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Abstract

The clustering of agents in the market is a typical problem dis-
cussed by the new approaches to macroeconomic modelling, that de-
scribe macroscopic variables in terms of the behavior of a large collec-
tion of microeconomic entities. Clustering is often described by Ewens
Sampling Formula (ESF), that admits a very nice interpretation in
terms of rational vs herding behavior. Focusing on the evergreen
problem of the size of �rms, we discuss the incompatibility between
empirical data and ESF. An alternative model is suggested, inspired
to Simon�s approaches to the �rm size problem. It di¤ers from the
Ewens model both in destruction and in creation. In particular the
probability of herding is independent on the size of the herd. This
very simple assumption destroys the exchangeability of the random
partitions, and forbids an analytical solution. Simple computational
simulations look to con�rm that actually the mean number of clusters
of size i (the equilibrium distribution) follows the corresponding Yule
distribution. Finally we introduce a Markov chain, that resembles
the marginal dynamics of a cluster, which drives the cluster to the
right-censored Yule distribution.
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1 Introduction

The clustering of agents in the market is a typical problem dealt with by
the new approaches to macroeconomic modelling, that describe macroscopic
variables in terms of the behavior of a large collection of microeconomic
entities. Clustering [1] has often been described by Ewens Sampling For-
mula (ESF) [6]. At variance to the usual complex derivations [13], we have
suggested a �nitary characterization of the ESF pointing to real economic
processes [9], that admits a nice interpretation in terms of rational vs herd-
ing behavior. In this paper we apply the clustering point of view to the
problem of the size of �rms. Initially we discuss the compatibility between
empirical data [2] and ESF, that is poor. Thus we suggest an alternative
model, traced to Simon [15]. A microscopic explanation of the empirical
power law should be constructed on some elementary units and their inter-
action as time goes by. In this frame we hope to �nd that the power law is
obtained as the equilibrium distribution. What is to consider elementary is
in some sense conventional. Usually one starts from �rms (following Gibrat
[10]), that can grow or diminish their size. More deeply we shall start from
individual agents, that change job following some well-de�ned probabilistic
rule, and the number and the size of the �rms would result as consequences
of the individual motions. The stochastic process we are looking for could
be a homogeneous Markov chain, where time and state space can eventually
achieve continuous limits. To start with a continuous stochastic process de-
scribing �rms, even if results were satisfactory, would shadow the concrete
(discrete) dynamics of agents that determines the �nal result. This is the case
of most of the stochastic explanation quoted in [2]. Here we want to study
microscopic explanations of these models, which can be compared with the
so-called agent-based computational models [3]. Our ambition is to bridge
the gap between agent-based computational models (where their is a lack
of probabilistic insight) and stochastic processes (that appear �phenomeno-
logical� if they are non �agent-based�). We start from the general notions
about state changes occurring to microscopic elements (units, agents). Then
we recall the essential of Ewens model, that is the best known structure of
Exchangeable Random Partitions [13]. As the line inspired by Simon starts
from a pure creation process di¤erent from Ewens�one, we analyze the im-
plications of this variation on the deep properties of the dynamics of the
system.
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2 Destructions, Creations, Attitudes

A dynamical system is composed of n entities and d categories (cells), whose
state is described by the non negative integer occupation number vector

n = (n1; :::; ni; :::; nd), ni � 0,
dP
i=1

ni = n. The state of the system changes

over time as units change cell. The probabilistic dynamics is modelled as an
extraction of some units, which temporarily abandon the system, followed by
a re-accommodation of the same units, usually into cells di¤erent from the
original ones. In the time interval from t to t + 1 the size of the population
shrinks as long as selection occurs, and it returns gradually to the original
size after all accommodations, such a way that n(t) and n(t + 1) have the
same size n. The system could be represented by shoppers in an open air
market. The simplest selection is the nominal one, where units are extracted
individually, like in the pioneer work of the Ehrenfests [5]. A destruction
occurs in a stall if that stall looses a shopper, who retires from the stall
and sets o¤ for a new stall. An alternative (collective) mechanism is that
a stall closes (it is �killed�), so that all its units are compelled to move to
new stalls. In this case the destruction probability is the probability for a
stall to close. On the contrary, the creation is always intended as individual,
that is agents accommodate one by one, and the creation probability for
a stall is the probability to be chosen by a moving shopper. This choice
may occur because the stall is already occupied (in this case the unit can be
in�uenced by the presence of the �herd�), or even if the stall is empty (in
this case the unit follows some �rational�,�fundamentalist�behavior). Thus
if a currently empty stall can be chosen again there is no absorbing state,
all possible vectors n communicate, and under simple conditions n can be
represented as a homogeneous irreducible aperiodic Markov chain, and the
equilibrium distribution �(n) exists. The sequence n(0);n(1); : : : ;n(t) is the
joint description of the occupation numbers of the d categories as time goes
by, and each stall has a precise identity that lasts over an in�nite time.
If the number of stalls d tends to in�nite (i.e. it is much greater than

