Computer Physics Communications 51 (1988) 443-450
North-Holland, Amsterdam

443

A RULE BASED APPROACH FOR PATTERN RECOGNITION

IN PLANAR GEOMETRIC FIGURES

L. ALVISI and R. ODORICO

University of Bologna, Department of Physics, Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 1-40126 Bologna, Italy

Received 25 February 1988

An OPS5 expert system has been developed, allowing the recognition of an arbitrary subpattern in a complex planar
geometric figure under analysis. For this sake a syntactic representation for images is used by the expert system as a relational
data base. The expert system looks for consistent mappings of the set of topological elements /relations representing the given
subpattern into a corresponding subset of the topological elements/relations representing the geometric figure under analysis.

The basic core of the expert system consists of 30 OPSS5 rules.

PROGRAM SUMMARY
Title of program: TOPREC
Catalogue number: ABDG
Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this

issue)

Computer for which the program is designed and others on which
it is operable: VAX /VMS, Apple Macintosh

Computer: VAX 8800; Installation: CINECA, Bologna
Operating system: VMS
Programming language used: OPSS

High speed storage required: depends on the complexity of the
problem

No. of bits in word: 32

No. of lines in combined program and test deck: 847
Keywords: pattern recognition, OPSS, rule based system

Nature of physical problem
Recognition of subpatterns in planar geometric figures.

Method of solution
Rule based system.

Restriction on the complexity of the problem
With the present version some classes of geometric figures are
excluded.

Typical running time
1.50 cpu s on VAX 8800 for the test run.

Reference
[1] L. Alvisi, University of Bologna report (1987), in prepara-
tion.

0010-4655 /88 /$03.50 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

444 L. Alvisi, R. Odorico / Pattern recognition

LONG WRITE-UP
1. Introduction

The use of data structures such as relational
data bases becomes necessary when the informa-
tion to deal with is interconnected by a complex
structure of logical chains. In general, structures
of this type hold explicit information about the
objects they refer to and their mutual relation-
ships. It is often difficult to use relational data
bases efficiently by means of traditional proce-
dural approaches because with them the pro-
grammer has to supply a detailed planning of all
the steps needed to complete the desired task.

Rule based expert systems [1] try to exploit the
richer quality of the data contained in a relational
data base in order to decrease the information
that must be supplied as external control. For this
sake they offer a set of instruments which can be
used to link the elementary relations contained in
the data base into more complex ones and thus
answer questions on interest to the user. The
advantage that is obtained using such non-proce-
dural systems is more and more significant as the
correlations to be verified become more complex,
thus making an algorithmic approach hard to out-
line. The features allowed by rule based systems
have already proved to be of considerable impor-
tance in pattern analysis and recognition (like,
e.g., in aerial photo interpretation [2]).

The rule based system presented here is in-
tended to recognize an arbitrary subpattern within
a planar geometric figure under analysis, called
network. Each one of them is treated as a collec-
tion of feature elements and relationships arranged
in a planar graph representation. The latter is used
by the rule based system as a relational data base.

Vertices, edges and cycles are the feature ele-
ments of the planar graph representation.

A vertex 1s a point in a plane which is con-
nected by lines with a least three other points
lying in the same plane. An ordered pair of vertices
(u, v) is an edge; u is called the tail of the edge,
and v the head. If (u, v) is an edge, (v, u) is
called its reversal. A sequence of edges, which
starts and ends in the same vertex, is called a
cycle. Actually, only two kinds of cycles are con-

sidered in the representation: i) the external cycle,
made up of all the edges belonging to the external
border of the graph, oriented anticlockwise; ii)
internal, clockwise, cycles of minimum area, i.e.
such that no other cycle can lie within the region
delimited by them. The terminology is the same
used in conventional graph theory [3].

At the present stage of development, applica-
tion of the system is limited to patterns having
graph representations with no open ends (i.e.
vertices with degree 1), and no articulation vertices
(i.e. vertices whose removal causes disconnection
of the graph) in them and in their dual graphs (i.e.
the graphs obtained by associating a vertex to
each one of the internal cycles considered here,
and an edge between such vertices to each edge in
the original graph which is common to the corre-
sponding internal cycles).

The process of searching a given subpattern
within the complex network amounts to an at-
tempt to prove that subgraphs of the network
representation are isomorphic to the graph repre-
senting the subpattern. This problem is of great
interest because of the large field of application of
graphs, in physics and elsewhere, and is being
actively investigated [4,5]. The OPS5 approach
presented here allows for good efficiency and for
increased flexibility in dealing with more general

Edge 3
Edge 7
Cycle 3
- Edge 9 Edge 8
W Al
> > {4
Edge 4 Edge 11
Cycle 2 Edge 5 Edge 10 Cycle 4
Edge 6 | Edge 12
Edge 1 Edge 2
Cycle 1

Fig. 1. Example of graph labelling.

