Cryogenic detectors for rare alpha decays search: a new approach

<u>S.S. Nagorny</u>¹, N. Casali^{2,3}, A. Dubovik⁴, S. Nisi⁵, F. Orio³, L. Pattavina⁵, S. Pirro⁵, K. Schäffner⁵, I. Tupitsyna⁴, A. Yakubovskaya⁴

¹INFN – Gran Sasso Scientific Institute, I-67100 L'Aquila - Italy
 ²Dipartimento di Fisica - Università di Roma La Sapienza, I-00185 Roma - Italy
 ³INFN - Sezione di Roma I, I-00185 Roma - Italy
 ⁴Institute for Scintillation Materials, National Academy of Science of Ukraine, Kharkov - Ukraine
 ⁵INFN - Laboratori Nazionali del Gran Sasso, I-67100 Assergi - Italy

LTD-2015

Natural alpha active isotopes

Required highly sensitive experimental technique which is flexible towards isotope of interest

Scintillating bolometers

New approach ZnWO₄ doped with isotope of interest

- Well-developed technology of ZnWO₄ production
- Non-hygroscopic material
- Good mechanical properties and easy handling
- High radiopurity
- High light yield at low temperatures
- Successfully tested as scintillating bolometer
- High energy resolution
- Can be doped by different elements up to level of about 1 wt.%
- Realize "source = detector" approach with close to 100% registration efficiency

Alpha decay of Sm isotopes

	Nuclide	δ, % [1]	Q _α , keV [2]	T _{1/2} (exp), yr	T _{1/2} (est), yr [4-8]
	¹⁴⁴ Sm	3.07	76	-	-
	¹⁴⁷ Sm	14.99	2310.5	1.06(2)·10 ¹¹	3.0·10 ¹⁰ - 4.2·10 ¹³
	¹⁴⁸ Sm	11.24	1986.1	7(3) ·10 ¹⁵	8.4·10 ¹³ - 1.3·10 ¹⁷
	¹⁴⁹ Sm	13.82	1870.3	> 2.1015	$1.6 \cdot 10^{16} - 3.2 \cdot 10^{22}$
	¹⁵⁰ Sm	7.38	1448.8	-	3.4·10 ²⁴ - 2.0·10 ²⁸
	¹⁵² Sm	26.75	219.7	-	-
	¹⁵⁴ Sm	22.75	≤ 0	-	-

[1] M.Berglund and M.E.Wieser, Pure Appl. Chem., Vol. 83 (2011) 397;

[2] G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A 729 (2003) 337;

[3] E.Browne and J.K.Tuli, Nuclear Data Sheets 110 (2009) 507;

[4] B.Buck, A.C.Merchant, S.M.Peres, J. Phys. G 17 (1991) 1223;

B.Buck, A.C.Merchant, S.M.Peres, J. Phys. G 18 (1992) 143;

[5] D.N.Poenaru, M.Ivascu, J. Phys. 44 (1983) 791;

[6] V.E.Viola, et al., J.Inorg. Nucl. Chem. 28 (1966) 741;

[7] A.H.Wapstra, et al., in Nucl. Specrosc. Tabl., 1959;

[8] B.A.Brown, et al., Phys. Rev. C 46 (1992) 811.

Enriched ¹⁴⁸Sm isotope

Detector

ZnWO₄:¹⁴⁸Sm crystal

was surrounded by a reflecting foil (3M VM2002) was faced to a Ge disk (\bigcirc 45×0.3 mm) used as light detector

Both were equipped with NTD thermistors, glued by epoxy glue

22.014 g ZnWO₄:¹⁴⁸Sm crystal diam. 12 × 20.7 mm

growth by Czochralski technique in air

using as raw materials ZnO, WO₃ (99.995% pure)

Data taking at Gran Sasso Underground Laboratory

Experimental location:

- Average depth \sim 3650 m w.e.
- Muon flux ~ $2.6 \times 10^{-8} \,\mu/s/cm^2$
- Neutrons < 10 MeV: 4×10⁻⁶ n/s/cm²
- Gamma < 3 MeV: 0.73 γ/s/cm²

- Operated in Oxford 200 ³He/⁴He dilution refrigerator
- Data collected for a total live time of 364 h

Light Yield vs Heat scatter plot

Runs of background & gamma calibration

Selected alpha spectrum

22.014 g ZnWO₄:¹⁴⁸Sm crystal, 364 hours of background

Could it be anything else?