that of the shoppers), a consistent description requires that each active stall
closes when it remains without shoppers, and the closure is for ever (with
probability 1). This amounts to say that each precise stall has a vanishing
weight for the fundamentalist attitude. Conversely at each accommodation
a new stall (which we cannot say) can open, and we suppose that this stall is
not a reincarnation of old ones: This happens when the entity chooses to be a
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pioneer rather then to join the herd: the two strategies are �orthogonal�, as to
follow the initial weights implies to choose a new stall, that is to be a pioneer
(innovation). In order to label all stalls in a consistent way, we consider a
�nite number of sites g > n; with the proviso that each site hosts a stall at
most or it is empty. If k denotes the actual number of clusters, g � k is the
number of empty sites, so that their is always room for the accommodation
of a new stall. Denoting now by s the occupation number vector of the g
sites, given that an empty site can be chosen in case of innovation, it is
easy to see that s can be represented as a homogeneous irreducible aperiodic
Markov chain, and the equilibrium distribution �(s) exists. The sequence
s(0); s(1); : : : ; s(t) is the joint description of the occupation numbers of the
g sites as time goes by, and each site has a precise identity that lasts over
an in�nite time. Each occupied site describes an active stall, a cluster. The
great di¤erence from the previous case is that every time the occupation
number of a site reaches 0; it denotes the death of the presently described
cluster, and when it is occupied again it indicates the birth of a new cluster.
While in the �nite case each stall has a precise identity that last over

an in�nite time, in the in�nite case all present open stalls perish sooner or
later, and they are substituted by new stalls, that grow and perish too, so
that their identity is given by their birth-and -death date and the site where
they lived. Then the framework is quite apt to describe a population where
shoppers stand for workers and stalls stand for �rms, considered as clusters
of aggregated workers. Firms can be born, grow and perish as a result of the
state of aggregation on the n units.
The statistical description of the non empty sites is given by the oc-

cupancy (or partition) vector z =(z1::::; zn); where zi denotes the number of
sites whose occupation number is i:

Pn
i=1 izi = n is a deterministic constraint,

while
Pn

i=1 zi = k is a random variable (the number of clusters, 1 � k � n).
From the very de�nition of zi it follows that for any probability distribution
P (�)

E(zi) = �
g
j=1P (sj = i) (1)

holds, and in the case that P (sj = i) = P (i)

E(zi) = gP (i); (2)

where P (i) is the marginal distribution of a �xed site. If E(zi) = �zziQ(z);
where Q(z) denote the equilibrium distribution on z ; then (2) represents
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the main link between the joint distribution on partitions Q(z) and the site
marginal distribution P (i) at equilibrium (that are both functions of �(s)):

3 The Ehrenfest-Brillouin model and the Ewens
limit

To characterize a statistical model we need to de�ne exactly both the de-
struction and the creation probabilistic mechanism. Recalling the essential
of the Ehrenfest-Brillouin model [4], in the simplest case of unary changes
(the size of the extracted sample is m = 1 ), we pose that:
i) the selection of the moving agent is individual and random; hence

the probability for a stall to loose a shopper (the destruction probability)
is proportional to ni; ii) the probability of re-accommodation in the jthstall
( the creation probability) is proportional to �j + �j; where �j > 0 is the
initial weight of the stall and �j = nj � �j;i is its current occupation number
after destruction1. The two terms of the accommodation probability can

be interpreted as resulting from two attitudes:
�j
��j

is the probability of

choosing the jthstall following the initial weight distribution, while
�j
��j

is the

the probability of the same choice following the current frequency distribution
of the �herd�. In the �nite case for each stall �j is positive, that allows that
the stall can be chosen also if it is actually empty. This essential feature
makes the dynamics representable by a homogeneous Markov chain which is
ergodic, and the equilibrium is given by the generalized Polya distribution
[4].
The case in which d !1; �j ! 0; � = ��j is the Ewens�limit. Consid-

ering sites g > n sites, the destruction term does not change, while the site
creation probability is proportional to �j if the site is occupied, or to �

g�k if it
is empty (k denotes the actual number of clusters, and g�k is the number of
empty sites). The normalized creation probability can be written as

�

� + �

�j
�

1The generalization to 1 < m � n is obtained performing m sequencial destructions fol-
lowed by m sequencial creations, both conditioned to the current �i and �j : The frequency
distributionm of the moving units follows the Hypergeometric distribution H(m j n); and
the frequency distribution m0 of the accommodated units follows the Polya distribution
Po(m0j n�m+ �):
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for �j > 0, and then
�

� + �

1

g � k
for �j = 0; , where

�

� + �
:= u is the prob-

ability of innovation, and
�

� + �
= 1 � u is the probability of herding. This

creation probability is very similar to Hoppe�s urn scheme[11] 2. The dynam-
ics of the site occupation number vector s is still homogeneous Markov, and
the equilibrium distribution of the occupancy (or partition) vector z is the
ESF (n;�).
The number m � n of changes-per-step can be �xed at will. The rate

of approach to equilibrium of the chain is an increasing function of m; while
the equilibrium distribution is independent on m, both for the �nite and the
in�nite case. Then the case m = 1 is enough for most applications. In the
extreme case m = n at each step the system is razed to the ground and
reconstructed following the Polya (or Hoppe) urn scheme.
We stress some essential features of Ewens model. 1) The birth or death

of a cluster is a consequence of the motion of the elementary units. A cluster
dies if all its units leave it, a new cluster (a new �rm) starts up if a moving
agent chooses to be a pioneer. 2) The alternative �innovation vs herding�of
the moving element has probability depending on the size of the herd . It is
essential that the �innovation probability� is a function of two parameters,
the weight � of the rational attitude and the size � of the herd, that is the
actual number of �xed units (already accommodated in the sites just at the
moment of the re-accommodation of the moving element). The (virtual) size
of the population within each step follows the sequence (n; n � 1; : : : ; n �
m;n � m + 1; : : : ; n � 1; n): In the general case n � m � � � n � 1: The
innovation probability at each accommodation is u =

�

� + �
. Hence in the

extreme case m = n; when at each step all units leave the present clusters
and then re-accommodate in sequence, the �rst rebirth occurs when � = 0; so
that it is all committed to the rational (fundamentalist) attitude, while the
last rebirth occurs when � = n� 1; and the weight of the herd is maximum.
Only in the case of m = 1 (unary changes), when all rebirths occur at
� = n�1; the dependence of u on � is hidden. 3) The equilibrium distribution
is independent on m: 4) The marginal chain is just the projection of the joint
dynamics on a �xed site. As we shall see in the following these pleasant
properties fail in more general cases.