L. Alvisi, R. Odorico / Pattern recognition 445

patterns, for which the graph representation has
further attributes appended to its elements. In
fact, the rule based system can be easily extended
to take into account such attributes as further
constraints to be satisfied in the pattern recogni-
tion problem.

The system recognizes vertices, cycles and edges
by numerical labels assigned to them. For each
class of elements (e.g. edges) the label must range
from 1 to the number of elements of the class. The
external cycle must be labelled with 1. Apart from
such restrictions, the labelling of vertices, edges
and cycles can be arbitrary.

Fig. 1 shows a example of graph labelling. The
label orderings appearing in this example and
those of figs. 2 and 3 have been obtained from a
FORTRAN procedure, developed by one of the
authors [6], which can automatically extract the
features of interest from the image, order them
and arrange them in a format suitable for direct
input to the system.

2. General features of the software

The production system consists of 51 OPSS
rules, but only 30 of them constitute its basic core,
while the others are intended for input-output
and diagnostic operations. Rules are organized in
11 classes (clusters), that correspond to the differ-
ent phases the system has to go through to certify
the presence of the subpattern in the geometrical
figure under analysis. Within each class, the rules
aim at the same task and work on the different
aspects connected with its achievement. The pro-
gram develops as a process of tasks creation,
activation and satisfaction. Several tasks can be
active at the same time during the program execu-
tion: the choice of the selected one depends on the
strategy implemented in the inference engine. The
MEA strategy, adopted in this program, makes the
system particularly sensitive to the last activated
task, and does not let it to be taken away from the
considered goal. The program is entirely written in
OPSS for VAX computers [7]. Further informa-
tion on OPSS syntax, and the programming fea-
tures of the language can be found in refs. [8,9].

3. Specific features of the software

The stack data structure has been largely used
in the program, because OPS5’s conflict resolution
strategy has a built-in bias toward the most re-
cently created (or modified) instances of an ele-
ment class. A first stack is used to collect all the
edges of the network that can be chosen as a
suitable starting point for the process of recogni-
tion. The choice is made on the ground of con-
siderations relating the head and the tail vertices
of the edges of the network with the correspond-
ing vertices of the first edge of the subpattern not
belonging to the external cycle. In a second paral-
lel stack are pushed the working memory elements
that contain the hypotheses of correspondence
between the cycle of the starting edge of the
subpattern and the cycles whose edges have been
pushed in the first stack. Then the process of
recognition is achieved through an exploration of
the cycles whose correspondence has been sup-
posed. During such an exploration, starting from
an appropriate edge, a step by step comparison is
performed, parallel in both cycles, in order to
check if it is possible to set up a correspondence
between them. At the same time, new hypotheses
of associations are generated, relating both the
reversals of the considered edges and their cycles,
creating in this way the premises for further ex-
plorations. The relations concerning edges or
vertices which belong to the external cycle of the
subpattern are carefully verified: in fact, informa-
tion like the degree of the external vertices, or the
number of edges joining two external vertices may
be altered when the subpattern is embedded in the
network.

The consistency of the set of relations and
inferences produced during the process of explora-
tion is continuously checked until one of the fol-
lowing occurs:

i) An inconsistency is produced: in this case all
the relations developed up to that time are de-
leted.

i1) All the cycles have been explored and the
recognition has been successfully completed: be-
fore being deleted, the associations developed dur-
ing the process are saved in an output file.

In any case, the following step is the extraction

446 L. Alvisi, R. Odorico / Pattern recognition

of two new elements from the first and the second
stack in order to look for a further recognition
from a different starting edge. The process ends
when both stacks are empty.

4. Rule classes

a) Cluster for STARTUP actions (1 rule)

This rule is used to initialize the system. It sets
the conflict resolution strategy used in the pro-
gram, opens the input files and prepares the sys-
tem to read them. It also sets the trace informa-
tion to the lowest level to improve the program
efficiency.

b) Cluster for READ actions (7 rules)
This class of rules is intended for input op-
erations. Different rules are used to read informa-

MATCHES FOUND:

tion concerning vertices, edges and cycles for both
the network and the subpattern.

¢) Cluster for FIRST-EDGE actions (4 rules)

These rules set up the stacks that contain the
information used to start the process of recogni-
tion. The first stack collects the edges of the
network that can be associated with the starting
edge of the subpattern. The second one contains
the hypotheses of correspondence between the
cycle of the starting edge of the supattern and the
cycles whose edges have been pushed in the first
stack.

d) Cluster for POP actions (2 rules)

The first rule extracts from the previously de-
scribed stacks one of the couples of working mem-
ory elements that have been pushed in during the

33

Fig. 2. Subpattern and network used in the test run. Matches found are shown.

