neural network, decision tree, support vector machine, and
k-nearest neighbors) are used to classify transformer faults. For this purpose, the necessary measurements
are performed on the model transformers under the healthy condition and under different fault conditions
(axial displacement, radial deformation, disc space variation, short-circuits, and core deformation). Then, by
dividing the frequency ranges of the measured transfer functions of the transformer, a new feature based on
numerical and statistical indices for training and validation of classifiers is proposed. After completing the
training process, the performance of the classifiers is evaluated and compared by applying the data obtained
from real transformers.

INDEX TERMS Transformer, fault type detection, frequency response analysis (FRA), intelligent classifiers,
measurement, numerical indices.

NOMENCLATURE
AD Axial Displacement
ANN Artificial Neural Networks
ASLE Absolute Sum of Logarithmic Error
CC Correlation Coefficient
CCF Cross-Correlation Function
CSD Comparative Standard Deviation
DABS Absolute Difference
DCS Deformation of Core Sheets
DSV Disc Space Variation
DT Decision Tree
ED Euclidean Distance
FDA Fisher Discriminant Analysis
FRA Frequency Response Analysis
IA Integral of Absolute difference
ID Integral of Difference
IMGM Interval Maximum to Global Maximum
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k-NN k-Nearest Neighbors
MAX Maximum of difference
MM Minimum-Maximum ratio
MMR Maximum-Minimum Ratio
PNN Probabilistic Neural Network
RD Radial Deformation
RMSE Root Mean Square Error
SC Short Circuit
SD Standard Deviation
SDA Standardized Difference Area
SSE Sum Squared Error
SSMMRE Sum Squared Max-Min Ratio Error
SSRE Sum Squared Ratio Error
SVM Support Vector Machine
TF Transfer Function
E [1] Expectation
σe Standard deviation
σ Spectrum deviation
σs Stochastic spectrum deviation
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ρ Normalized correlation coefficient
RXY Correlation factor

I. INTRODUCTION
Nowadays, intelligent monitoring of equipment in power
systems is very important. Power transformers are one of the
most critical and expensive equipment in a power generation
and transmission network. Their failures will impose high
costs and reduce the reliability of the power grid. Therefore,
the care and protection of transformers during operation is
necessary. One of the methods used in recent years to monitor
the status of transformers is the FRA method. The FRA
method, also known as the TF approach, is a comparative
method [1]. In this method, the measurements are made on
a typical transformer in the healthy condition are kept as the
reference measurement with the customer or the manufac-
turer. After gathering the reference (healthy) TF in a typical
transformer, the TFs results can be measured (from similar
terminals) and compared with the reference at any desired
time. By comparing the reference TF with new measure-
ments, the type and severity of the transformer’s fault can be
determined. Unfortunately, the existing standards in the field
of FRA [2], [3] have focused on measurement requirements
and test circuits, and a precise standard for interpreting FRA
measurement results has not yet been developed. Therefore,
in recent years, many studies have been conducted on the
interpretation of FRA measurement’s results to obtain infor-
mation about transformer faults [4]–[8]. Given that the first
step is to identify the type of fault, the focus of current
research is to classify faults.

The most important faults that occur in the transformer and
can be identified by the FRA method are:
• Axial displacement (AD)
• Radial deformation (RD)
• Disc space variation (DSV)
• Short circuit (SC)
Besides, the deformation of core sheets (DCS) is also

detectable by the FRA, which has not been well studied in
the literature.

Various methods have been proposed in the literature
to identify the type of fault and classify them, which can
be divided into two main categories. The first category
includes methods according to which faults’ classification is
solely based on the rate of variations in numerical indices
(statistical and mathematical indices) in specific frequency
ranges [9]–[18]. The second category includes methods that
use intelligent classifiers to distinguish faults [19]–[25]. In
these methods, the necessary features of frequency response
(mainly the statistical and numerical indices) are extracted,
and these features are used for training and testing classifiers.