2The di¤erence is discussed in [9]
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4 Ewens marginal description

The marginal description of one �xed site is a reduced description of the
system. The above-said dynamics is easy projected on one site exactly.
Denoting by Xs = i the site occupation number after s steps, and posing
fw(i; j) := P (Xs+1 = jjXs = i ); i; j = 0; 1; : : : ng, for unary changes the non
vanishing entries of the transition matrix of the marginal chain are:

w(i; i+ 1) =
n� i

n

i

� + n� 1 ; i = 1; : : : ; n

w(i; i� 1) =
i

n

� + n� i

� + n� 1 ; i = 1; : : : ; n

w(i; i) = 1� w(i; i+ 1)� w(i; i� 1); i = 1; : : : ; n (3)

w(0; 1) =
1

g � En(k)

�

� + n� 1
w(0; 0) = 1� w(0; 1)

The �rst three rows in (3) deal with an occupied site, that is its occupation
number is i > 0, and its initial weight is vanishing. All external sites are
merged in a single one (the thermostat), whose initial weight is �, and n� i
denotes its occupation number. The last two rows hold if the site is empty
(and thus i = 0) it can be reactivated, as it can be chosen in case of inno-
vation, representing thus a newborn cluster. En(k) is the mean number of
clusters.
Starting from a cluster whose size is i we must distinguish the history

of the cluster (that terminates when the size reaches i = 0) from that of
the site, that sooner or later reactivates. The equilibrium distribution of the

chain (3) is

8<: P (i) =
�

gi

�[n�i]=(n� i)!

�[n]=n!
; i = 1; :::; n

P (0) = 1� �ni=1P (i)
Hence by (1):

E(zi) =
�

i

�[n�i]=(n� i)!

�[n]=n!
(4)

While P (i) is the marginal equilibrium probability that a �xed sited con-
tains i units, E(zi) the mean number of cluster of size i in the complete
description. In the case of empirical data like Axtell�s ones [2] [3], the data
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represent the frequency distribution z =(z1; z2; ::::; zn); that from a Markov-
ian point of view is a snapshot, taken from the moving sequence fz(t)g;
driven by the transition probability of the chain. We can compare the em-
pirical distribution with E(z1); : : : ; E(z1) which is the equilibrium expected
distribution. It is proportional to P (i); that is the probability that a ran-
dom selected cluster has size i: P (i) and P (z) are linked by (1). P (i) is the
equilibrium distribution of the size of a cluster, resulting from the marginal
chain that drives the motion of a cluster around its state space.

5 Mean values of ESF and the size of �rms

For n >> 1; using Stirling�s approximation, we have [9]

En (zi) �
�

i
(1� i

n
)��1 (5)

Note that
Pn

i=1En (zi) = En(k) is the mean number of clusters, and

En(k) =
n�1X
i=0

�

� + i
� � ln

n� 1 + �
�

+ ; (6)

where  is the Euler constant. En (zi) is the mean number of clusters of size
i when the size of the population is n: The meaning of En(k) in the �rm
size problem is the equilibrium time average number of �rms, that increases
logarithmically with total number of individual agents n:
For a comparison with empirical data, En (zi) and En(k) are the theo-

retical quantities candidate to be (dis)proved. In particular
En (zi)

En(k)
is the

expected fraction of �rms with size i: From the marginal point of view, it is
the fraction of time spent by a �rm in the size i:
A very simple case of (5) is given by � = 1; where E (zi) = 1

i
; that is the

mean size follows a power law. This looks promising, instead it is deceiving.
Following Axtell [2], in a realistic case (USA) the rough number of �rms is
k = 5:5 � 106 and the number of agents is about n = 105 � 106:
In the Ewens model, given n the sole parameter is �, whose best estimate

is given by k: Inverting (6) we get �̂ = 1:24 � 106; and in that region the
normalized (5) is indistinguishable from �̂

i
e�i

�̂
n . This can be represented by
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the LogSeries distribution L(i) = � 1

log(1� y)

yi

i
; y = 1; 2; : : : ; where the

parameter is y = e�
�
n : In this limit the normalizing constant (6) becomes

En(k) = � ln
n

�
: It follows that we have a power law � �̂

i
for small sizes, but

an exponential tail for large �rms. This looks su¢ cient to exclude that a
Ewens-like dynamics produces equilibrium probabilities whose tail follows a
power law [7].