L. Alvisi, R. Odorico / Pattern recognition 447

phase of stack loading. The second one closes the
file REPORT.DAT when the stacks are empty.

e) Cluster for ASSOC-CYCLES actions (6 rules)

These rules do a first check on an hypothesis of
association between two cycles produced during
program excution. They compare the length of the
cycles (i.e. the number of edges which form the
cycles) trying to find out as soon as possible an
eventual inconsistency in the recognition process.
If this first check is successfully passed, a new
working memory element, containing the labels of
the two cycles under analysis, is generated and put
in a third stack, waiting for further tests.

[} Cluster for ASSOC-EDGE actions (8 rules)

The rules contained in this cluster verify if an
hypothesis of association, between two edges, pro-
duced during program execution, clashes with the
set of inferences generated up to that time. For
this sake a comparison is made between the num-
ber of edges that leave from the tail and the head
vertices of the two edges. The case of a subpattern
edge belonging to the external cycle is also consid-
ered. Furthermore, a precondition for the associa-
tion of the two edges is the existence of an associ-
ation between the cycles they belong to.

g) Cluster for CYCLE-ACTIVE actions (3 rules)

These rules concern the couples of cycles that
have passed the first check carried out by cluster
E. They extract the last of the working memory
elements from the stack described at point E; then
they generate the control elements that will be
used to perform the parallel exploration of the
cycles.

h) Cluster for EXPLORE actions (4 rules)

These rules perform the parallel exploration of
the two cycles extracted from the stack during the
cycle-activation phase. Starting from their respec-
tive first edge, the two cycles are explored step by
step, producing new hypotheses of association be-
tween corresponding edges in the two cycles. The
internal cycles (i.e. the cycles which have neither
edges belonging to the external cycle, nor edges
whose reversal belongs to the external cycle) are
explored following a clockwise motion. The ex-

Table 1
Data ordering in files containing graph representations

NE,EDGE-LABEL(K),REVERSAL(K), TVERTEX(K),
HVERTEX(K), TDEGREE(K),HDEGREE(K),
CYCLE-LABEL(K),CYCLE-LENGTH(K),CYCLEPE(K),
CYCLENE(K), for K =1 to NE)

ploration of the other cycles is instead controlled
by two competing rules: one performs a clockwise
step, the other an anticlockwise one. The system
can change the direction of the motion during the
exploration in order to solve the problems that
raise along the external border.

Table 2

Meaning of symbols in table 1

NE total number of directed edges
of the graph

EDGE-LABEL edge label

REVERSAL label of the reversal of the edge

TVERTEX label of the tail vertex of the edge
HVERTEX label of the head vertex of the edge
TDEGREE number of edges incident with

the tail vertex of the edge
HDEGREE number of edges incident with

the head vertex of the edge
CYCLE-LABEL label of cycle to which the edge belongs
CYCLE-LENGTH length of cycle to which the edge belongs

CYCLEPE label of the preceding edge in cycle
CYCLENE lable of the following edge in
cycle (clockwise order for internal
cycles, anticlockwise order for the
external cycle)
Table 3
Input file for the graph in fig. 1
12
1 6 1 2 3 3 1 3 3 2
2 12 2 3 3 3 1 3 1 3
3 7 3 1 3 3 1 3 2 1
4 9 1 4 3 3 2 3 6 5
5 10 4 2 3 3 2 3 4 6
6 1 2 1 3 3 2 3 5 4
7 3 1 3 3 3 3 3 9 8
8 11 3 4 3 3 3 3 7 9
9 4 4 1 3 3 3 3 8 7
10 5 2 4 3 3 4 3 12 11
11 8 4 3 3 3 4 3 10 12
12 2 3 2 3 3 4 3 11 10

448

FIND:

L. Alvisi, R. Odorico / Pattern recognition

IN:

7

Fig. 3. Inscriptions of the graph of fig. 1 in the network.

i) Cluster for FAILURE /SUCCESS actions (4
rules)

These rules are activated when an error condi-
tion has occured, or when the recognition has
been successfully completed. They provide for de-
leting all the working memory elements during the
attempt just completed. Then, creating a task for
the action POP, they prepare the system to a new
exploration, beginning from a different edge.

J) Cluster for REPORT actions (7 rules)

These rules superintend the output operations.
For each successful attempt of recognition, the
whole set of the generated associations is saved in
file REPORT.DAT. If not acceptable patterns are
submitted to the system, diagnostic messages, in-
cluding the labels of the vertices and edges that
cause problems, are written in the file.

L. Alvisi, R. Odorico / Pattern recognition 449

k) Cluster for NOT-ACCEPTABLE actions (5 rules)

This cluster contains the rules that recognize
the input configurations that, at the present time,
the system does not accept.