In [9], the most important numerical indices have been
introduced. By calculating them in different fault conditions
and comparing them to the healthy condition, the indices that
have a better ability to detect defects have been identified. In
[10], the transformer’s TFs in AD, RD and also simultaneous

AD-RD fault conditions are obtained with the help of the
finite element method. Then, using statistical indices such
as ASLE and DABS, the transformer faults were detected.
In [11], with the introduction of MMR based on the ED
index; the type of transformer winding fault is identified. A
new method using the wavelet technique and characteristic
impedance for classifying defects has been proposed in [12].
Using antenna installation on the transformer and by ana-
lyzing the electromagnetic waves received from the antenna
based on the ED index, a distinction is made between the
faults in [13]. In [14], the measured TFs from the transformer
are mapped to a two-dimensional space, and the fault type
is detected based on a vector-based approach. In [15], the
transformer’s TFs are first estimated, and then a distinction
is made between the faults by plotting the Nyquist diagram.
Nonetheless, only two faults, AD and RD, have been con-
sidered in these studies. A new characteristic called α is
introduced based on the ρ index to distinguish transformer
faults in [16]. However, three faults, AD, RD, and DSV,
have been investigated, while SC and DCS faults are not
considered. In [17], CCF index is introduced, and various
faults of the transformer are clustered. However, three faults
AD, RD, and SC are clustered, and DSV and DCS are not
considered in the fault detection process. In [18], a new index
called IMGM is proposed for fault type detection and all
five defects have been considered. The IMGM distinguishes
faults with probability and it is unable to certainly detect the
type of fault. Also, its conclusion emphasizes that intelligent
classifiers should be used to detect transformer faults in the
future.

In [19], [20], based on the TF estimation with the help of
vector fitting, the necessary features of the measured TFs for
four faults AD, RD, DSV, and SC were extracted and these
faults are classified by using PNN [19] and SVM [20]. A
distinction has been made between electrical and mechanical
faults (AD and RD only) and the inrush current through ANN
and the DT in [21]. Classification of RD, DSV, and SC faults
in three different classes has been done in [22], [23]. In [22],
the measured frequency response from the transformer is
divided into three frequency ranges and using binary imaging
and SVM, a distinction is made between the faults. In [23],
statistical and numerical indices were used for SVM training
and testing; nonetheless, the frequency division was not per-
formed. A new windowing-based approach to determine the
type of fault has been proposed in [24]. After windowing and
calculating the indices, the FDAmethod was used to separate
the faults. In [25], CCF was used to extract the characteristic,
and these features were used for ANN training and testing to
separate the three faults AD, RD, and SC.

As noted, several methods have been proposed to classify
transformer faults, but none of these studies has considered
DCS fault, and in many of these studies, two or eventually
three faults have been investigated. The faults classification
can be more difficult and complicated with the increase in
the number of defects that can be identified by the FRA
method. Also, one or two classifiers have been used in
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FIGURE 1. TFs measurement circuits.

previous researches, and the number of features extracted
for classifiers training has been limited. To address these
shortcomings, this article examines all five faults. For this
purpose, the required TFs are extracted by performing the
necessary measurements on different transformers in healthy
condition and different fault conditions (AD, RD, DSV, SC,
and DCS). Four intelligent classifiers, PNN, DT, SVM, and
k-NN, are used to classify faults into five different classes.
A new feature is proposed for the training and validation of
intelligent classifiers by calculating thewell-known statistical
and numerical indices. Data obtained from real transformers
are applied to classifiers to evaluate the performance of them.
Analysis of the results shows that by dividing the frequency
ranges of the measured TFs into 10 equal intervals and using
SVM and k-NN classifiers withMAX, CSD, and RXY numer-
ical indices as the feature, the best performance is obtained.

The innovative contributions of the proposed approach if
compared to previous studies are as follows:

1- Proposing a new feature based on numerical indices for
training and testing of intelligent classifiers,

2- Comparison of the performance of four well-known
intelligent classifiers (PNN, DT, SVM, k-NN) in dis-
tinguishing transformer faults and proposing the most
suitable classifier,

3- Apply the proposed feature to real transformers which
are faulty during operation,

4- Compare the performance of different numerical
indices and determine the reliable method.