6 Yule-Zipf-Simon herding

The Ewens herding consists in the attitude choice between u =
�

� + �
(the

novelty) and 1� u =
�

� + �
(joining an existing cluster). This probability is

not conditioned either on the previous status of the unit, or in the state of
the population except for its size �: All units are in the same position with
respect to the choice. In the frame of clustering of workers, it amounts to
consider for instance two possible states of the units, �self-employed� and
�employee�. If a unit founds a new cluster, i.e. he behaves as a pioneer,
he enters the state of �self-employed�, and an innovation adds to the �rm
system. If he joins an existing cluster, he enters the state of �employee�, and
no innovation is introduced in the �rm system. This choice is independent on
the previous status of the unit. Conserving all the meanings, an alternative
probabilistic model is that of considering u and 1�u as unconditioned from �
too. Hence u is a property of the unit itself, not a balance between an internal
strength and an external in�uence. This leads us into the realm of the Yule-
Zipf-Simon herding. In Zipf �s original words [17], when applied to human
speech, the Principle of Least E¤ort produces a vocabulary balance between
the �Force of Uni�cation� (the represents the �speaker�s economy�, 1 � u)
and the �Force of Diversi�cation�(�the auditor�s economy�, u). A stochastic
process built up with these hypotheses was given by Simon [15], inspired also
by a previous work of Yule, whose asymptotic stationary solution for relative
frequencies tends to the Yule distribution f(i) = �B(i; � + 1); i = 1; 2; : : : ;
where B(�; �) is the Euler beta function.
Let us consider the following �Zipf�s urn scheme�, whose interpretation
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is the construction of a text adding a new word at each step:8<: P (Yn+1 = ijz(n)) = (1� u) izi(n)
n

P (Yn+1 = 0jz(n)) = u n > 0
P (Y1 = 0) = 1

(7)

where n is the length of the text so far, zi(n) is the number of vocables
3(distinct words) that appeared i times, izi(n) is the total frequency of these
words (the number of items). Then Yn+1 = i means that the (n+ 1)th word
is a vocable that appeared i times, Yn+1 = 0 means that the (n+1)th word is
a vocable appeared 0 times, that is a new vocable. Its probability is u 2 [0; 1]
independent on n: Note that the �rst step must result a new vocable, and
this must be added in (7). The extreme cases u = 0 and u = 1 are trivially
deterministic. u = 0 implies a single cluster, i.e. n repetitions of the �rst
vocable, and P (zn(n) = 1) = 1; while u = 1 generates n singletons; i.e.
di¤erent vocables, and P (z1(n) = n) = 1). The evolution of z(n) under Yn+1
is the following: the emission of a word appeared i times transforms a cluster
(a vocable) of size i into a cluster of size i+ 1. Hence it destroys a cluster of
size i (that is zi(n+ 1) = zi(n)� 1) and creates a cluster of size i+ 1(that is
zi+1(n+1) = zi+1(n)+1): If Yn+1 = 0 the sole e¤ect is z1(n+1) = z1(n)+1:
This scheme if very similar to �Hoppe�s urn scheme�[11], the sole di¤er-

ence is that in Hoppe u =
�

� + n
depends on n: The di¤erence is decisive

in that, while in Hoppe the growth of partitions is exchangeable, in Zipf�s
scheme exchangeability fails (see Appendix 1). This feature forbids a closed
form for the resulting P (z): In fact Simon provides a regression of zi+1(n+1);
that is:

(
Efzi(n+ 1)g � zi(n) = (1� u)( (i�1)zi�1(n)

n
� izi(n)

n
); i = 2; : : : ; n

Efz1(n+ 1)g � z1(n) = u� (1� u) z1(n)
n

(8)
as for i = 2; : : : ; n it is �zi(n) = zi(n + 1) � zi(n) = 1 if Yn+1 = i � 1 with
probability (1�u) (i�1)zi�1(n)

n
; while �zi(n) = �1 if Yn+1 = i with probability

(1 � u) izi(n)
n
; and for extreme values i = 1 the meaning is apparent. Taking

3Suggested in [16]. F.i. the text �home sweet home�consists in two vocables and three
words.
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the means of all equations, that is posing Efzi(n)g := Zi(n); (8) becomes

�Zi(n) = (1� u)

�
(i� 1)Zi�1(n)

n
� iZi(n)

n

�
; i > 1 (9)

�Z1(n) = u� (1� u)
Z1(n)

n
(10)

that admits a steady growth for the (mean) number of clusters (vocables) of
size i proportional to n :

Zi(n+ 1)

n+ 1
=
Zi(n)

n
(11)

that is Zi(n+ 1) = (1 + 1
n
)Zi(n); or

�Zi(n) =
Zi(n)

n

Pay attention that Zi(n)
n

is not a relative frequency, a misleading term
present in Simon. Given that the mean number of vocables is k(n) =
�ni=1Zi(n) = 1 + u(n � 1) � nu; i.e. their is a constant in�ation of new
words, (11) implies that Zi(n)

k(n)
; that is the relative frequency of vocables of

size i is invariant once the steady growth has been reached. The other im-
portant relative frequency is the mass of words, iZi(n)

n
; that sums to 1. Then

imposing (11) into (9) we get

(1� u)(i� 1)Zi�1(n)� (1� u)iZi(n)� Zi(n) = 0 (12)

nu� (1� u)Z1(n)� Z1(n) = 0 (13)

Zi(n) =
(1� u)(i� 1)
1 + (1� u)i

Zi�1(n) =
i� 1
�+ i

Zi�1(n) (14)

with � = 1
1�u : The solution of the system of di¤erence equations is ob-

tained solving �rst (12), that yields Z�1(n) =
nu
2�u =

�
�+1

nu; and

Z�i (n) =
i� 1
�+ i

i� 2
�+ i� 1 : : :