5. Description of the input data

Input data are read from two files. NET-
WORK.ABS contains the graph representation of
the network, while SUBPATT.ABS contains that
of the subpattern to be searched out in the net-
work. Files are arranged as free format data se-
quences. Data points are separated by an arbitrary
number of blanks. Table 1 shows how data are to
be ordered in the input files. The meaning of the
symbols is given in table 2. In table 3 an example
of input file is presented, corresponding to the
graph representation of fig. 1.

6. Test run

Fig. 2 shows the subpattern and the network
used for the test run. Cycles are labelled with
underlined bold numbers, vertices with outlined
ones, edges with plain types. These numbers are
referred in the test run output to report the associ-

ations between edges and cycles of the two graphs
made by the OPSS system. A graphic display of
the only match found is also shown in the figure.
A further example is presented in fig. 3, reporting
on the inscription of the graph of fig. 1 in the
same network as in fig. 2. Nine matches are found,
each one of those shown in the figure actually
representing three matches due to the symmetry of
the subpattern.

References

[1) F. Hayes Roth, D. Waterman and D. Lenat, Building
Expert Systems (Addison-Wesley, Reading, MA, 1983).

[2] D.M. McKeown Jr., W.A. Harvey Jr. and J. McDermott,
IEEE Trans. Patt. Anal. Mach. Intell. PAMI-8 (1985) 570.

[3] F. Harary, Graph Theory (Addison-Wesley, Reading, MA,
1972).

{4] J.E. Hopcroft and R.E. Tarjan, ACM Commun. 30 (1987)
198.

[5] J.E. Hopcroft and R.E. Tarjan, J. Comput. Syst. Sci. 7
(1973) 323.

[6] R. Odorico, University of Bologna report, in preparation.

[7] Digital Equip. Co., OPS5 for VAX User’s Guide (AA-BH99
A-TE) (1984).

[8] C.L. Forgy, OPSS User’s Manual, Digital Equip. Co. (1984).

[9] L. Brownstone, R. Farrel and E. Kant, Programming Ex-
pert Systems in OPSS5 (Addison-Wesley, Reading, MA,
1985).

450 L. Alvisi, R Odorico / Pattern recognition

TEST RUN OUTPUT (input as in fig. 2)

MATCH NO. 1

CYCLE NO. 2 CF THE SUBPATTERN WITH CYCLE NO. 15 CF THE NETWORK
CYCIE NO. 4 COF THE SUBPATTERN WITH CYCLE NO. 7 CF THE NETWORK
CYCLE NO. 5 CF THE SUBPATTERN WITH CYCLE NO. 9 COF THE NETWORK
CYCLE NO. 6 OF THE SUBPATTERN WITH CYCLE NO. 16 CF THE NETWORK
CYCLE NO. 7 CF THE SUBPATTERN WITH CYCIE NO. 14 CF THE NETWORK
CYCLE NO. 3 CF THE SUBPATTERN WITH CYCLE NO. 13 OF THE NETWORK
EDGE NO. 10 CF THE SUBPATTERN WITH EDGE NO. 61 CF THE NETWORK
EDGE NO. 15 CF THE SUBPATTERN WITH EDGE NO. 28 COF THE NETWORK
EDGE NO. 16 CF THE SUBPATTERN WITH EDGE NO. 29 CF THE NETWORK
EDGE NO. 18 CF THE SUBPATTERN WITH EDGE NO. 34 COF THE NETWORK
EDGE NO. 9 CF THE SUBPATTERN WITH EDGE NO. 60 OF THE NETWORK
EDGE NO. 19 CF THE SUBPATTERN WITH EDGE NO. 35 COF THE NETWORK
EDGE NO. 20 OF THE SUBPATTERN WITH EDGE NO. 36 CF THE NETWORK
EDGE NO. 22 CF THE SUBPATTERN WITH EDGE NO. 63 CF THE NETWORK
EDGE NO. 8 OF THE SUBPATTERN WITH EDGE NO. 59 OF THE NETWORK
EDGE NO. 23 OF THE SUBPATTERN WITH EDGE NO. 64 CF THE NETWORK
EDGE NO. 24 OF THE SUBPATTERN WITH EDGE NO. 65 OF THE NETWORK
EDGE NO. 26 OF THE SUBPATTERN WITH EDGE NO. 56 CF THE NETWORK
EDGE NO. 27 OF THE SUBPATTERN WITH EDGE NO. 57 CF THE NETWORK
EDGE NO. 13 CF THE SUBPATTERN WITH EDGE NO. 51 COF THE NETWORK
EDGE NO. 14 COF THE SUBPATTERN WITH EDGE NO. 52 OF THE NETWORK
EDGE NO. 7 OF THE SUBPATTERN WITH EDGE NO. 58 OF THE NETWORK