II. CASE STUDIES AND MEASUREMENTS
In the measurements carried out in this study, the circuit of
Figure 1 is used [3]. It is important to note that in this figure,
instead of the output voltage (Vout), the output current can be
measured so that the TF will be of the admittance type.

To evaluate intelligent classifiers’ performance, it is nec-
essary to establish a database of transformers in healthy and
faulty conditions (with different intensities of the fault). For
this purpose, two sets of transformers are tested.

A. THE FIRST GROUP OF TRANSFORMERS
The first group of transformers is model transformers that
the desired faults are intentionally created on them. A model
transformer is a transformer whose structure is exactly the
same as an actual transformer, but its voltage and power level
may not be real. Therefore, it is used only for laboratory
studies. In addition, different connections are available from
its windings and it is possible to intentionally apply various
defects on the transformer in order to obtain a more complete
database. This group of transformers is tested with almost
similar structures, and one of the studied faults (AD, RD,
DSV, SC, and DCS) is applied to each of them. The descrip-
tion of these test objects is as follows:
Case 1:A transformer is consisting of a HV winding made

of 31 pairs of 6-turns discs, and a LV winding made of
4 layers of 99 turns is used to study the AD of the windings
relative to each other. The nominal power and voltage of
this transformer are 1.3 MVA and 10 kV, respectively. In
experiments performed, the internal layer winding is moved
axially in 8 steps (1 cm in each step) respect to the outer disc
winding.
Case 2: The transformer tested for RD study has a HV

winding consisting of 30 pairs of 11-turns discs and a LV
winding made of one layer of 23-turns. The rated power
and voltage of this transformer are 1.3 MVA and 10 kV,
respectively. In this test object, the disc winding is deformed
in 4 steps in a radial direction [16].
Case 3: The transformer studied in this section is the same

as Case 2. Another healthy winding has been selected to
study the effect of DSV on frequency response. The distance
between the discs in the healthy condition is 5 mm. This
distance has been changed to 7.5, 10, 15, 20 and 25 mm
to consider the effect of the DSV on the TFs. The distance
between the discs was changed in 3 locations (discs 2, 4, and
16) to study the effect of the fault better.
Case 4: A sample transformer is consisting of a HV wind-

ing made of 30 discs of 11-turns with 1MVA rated power and
20 kV rated voltage is used to investigate the effect of DCS on
the frequency response. The winding is mounted on the core,
and the TF of this winding is measured in two conditions.
First, in the healthy condition and then by deformation of the
core, the TF is measured again.
Case 5: In this case, the HV winding of a 10 kV and

1.2 MVA transformer is tested. The winding is including
60 discs with 9 turns in each disc. All discs have an accessible
branch that makes it possible to measure TFs at different
locations along the winding.

B. THE SECOND GROUP OF TRANSFORMERS
The second group is real transformers that exposed to faults
during operation. Initially, the type of fault is not known, and
after opening its accessories, the type of fault is recognized.
The specification of these transformers is as follows:
Case 6: This real case is a 20/0.4 kV and 0.4 MVA dis-

tribution transformer with a HV winding made of 40 discs,
17 turns in each disc, and a LV winding made of 2 layers,
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FIGURE 2. Some of the measured TFs of transformers.
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9 turns in each layer. Due to improper transportation of the
transformer from the production site to the installation site,
the AD fault has occurred.
Case 7: This is a distribution transformer with the rated

specification of 20/0.4 kV and 1 MVA with a HV winding
made of 50 discs, 11 turns in each disc, and a LV winding
made of 2 layers, 11 turns in each layer. This transformer has
an RD fault as a result of a short circuit near the transformer
terminals.
Case 8: In this transformer, a DSV fault occurred due to