1

�+ 2
Z�1(n) =

�(i)�(�+ 2)

�(�+ i+ 1)
Z�1(n) = (15)

= (�+ 1)
�(i)�(�+ 1)

�(�+ i+ 1)
Z�1(n) = �B(i; �+ 1)nu (16)
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and the corrected normalized Yule distribution, that holds also for i = 1; is
the following 4:

fi =
Z�i (n)

nu
= �B(i; �+ 1); i = 1; 2; : : : (17)

1X
i=1

fi = 1; � > 0

E(i) =

1X
i=1

ifi =
�

�� 1 ; V ar(i) =
E(i)2

�� 2 (18)

The right conclusion of this section is the following: if at each step a unit
is added to the system following (7), Simon�s exact regression (the mean
number of clusters of size i ) tends to Z�i (n): Of course Zi(n) = 0 for i < n;
and Zi(n)! Z�i (n) only for n >> i (see Fig.1). In words: considering a �xed
size i, if the population grows you can �nd a size n� such that for n > n� is
Zi(n) � n; that is the the steady growth of a pure growth process.
Finally we recall that �B(i; � + 1) = ��(i)�(�+1)

�(i+�+1)
= ��(�+1)

i(i+1):::(i+�)
, which for

i >> � has the form fi � i�(�+1), that is the prescribed power tail. The case
u = 0 is trivial, and cannot be represented by any well-behaved distribution.
Instead the limit u ! 0+ corresponds to � ! 1+; where B(i; 2) is a well-
behaved distribution, with E(i) =1: The relationship between the mutation
rate u and the exponent is u(�) = ��1

�
; � > 1. E(i) is �nite for � > 1; V ar(i)

is �nite for � > 2:

7 Birth and death Simon-Zipf�s process

But Simon itself realizes [15] that the complete solution of the problem wants
a birth-death process, where the length of the text (the size of the popula-
tion) is �xed, and clusters are created and destructed with some probability
law. He tackles the question in Section III of the paper, in a very con-
fused way. The discussion about the point can be traced to Steindl [16]. In

Simon�s paper the equation (9) is interpreted in this way: the term
1� u

n

4Simon calls Yule distribution B(i; � + 1)Z
�
1 (n)
nu ; i > 1; as there is a mistaken in his

recursive form (15). Anyway the calculated values in Table 1 of the paper are correct
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((i� 1)Zi�1(n)� iZi(n)) is the increment of Zi(n) due to a new arrival,
�Zi(n)
n

is the decrement due to the probability of a destruction. If the two contributes
balance, it means that Z�i (n) is the invariant distribution of a Markov chain.
While in the original (9) the parameter n represents the size of the text, in
the new interpretation it must be assumed as time. This is quite unclear.
Forty years after Simon�s seminal work we can give some clear statement.

The �rst statement deals with the lack of exchangeability of the creation
process, that forbids close formulas for the sampling distribution, and makes
all �proofs�not quite satisfactory. Further let us suppose that our system is
�built up�to the size n following (7), so that the mean values of the clus-
ter size follow exactly Simon�s regression. Then we stop the growth, and we
leave the system to evolve following unary changes, where a word is cancelled
randomly (all words are on a par) and a new word is produced following (7):
then the marginal transition probability is just (3), with �

�+n�1 = u. Hence

the equilibrium distribution is the ESF (�; n); with � = u(n�1)
1�u

5. Alterna-
tively suppose to pass to n�ary changes: if at each step the system is razed
to the ground and reconstructed following the Zipf scheme, the equilibrium
distribution is just Simon�s regression. Hence the equilibrium distribution
depends strongly on the number of deaths-per-step. If we want to conserve a
creation probability like (7), in order to escape the Ewens basin of attraction
we must change the death model in a substantial way.
Indeed Simon�s (verbal) suggestion is to kill a whole cluster, and then to

put back the corresponding number of items into the population following
Zipf�s scheme. Suppose that destruction consists in eliminating a vocable
(an old word, together with all items), while creation consists in adding a
number of items equal to the size of the destructed cluster. Supposing �rst
to eliminate a cluster, all clusters being on a par, and then to put back the
corresponding number of items into the population following (7). At each
step the size of the population �rst shrinks of a random size m equal to
the size of the destructed cluster, and then returns to its natural size n via
m accommodations. In words, at each step a �rm dies, and all its workers
either join existing �rms or found new ones with individual probability 1�u
or u respectively. Newborn �rms accommodate in some empty site, and they

5We may ask which is the rate of approach to equilibrium. As in the Ehrenfest-Brillouin
case, r = �

n(�+n�1) is the rate of approach of the mean, and r
�1 is the associated number

of steps. For Axtell�s values r�1 � n(�+n)
� � 105�106

1:24 106 = 9 � 109; that is the number of
unary changes needed for the mean to achieve equilibrium. It is like 86 changes for unit.
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are labelled by their site. The chain of the site process is ergodic, but an
analytic solution is cumbersome being the transition matrix very complex,
due to the lack of exchangeability of the creation process. A suggestion
about the reasonability of this approach is present in Section II of Simon�s
quoted paper. Consider (8) and compare it with (9). If all zi(n) are equal to
their equilibrium mean Zi(n) the increment of zi(n) is given by (11). Instead
if zi�1(n) = Zi�1(n) but zi(n) = Zi(n) + �(i; n); then its mean increment
Efzi(n + 1)g � zi(n)g di¤ers from the mean increment by a restoring term
�(1 � u) i�(i;n)

n
: In words, a �uctuation from the mean is smoothed by new

arrivals on average.
Computational simulations look to con�rm that actually the mean num-

ber of cluster of size i (the equilibrium distribution) is closer to the corre-
sponding Yule distribution than Simon�s regression (see Fig 2, 4)