measured by HR-ICP-MS

Isotope	Abundance, %	Q _α , keV	Т _{1/2} , у	Concentration, 10 ⁻⁶ g/g	Expected events	
¹⁴⁴ Nd	23.798(19)	1905(1)	22.9·10 ¹⁴	72	19.8	
¹⁵¹ Eu	47.81(6)	1949(7)	4.62·10 ¹⁸	< 10	< 0.002	
¹⁵² Gd	0.20(1)	2203.0(1.4)	$1.08 \cdot 10^{14}$	< 25	< 1.1	

assuming natural isotopic composition

BUT, we see NO such events in background spectrum Impurities elements have NON-NATURAL isotopic abundance

Resulting fit of ROI

Radioactive contamination

22.014 g ZnWO₄:¹⁴⁸Sm crystal, 364 hours of background

_	Activity, mBq/kg	Nuclide	Chain
Free of ²³² Th chain	< 0.1	²³² Th	²³² Th
	1.2(2)	²³⁸ U	²³⁸ U
broken	1.1(2)	²³⁴ U	
equilibrium	< 0.1	²²⁶ Ra	
Decidual	0.3(1)	²¹⁰ Po	
in ¹⁴⁸ Sm ₂ O ₃	745.4(5)	¹⁴⁷ Sm	

¹⁴⁸Sm alpha decay theory & experiments

Half-life T _{1/2} , 10 ¹⁵ y				
Theory [1-5]	Scintillating bolometer ZnWO ₄ : ¹⁴⁸ Sm	Ionization chamber		
0.09 ÷ 130	6.4 ^{+1.2} _{-1.3}	8 ± 2 [6] 7 ± 3 [7]		

[1] B.Buck, A.C.Merchant, S.M.Peres, J. Phys. G 17 (1991) 1223;

B.Buck, A.C.Merchant, S.M.Peres, J. Phys. G 18 (1992) 143;

[2] D.N.Poenaru, M.Ivascu, J. Phys. 44 (1983) 791;

[3] V.E.Viola, et al., J.Inorg. Nucl. Chem. 28 (1966) 741;

[4] A.H.Wapstra, et al., in Nucl. Specrosc. Tabl., 1959;

[5] B.A.Brown, et al., Phys. Rev. C 46 (1992) 811.

[6] V.A.Korolev et al., Yad. Fiz 8 (1968) 227; translation – Soviet J. Nucl. Phys. 8 (1969) 131.

[7] .C.Gupta and R.D.MacFarlane, J.Inorg. nucl. Chem., Vol. 32, 1970, pp.3425-3432.

Summary

✓ The first compelling experimental observation of ¹⁴⁸Sm alpha decay with

 $T_{1/2} = (6.4^{+1.2}_{-1.3}) \times 10^{15} \text{ y}$ & $Q_{\alpha} = 1987.3 \pm 0.5 \text{ keV}$

was obtained using a **22 g ZnWO₄** conventional scintillator doped with ¹⁴⁸Sm enriched isotope (contains only of **2 mg**) which operated as scintillating bolometer

✓ Such double read-out cryogenics scintillating bolometers (Heat&Light channels) doped with an enriched isotope of interest are very perspective for the study of rare nuclear processes with sensitivity up to 10¹⁹ y Looking forward to discovery of ¹⁴⁹Sm alpha decay!..

NON-GAUSSIANITY

- There is no clear physics motivation but the detector response function is not a gaussian.
 - Possible explanations?
 Position effects, crystal inhomogeneity, surface events...????

 We use as detector response function a sum of two crystal balls, evaluating their parameters on the Sm peak

 $RF(Q, E) = N \cdot [CB_{left}(Q, E) + \delta \cdot CB_{right}(Q, E)]$

CRYSTAL BALL FUNCTION

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right),$$

$$B = \frac{n}{|\alpha|} - |\alpha|,$$

$$N = \frac{1}{\sigma(C+D)},$$

$$C = \frac{n}{|\alpha|} \cdot \frac{1}{n-1} \cdot \exp\left(-\frac{|\alpha|^2}{2}\right),$$

$$D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right),$$

Bolometric LD

- HP-Ge disk (3-5 cm diameter, 0.1-1 mm thick)
- SiO₂ coating for darkening the surface => reduce light reflections
- Calibration with 55Fe X-rays @ 5.9 keV and 6.5 keV
 - Energy resolution: ~100 eV
 - Energy threshold: ~100 eV