the accident of the vehicle carrying the transformer. The rated
voltage and power are 63/20 kV and 30 MVA, respectively.
The windings consist of a HV winding made of 80 discs,
15 turns in each disc, and a LV winding made of 5 layers,
64 turns in each layer.
Case 9: This real case is a 20/0.4 kV and 0.5 MVA dis-

tribution transformer with a HV winding made of 45 discs,
13 turns in each disc, and a LV winding made of 2 layers,
10 turns in each layer. The transformer was thrown to the
ground while mounting on a vehicle, and a DSV fault has
occurred.
Case 10: This is a transformer with the same specifications

as the Case 7, which has a DCS fault.
The measurement results of some of these transformers

are shown in Figure 2. The experimental results point out
that each defect affects a specific frequency range. However,
the type of faults cannot be determined by the appearance of
the measured TFs, and a fault detection method should be
used for this purpose, which will be discussed in the next
sections.

III. INTELLIGENT CLASSIFIERS
In this paper, four methods of PNN, DT, SVM, and k-NN
are used to detect the type of transformer fault. The theory of
these methods has been extensively studied in the literature
[26]–[29]. The ability of these methods to solve transformer
faults classification problems has also been demonstrated
in [19]–[25]. Therefore, in this section, these methods are
briefly discussed.

A. PROBABILISTIC NEURAL NETWORK
The design of an ANN includes the selection of inputs,
outputs, network structure, and neuron weight vectors [26].
The choice of network topology is made in an experimental
process with trial and error to optimize the number of layers
and neurons in the network. The PNN structure is a three-
layer network.When an input vector is applied to the network,
the first layer calculates the input vector distance from the
training inputs, thus providing vector whose elements deter-
mine the distance between the new input and the training
input. The second layer uses the output of the first layer
to produce the vector of probabilities as the output of the
network. Finally, the competitive transfer function in the third
layer selects the maximum number of probabilities from the
probability vector and produces 1 for that and 0 for the rest
of the probabilities.

FIGURE 3. Flowchart of proposed method for finding the best interval for
calculating indices.

B. DECISION TREE
This method is a data mining tool for decision support that
uses a tree-link model of decisions. It isn’t easy to find the
optimal tree in practice, but powerful algorithms such as ID3,
C4.5, CART, and CHAID have been proposed for this pur-
pose. One of the essential advantages of the C4.5 algorithm is
the ability to convert trained trees into a series of if-then rules.
On the other hand, no feature extraction technique is required
in this method [27]. Therefore, this algorithm is used in this
research.
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C. SUPPORT VECTOR MACHINE
It is one of the most powerful classifiers that can perform both
linear and nonlinear data separation operations. One of the
best kernel functions used in SVM is the Gaussian function,
which is defined as follows [28]:

K (X ,Y ) = exp(−
1

2σ 2 ‖X − Y‖
2) (1)

where, X and Y are the input and output vectors, respectively,
and is a constant value that is determined by the type of data.
Also, SVM has another parameter called C, which controls
the amount of over-fit or under-fit. Accurate determining
the parameters of and C is very important and is usually
determined by trial and error.

D. k-NEAREST NEIGHBORS
The k-NN method is an efficient tool for classifying data.
The k-NN algorithm is straightforward, and it works by
calculating the distance between data to put those that are
similar to each other in a neighborhood. The number of
neighbors (k) depends on the input data, but usually, an odd
number is selected. When new data is applied to k-NN, the
distance between that data and the k neighbors closest to it
is calculated. Any class that has more neighbors will win the
competition. The two most common methods for calculating
the distance between data are Euclidean distance and Pearson
methods [29]. In this paper, the Euclidean distance is used.