8 Marginal description of the Simon-Zipf process.

If we consider a i�cluster belonging to a population whose dynamics is de-
scribed by the previous mechanism, it is easy to see that the evolution is not
a simple function of i; n � i and u: In facts the death mechanism is deeply
di¤erent from the Ewens case, as it amounts to �kill�a whole cluster, with
equal probability for all the 1 � k � n existing clusters. Two alternatives
are possible: the former is to suppose that at each step a killing occurs; the
latter is to pose the probability of killing each cluster equal to 1

n
; so that the

probability of some killing is k
n
� 1; with the proviso that if no killing occurs

the system is left in the initial state6. With this assumption the probabil-
ity of a decrease is identical to the probability of the death of the cluster,
that is wi;0 = 1

n
: If death occurs in some other cluster, our i�cluster can

increase up to the (random) size of the destructed cluster. In the case of
n >> 1; as the joining probability is proportional to i

�
' i

n
; we can sim-

plify the mechanism supposing that no more than one unit is allowed to
eventually join our i�cluster, with probability given by the usual (1 � u) i

n
;

that is wi;i+1 := P (i + 1ji) = (1 � u) i
n
: The size is still with probability

wi;i = 1 � wi;0 � wi;i+1: We introduce the �re-birthing term� for the label
w0;1; in order to avoid that 0 state is absorbing. Summarizing the transition

6The latter version can be interpreted supposing that each cluster is represented by its
founder, like in the agent-based simulation of Axtell [3]. If at each step an unit is chosen,
killing occurs when a founder is chosen

14



matrix, we get the following square matrix fwi;j : i; j = 0; : : : ; ng

1� w0;1 w0;1 0 0 ... 0 0
1
n

w1;1 (1� u) 1
n

(1� u) 1
n

... 0 0
1
n

0 w2;2 (1� u) 2
n

... ... 0
... ... ... ... ... ... ...
1
n

0 0 0 ... wn�1;n�1 (1� u)n�1
n

1
n

0 0 0 ... 0 wn;n

We look for the invariant distribution Pi; i = 0; : : : ; n; that must satisfy
the Forward Chapman-Kolmogorov equations Pi =

P
j Pjwj;i; i = 0; 1; : : : n:.

Then
P0 = P0w0;0 + P1w1;0 + P2w2;0 + : : : = P0w0;0 + (1� P0)'; where ' = 1

n
;

P1 = P0w0;1 + P1w1;1:
The generic term is Pi = Pi�1wi�1;i + Piwi;i; that is Pi(1 � wi;i) =

Pi�1wi�1;i: Substituting values,
Pi(

1
n
+ (1 � u) i

n
) = Pi�1

(1�u)(i�1)
n

that is identical to (14). The explicit
solution of Pi is Pi =

�i�1
'+�i

: : : �1
'+�2

�0
'+�1

'
'+�0

; where �i = wi;i+1:

The meaning of P0 =
'

'+�0
is the probability (the fraction of time) that the

label is idle. Conditioned to the time when the cluster is alive, or introducing
�i = P (iji > 0) = Pi

1�P0 = Pi
'+�0
�0

; then �i =
�i�1
'+�i

: : : �1
'+�2

'
'+�1

that does not

depend on the �rebirthing term��0: Note that
�i�1
'+�i

=
i�1
n�

1
n
+ i
n�

= i�1
�+i
; so that

�1 =
1

1+(1�u) =
�
�+1

; �2 =
�
�+1

1
�+2

; �3 =
�
�+1

1
�+2

2
�+3

; ::It is apparent that

�i = ��(i)�(�+1)
�(�+i+1)

; i = 1; : : : ; n�1; that is exactly the value of Yule distribution.
The last term is di¤erent, as �n = 0; and �n =

�n�1
'+�n

�n�1 =
n�1
�
�n�1; that

is di¤erent from the expected n�1
�+n

�n�1: This is not surprising as the domain
of �i is �nite, while for the Yule distribution (17) it is unbounded. The
equilibrium distribution of the marginal chain is then the right-censored Yule
distribution (

�i = fi; i = 1; : : : ; n� 1
�n =

P1
i=n fi =

�(n)�(�+1)
�(�+n)

,

where the last term adds all the tail of the Yule distribution.
This chain has the same structure as the �problem of runs�, because at

each step the state, if it moves, either increases by one or it jumps down
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to zero. The cluster su¤ers a �sudden death�, that is not a consequence of
successive departures of all its units.