IV. THE PROPOSED METHOD FOR EXTRACTING THE
FEATURES
One of the most critical parts of any pattern recognition sys-
tem is the feature extraction. In detecting transformer faults,
the feature extraction is based on the comparison of data of the
measured TFs with the reference TF. One of the best ways to
compare TFs with reference TF is to use numerical and sta-
tistical indices. Although numerical indices have been used
in the diagnosis of transformer defects [9]–[12], [16]–[18],
however, a comprehensive comparison of the performance
of these indices for the purpose of training the intelligent
classifiers is not seen in the literature. Therefore, in this paper,
it is proposed that each of the indices be used separately
as a feature. Then, the performance of each index in the
transformer fault classification is evaluated to identify the
most reliable indicator.

Various numerical indices have been presented to compare
TFs, the most important and most commonly used are:

ED = ‖Y − X‖ =
√
(Y − X )T (Y − X ) (2)

SD =

√∑N
i=1 (Y (i)− X (i))2

N − 1
(3)

ID =
∫

(Y (f )− X (f )) df (4)

IA =
∫
|Y (f )− X (f )| df (5)

SDA =

∫
|Y (f )− X (f )| df∫
|X (f )| df

(6)

ASLE =

N∑
i=1

∣∣20 log10 Y (i)− 20 log10 X (i)
∣∣

N
(7)

RMSE =

√√√√√ 1
N

N∑
i=1

 |Y (i)| − |X (i)|(
1
N

)∑N
i=1 |X (i)|

2

(8)

E [1] =
1
N

N∑
i=1

1(i);1(i) =
|Y (i)| − |X (i)|(
1
N

)∑N
i=1 |X (i)|

(9)

σe =
√
var(1) = E [1− E(1))] (10)

σ =
1
N

N∑
i=1

√√√√√
(
X (i)−(X (i)+Y (i))/2

(X (i)+Y (i))/2

)2
+(

Y (i)−(X (i)+Y (i))/2
(X (i)+Y (i))/2

)2 (11)

σs =
100
N

N∑
i=1

∣∣∣∣Y (i)− X (i)X (i)

∣∣∣∣ (12)

MAX = max(Y (i)− X (i)) (13)

ρ =

∑N
i=1 (X (i)− X̄ )(Y (i)− Y )√∑N

i=1 (X (i)− X̄ )2
∑N

i=1 (Y (i)− Y )2

X̄ =
1
N

N∑
i=1

X (i), Ȳ =
1
N

N∑
i=1

Y (i) (14)

CC =

∑N
i=1 X (i)Y (i)√∑N

i=1 (X (i))2
∑N

i=1 (Y (i))2
(15)

SSE =

∑N
i=1 (Y (i)− X (i))

2

N
(16)

SSRE =

∑N
i=1 (

Y (i)
X (i) − 1)2

N
(17)

SSMMRE =

∑N
i=1 (

max(Y (i),X (i))
min(Y (i),X (i)) − 1)2

N
(18)

DABS =

∑N
i=1 |Y (i)− X (i)|

N
(19)

MM =

∑N
i=1min(X (i),Y (i))∑N
i=1max(X (i),Y (i))

(20)

CSD =

√∑N
i=1

[
(X (i)− X̄ )− (Y (i)− Y )

]2
N − 1

(21)

RXY =

{
10 if (1− ρ) ≤ 10−10

− log10(1− ρ) otherwise
(22)

where, X and Y are the magnitude vectors of the reference
TF and the new TF, respectively, f is the measured frequency
vector, and N is the number of samples in a vector.

Another shortcoming of past well-known studies [9]–[12]
is that in order to extract the features, the indices have been
calculated in the entire frequency interval (0-1MHz). Obvi-
ously, the result of this calculation will be just one numerical
value, which is insufficient to train the classifier. In some
studies [16], [23], the indices have been calculated in 3 fre-
quency intervals. However, it is not clear in which frequency
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interval these indices are calculated, the best performance is
obtained for the classifier. To solve this problem, in current
research, the measured frequency response is divided into
different intervals. This frequency division should be such
that the number of data is not high because it makes the
decision difficult for classifiers, and its speed will be reduced.
Also, if the amount of data is lower than a certain level,
classifiers will not be well trained and will produce incorrect
output. Therefore, in this paper, different states of frequency
division are examined. To achieve a suitable result, the num-
ber of intervals is changed from 1 to 20 and the output of the
classifiers is evaluated in each interval. Figure 3 shows the
proposed method for finding the best interval for calculating
indices. The interval that produces the output with the highest
accuracy for the classifier is selected as the most appropriate
interval for calculating the numerical indices.

It should be noted that after calculating the mentioned
indices in the custom frequency intervals of the TFs, these
features are applied as inputs to the classifiers. There-
fore, the input matrix for each indicator can be defined as
Equation (23), as shown at the bottom of the page.

Classifier output can be numbered 1 to 5, which are
assigned to AD, RD, DSV, DCS, and SC, respectively. There-
fore, the output vector can be defined as Equation (24), as
shown at the bottom of the page.

Where, i represents the intensity of AD from 1 to 8 cm, j is
the degree of RD from 1 to 4, k is the intensity of DSV from
7.5 to 25 mm and for 3 locations 2, 4 and 16, m is the intensity
of DCS and l is the location of SC. n also represents the
number of frequency intervals, which in this article is equal
to 10. In fact, with this formatting, the samples are placed on
the matrix columns.

V. CLASSIFICATION RESULTS
In this section, by applying the features extracted from the
TFs to intelligent classifiers, their performance is evaluated.
In addition to test data, part of the model’s transformers data
is used to validate classifiers to prevent over-fitting. For this
purpose, the K-Fold cross-validation method is used. In this
method, the classification is done K times, and in each time,
a fraction of 1/K of data is used for validation, and the rest
is used for training. Then the mean of the errors is returned
as the classification error. In this paper, the value of K is
considered to be 5.

In the first step, the desired interval for calculating numer-
ical indices must be determined. For this purpose, the pro-
posed flowchart in Figure 3 is used. Figure 4 shows the
accuracy of some indices for different frequency intervals of

the measured TFs for the SVM Classifier. It is observed that
the highest accuracy is related to the state where the measured
frequency range is divided into 10 equal intervals. This has
been done for all indices and classifiers, and a similar result
has been obtained.

After calculating the numerical indices in 10 equal fre-
quency intervals, the input matrix is created. Then, by apply-
ing the input matrix to the classifiers, the diagnosis error of
each classifier is determined. Table 1 shows the diagnosis
error in applying validation and test data to different classi-
fiers for all indices.

Examining the results of Figure 4 and Table 1 shows that:
1- To extract the features, the indices can be calculated

in different frequency intervals. The highest accuracy
is obtained when the measured TF is divided into
10 equal frequency intervals. Therefore, it is proposed
that the feature extraction be performed based on the
calculation of numerical indices in 10 equal frequency
intervals of the measured TF.

2- In PNN and DT classifiers, the diagnosis error of test
data is not less than 40% for any indicator. Besides,
the diagnosis error of validation data is above 10%.
Therefore, in solving the classification problem men-
tioned in this article, the use of these classifiers is not
recommended.

3- In all classifiers, the diagnosis error for ID, IA, RMSE,
E, σe, σ , σs indices in test data is more than 50%.
Also, the classification error in these indices is high in
validation data. These indices fall into the first category.

4- In SVMand k-NN classifiers, the ED, SD, SDA,ASLE,
ρ, CC, SSE, SSRE, SSMMRE,DABS, andMM indices
have less error than the first category indices (validation
error less than 15% and test error less than 50%).
Nonetheless, the diagnosis error is still high. These
indices fall into the second category.

5- The third category is indices that have less error than
other indices. These indices are MAX, CSD, and RXY.

The above analysis shows that for the extraction of the
features, it is better to use the third category indices and use
SVM and k-NN classifiers to classify the faults. Therefore,
the results of these indices and classifiers will be examined
in more detail.

Figure 5 shows the diagnosis accuracy of the validation
data applied to the SVM and k-NN classifiers for the three
MAX, CSD, and RXY indices. As can be seen, the MAX
index for SVM and k-NN classifiers has been misdiagnosed
in two cases, which are related to AD, RD, and DCS faults.
Misdiagnosis of DCS can significantly affect the classifier’s

Input Matrix =

 Index1,ADi Index1,RDj Index1,DSVk Index1,DSVm Index1,SCl
...