9 A formal birth-and-death marginal chain

FromYule distribution, the equilibriummean numbers are Zi =
(1�u)(i�1)
1+(1�u)i Zi�1 =

i�1
�+i
Zi�1; that is

Zi(1 + (1� u)i) = Zi�1(1� u)(i� 1) (19)

Interpreting Zi
nu
as the equilibrium distribution of the marginal process of

a �rm Pi; then Pi
Pi�1

= Zi
Zi�1

implies that

Pi(1 + (1� u)i) = Pi�1(1� u)(i� 1) (20)

A �nite probabilistic dynamics that is compatible with (20) is the following:
at each step a �rm can loose or gain a worker at most (unary moves). The
increment-decrement probability is(

wi;i+1 =  i = A (1�u)i
n

wi;i�1 = �i = A1+(1�u)i
n

(21)

Then (20) can be interpreted as the balance equation of the chain, with
the additional normalization constant A: This marginal chain produces the
rigth-truncated Yule distribution

�i = f(ijX � n) =
fi
Fn
; i = 1; : : : ; n

as equilibrium probability, where Fn =
Pn

i=1 fi. While in the previous case
the marginal chain is obtained from of microscopic dynamics, in this case the
destruction-creation mechanism does not look �agent-based�in a clear way.
The factor 1

n
in w(i; i � 1) re�ects the possibility that one of the Zi �rms

may be destroyed, while the two factors (1�u)i
n

account for the addition of
a moving unit. In fact in the model where a �rm is destroyed (closed) with
probability 1

n
; the corresponding workers with probability u open new �rms,

and with probability 1�u join to existing �rms proportional to their size, it is

reasonable to put
�

P (�Zi = 1) = (1� u) (i�1)Zi�1
n

P (�Zi = �1) = Zi
n
+ (1� u) iZi

n

if, given that n!1;
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we suppose that at most one free worker joins to i�size or (i � 1)�size: If
he joins a (i� 1)-cluster, Zi ! Zi + 1; if he joins a i-cluster, Zi ! Zi � 1: In
the limit n ! 1 we suppose that these three events are disjoint. Then
E(�Zi) = 0 if (19) holds. In (21) the increasing term  i is proportional
to the size of the cluster and to the probability of a herd choice, while the
decreasing term �(i) is still proportional to the size of the cluster and to the
probability of a herd choice, with added a term that keeps into account the
death probability.
The formal chain is smooth, and admits a continuum limit (see Appendix

2).

10 Provisional conclusions

The right-censored or truncated Yule distribution (which generate the full
Yule distribution for n ! 1, and eventually the Pareto distribution in the
continuum limit) appear to be the goal of a probabilistic agent-based �nitary
approach to clustering whose sizes follow Zipf-like laws. Statistical models of
(dis)aggregation must describe the motion of agents from cluster to cluster,
and the equilibrium size distribution must result from this dynamics. Simon�s
Zipf accommodation process produces a cluster distribution which tends lo-
cally to the Yule distribution. Introducing dynamics along the same route, to
escape Ewens basin of attraction we suppose that: 1) clusters are destroyed
by a �sudden death�mechanism; 2) re-accommodations are such that the
individual probability of herding does not depend on the size of the herd.
Being the accommodation process not exchangeable, no exact calculation is
possible, and we must be contented with Simon�s recursive regression and
simulations. Simulations of the process are shown, and equilibrium distrib-
utions closer to the Yule distribution than Simon�s regression are obtained
even if n is very small. A marginal chain that approximates the above-said
dynamics can be solved exactly and it shows the right-censored Yule distri-
bution as equilibrium distribution of the size of the cluster.
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11 Appendix 1: Hoppe vs Zipf urn

If the population size is n; let introduce g > n sites. Suppose to start
from the void state. Let us consider n random variables Y1; : : : ; Yn whose
range is (1; : : : ; g): Suppose that S� = (�1; : : : ; �g) is the current occupation
vector of the �rst � variables, that is �j = #fYi = j; i = 1; : : : ; �g;and
k(�) = #f�j : �j > 0; j = 1; : : : ; gg is the number of non empty sites. Let
the conditional predictive distribution of Y�+1 be the following:

P (Y�+1 = jj�j; �) =
�

� + �

�j
�
+ �(�j)

�

� + �

1

g � k(�)
(22)

for � = 0; 1; : : : ; n� 1: This is the Hoppe urn [9], with the proviso that a not
yet observed value accommodates in an empty site randomly. The �rst term
with �j > 0 describes herding (i.e. �

�+�
), the second with �j = 0 innovation

(i.e. �
�+�
):

Let us calculate the probability of the sequence t = Y1 = i; Y2 = j; Y3 = i:
Applying recursively the previous (22) it is: �

�
1
g
� �
�+1

1
g�1 �

1
�+2

= 1
g(g�1)

�2

�(�+1)(�+2)

Consider now a permutation of t, f.i. Y1 = i; Y2 = i; Y3 = j: Its probability
is �

�
1
g
� 1
�+1

� �
�+2

1
g�1 =

1
g(g�1)

�2

�(�+1)(�+2)
; that is the same. In fact it is a

function of the occupation vector. Hence the probability of a site occupation
vector n is just the probability of a sequence times the number of distinct
sequences to n; that is n!

n1!:::ng !
P (t); while the probability of a partition site z

is g!
z0!z1!:::zn!

n!
n1!:::ng !

P (t); that is the ESF [9].
Zipf creation process is very similar to (22), that is

P (Y�+1 = jj�j; �) =
(

(1� u)
�j
�
+ �(�j)

u
g�k(�) ; � > 0

1
g
; � = 0

(23)

Lets us calculate the probability of the sequence t = Y1 = i; Y2 = j; Y3 =
i:Applying recursively the previous it is 1

g
u
g�1(1�u)

1
2
= 1

2
u(1�u)
g(g�1) ; while P (Y1 =

i; Y2 = i; Y3 = j) = 1
g
� (1 � u) � u

g�1 =
u(1�u)
g(g�1) ; that is di¤erent. It is not a

function of the occupation vector. Hence to calculate the probability of n
one must follow all possible sequences, and there is no close formula. In the
Zipf process the sentence �home home sweet �is twice more probable than
�home sweet home�.
The text �home sweet home�contains one singleton and one couple. Ex-

changeability means that all distinct permutations of the text, that is �home
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sweet home�, �home home sweet �, �sweet home home�have the same prob-
ability.

12 Appendix 2. The continuum limit of the
birth-and-death marginal chain.

Let us consider the mean and the variance of the increment of the cluster
driven by (21), with A = 1:

E(i) =  (i)� �(i) = � 1
n

V ar(i) =  (i) + �(i)� ( (i)� �(i))2 = 1
n
+ 2(1�u)i

n
�
�
1
n

�2
introducing x = i

n
; for large n; E(i) = � 1

n
; V ar(i) � 2(1� u)x;

and for the new variable x = i
n
; that is the fraction of elements is:

E(x) = � 1
n2
; V ar(x) � 1

n2
2(1� u)x

Rescaling then time to � = 1
n2
; we have that the discrete Markov chain

(21) converges to the continuum process X whose in�nitesimal parameters
are

�(x) = �1 (24)

�2(x) = 2(1� u)x

Solving the di¤usion equation with in�nitesimal parameters (24), follow-
ing [12], we �nd the stationary distribution.
Now 2�(x)

�2(x)
= 1

(1�u)x =
�
x
: Setting s(x) = expf�

R 2�(x)
�2(x)

dxg = expf
R
�
x
dxg =

expf� lnxg = x�; the stationary solution has the form
f(x) = 1

s(x)�2(x)
fC1

R
s(x)dx+ C2g; posing C1 = 0

f(x) = C2�
2xx�

= A
x�+1

; that is the Pareto Distribution.
Computer simulations are in progress, and we mean to compare (24)

against Gibrat�s law, whose meaning is not easy to understand.

13 Appendix 3. The continuum limit of the
Ewens marginal chain.

From (3), posing w(i; i+ 1) = �(i); w(i; i� 1) = �(i); we have:(
�(i) = n�i

n
i

n�1+� �
i(n�i)
n2

�(i) = i
n
n�i+�
n�1+� �

i(n�i)
n2

+ i�
n2

; that is
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�
E(i) = �(i)� �(i) � � i�

n2

�2(i) = �(i) + �(i)� (�(i)� �(i))2 � 2 i(n�i)
n2

+ i�
n2
� 2 i(n�i)

n2

Introducing x = i
n
;

�
E(i) � � �

n
x

�2(i) � 2x(1� x)
we have�

E(x) = E(i)=n � � �
n2
x

V ar(x) � 2x(1�x)
n2

Rescaling the time interval to � = 1
n2
; then the in�nitesimal parameters

are
�

�(x) = ��x
�2(x) = 2x(1� x)

:

Then following [12], we look for the stationary distribution.
2�(x)
�2(x)

= � �
1�x ;

R
� �
1�xdx = � ln(1 � x); s(x) = Exp[�� ln(1 � x)] = (1 �

x)��;
s(x)�2(x) = 2x(1�x)(1�x)�� = 2x(1�x)��+1; 1

s(x)�2(x)
= kx�1(1�x)��1

P (x) = �x�1(1 � x)��1, that is the frequency spectrum [9], i.e. the con-
tinuum limit of (5).

14 Appendix 4. Simulations

The simulation of Fig.2 consists in a system of n = 100 elements whose initial
site state is (1; 1; : : : ; 1; 0): This corresponds to Axtell� s initial condition
[3]. At each step 1) we eliminate a cluster, all clusters being on a par;
the size of the population �rst shrinks of a random size m equal to the
size of the destroyed cluster; 2) we put back the corresponding number of
items into the population following (7), returning to the natural size n via m
accommodations. In words, at each step a �rm dies, and all its workers either
join existing �rms or found new ones with individual probability (1 � u; u):
The number of steps is t = 2000; and we show the case u = :2: We show
(black dots) the empirical distribution of the time average of the fraction of
cluster of size i; while the line represents the Yule distribution with � = 1

1�u =
1:25: We give a continuous representation of the Yule (which is discrete) for
graphical opportunity. Gray dots represent the normalized Simon regression.
In the following graphs (Fig.3) we show the occupation numbers of two sites
as time goes by, wherefrom we extract the start-up, growth and death of some
clusters. In Fig.4 and Fig.5 we show the same simulation except u = :5: It
is apparent that low values of u (and �) imply rapid growth of clusters,
large attainable sizes and short mean life; while large values of u imply small
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growth, small concentration and larger mean lives.
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Figure 1: The exact calculation of Zi(n)
1+(n�1)u , i.e. the normalized Simon re-

gression (dotted), is compared with the Yule distribution (continuous for
graphical opportunity) in the case of n = 100 and u = :2: We see that the
two curves almost coincide for i � 15:The scale of graph is log-log. The
second graph shows the convergence of the term of the normalized Simon
regression(dotted) h10(n) :=

Zi(n)
1+(n�1)u that describes the mean fraction of the

clusters of size 10; with the same term of the Yule distribution as a function
of the size of the population.
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Figure 2: Equilibrium distributions, n = 100; u = :2; t = 2000

Figure 3: Cluster histories, n = 100; u = :2; t = 2000
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Figure 4: Equilibrium distributions, n = 100; u = :5; t = 2000
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Figure 5: Cluster histories, n = 100; u = :5; t = 2000
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