...
...

...
...

Indexn,ADi Indexn,RDj Indexn,DSVk Indexn,DSVm Indexn,SCl

 (23)

Output Vector =
[
AD1 · · · ADi RD1 · · · RDj DSV1 · · · DSVk DCS1 · · · DCSm SC1 · · · SCl

]
(24)
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FIGURE 4. The accuracy of some indices by calculating them in different frequency intervals of measured TFs.

TABLE 1. Classifier diagnosis error for test and validation data (in percentage).

performance because only one measurement result for this
fault is available in the model transformers and not recogniz-
ing it correctly means that the classifier has not been properly
trained for this fault and produces a 100% error. In the CSD
index, only one condition of AD and RD faults has been
misdiagnosed for each of classifiers. In the RXY index, the
performance of SVM and k-NN classifiers is the opposite of
their performance in the CSD index.

Despite the good results obtained in the training and vali-
dation phase of MAX, CSD, and RXY indices, but to prove
the capabilities of the proposed method and generalize it,
various TFs of different transformers must be examined. For
this purpose, the measured data from the second group of
transformers are used to test and verify the proposed method.
Figure 6 shows the results of applying test data to SVM and
k-NN classifiers for three indices: MAX, CSD, and RXY.
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FIGURE 5. Performance of third category indices using K-Fold cross-validation.

As expected, the k-NN method in the MAX index failed to
identify the DCS fault correctly. Also, the SVM method in
this index could not accurately identify the AD fault. For
both classifiers, the RXY index only misdiagnosed AD. In the
CSD index, for the k-NN classifier, the AD fault has been
misdiagnosed, but in the SVM method, all fault conditions
have been correctly identified.

The results of the above analysis show that the classifica-
tion error of a classifier may be somewhat high in the valida-
tion phase. Nonetheless, in the testing phase, good accuracy
is obtained. The reason for this is that training and validation
of classifiers are performed with different intensities of a
fault, and maybe just for certain intensity, validation is not
correct that particular intensity is not available in test data.
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FIGURE 6. Performance of third category indices in response to test data.

For example, in the MAX index and with the k-NN classifier,
for the low intensity (displacement of 1 cm) in the AD fault
in the validation phase, the fault type is recognized as DSV.
However, in the test phase, the classifier’s diagnosis was
correct for the transformer that had an AD fault because
the intensity of the fault in this transformer has been severe
(displacement of more than 4 cm).

In general, for transformers studied in current research, the
CSD index with SVM classifier has the best performance
in classifying transformer winding faults. Also, to extract
the features, it is better to calculate the numerical indices in
10 equal frequency intervals of the measured TF.

VI. CONCLUSION
Due to the increasing use of FRA in detecting transformer
faults and increasing the number of faults that can be detected
with FRA’s help, it is necessary to provide a reliable method
for classifying faults. Therefore, in this paper, the most
important intelligent classifiers (PNN, DT, SVM, and k-NN)
were used to classify faults. To train and test classifiers, a
new feature based on statistical and numerical indices was
proposed. In the proposed feature, statistical indices were
calculated in 10 equal frequency intervals of the measured
TFs. The required data for the extraction of the features
were obtained by performing the necessary measurements
on different transformers in the healthy condition and the
different faults conditions (AD, RD, DSV, DCS, and SC). By
calculating the indices and applying the extracted features to
the intelligent classifiers, their performance was evaluated.
The obtained results showed that the three features, MAX,
CSD, and RXY with SVM and k-NN classifiers, have fewer
errors compared to other indices and classifiers. Among
these, the SVM classifier with CSD feature has 97.2% accu-
racy and 100% accuracy in diagnosing validation and testing
data, respectively. Therefore, it is recommended as a reliable
method in the industry.
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