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Abstract. We perform a calculation of the relativistic transition form factors for the electromagnetic ex-
citation of the nucleon resonances. We use as input the 3-quark wave functions obtained in a Constituent
Quark Model with three-body forces in the hypercentral approach. With respect to the non relativistic
calculations a significant contribution is obtained up to Q2 ' 2(GeV/c)2. However, the low Q2-behaviour
exhibits a lack of strength, which may be connected with the need of taking into account explicitly further
degrees of freedom beyond the three constituent quark ones.

PACS. 12.39.Ki Relativistic quark model – 13.40.Gp Electromagnetic form factors – 14.20.Gk Baryon
resonances with S = 0

1 Introduction

The non relativistic constituent quark models (CQM)
have given good results in the study of the static prop-
erties of the nucleon [1,2], but they are unable to repro-
duce the Q2 behaviour of the electromagnetic form factors
even in the low momentum transfer [3–7]. The inclusion
of relativistic effects is therefore expected to be important.

The structure of the electromagnetic current of a rela-
tivistic bound system is still an unsolved problem. There
have been recently several calculations of relativistic cor-
rections to the electromagnetic form factors of the nucleon
within constituent quark models. Three main lines have
been followed: the expansion of relativistic current oper-
ators in powers of the inverse quark mass, 1

m [8–11], the
evaluation of the current matrix elements in a light-cone
approach [5,12,13] and the expansion of the full relativis-
tic current matrix elements in powers of 1

m [14–16].
In this work we follow the last method which has been

already used in [16] for the elastic nucleon form factors.
We generalize to the transition electromagnetic form fac-
tors of the nucleon the simplified approach of [16] which is
useful for a preliminary calculation of the relativistic cor-
rections and we apply it for the excitation of the negative
parity resonances. The use of Lorentz boosts for the quark
spinors ensures that the relation between the dynamic
variables of the initial and final states is relativistically
correct. On the other hand, we assume that quark inter-
nal motion is well described by standard non relativistic
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wave functions. For the calculations, we use as input the
3q-wave functions of [17]. The current matrix elements
are constructed with a quark current operator containing
only one-body terms and no quark form factors are intro-
duced. We point out that the non relativistic expansion of
the matrix elements of the present work, up to order m−2,
is coincident with that given by standard procedures [18,
19,15] introduced for few-nucleon systems and no approx-
imation is done with respect to the momentum transfer
Q2 dependence.

In Sec. 2, we describe the non relativistic constituent
quark model of [17]; in Sec. 3 we present the evaluation
of the current matrix elements arriving at simple analyti-
cal expressions for the form factors. In Sec. 4, we discuss
the results and make a comparison with the experimental
data. A brief conclusion is given in Sec. 5.

2 The model

We give a brief account of the non-relativistic constituent
quark model in the hypercentral approach proposed in
[17]. After having removed the center of mass coordinate,
the internal quark motion is described by the Jacobi co-
ordinates ρ and λ:

ρ =
1√
2

(r1 − r2),

(1)
λ =

1√
6

(r1 + r2 − 2r3)

or equivalently, ρ, Ωρ, λ, Ωλ. The three-quark dynamics
is conveniently described in the hyperspherical harmonic
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formalism [20–22]. To this end one introduces the hyper-
spherical coordinates, which are obtained substituting the
absolute values ρ and λ by

x =
√
ρ2 + λ2, ξ = arctg(

ρ

λ
), (2)

where x is the hyperradius and ξ the hyperangle. The
quark potential, V , is assumed to be hypercentral, that is
to depend on the hyperradius x only. Therefore, V = V (x)
is in general a three-body potential, since the hyperra-
dius x depends on the coordinates of all the three quarks.
However, V (x) contains also contributions from two-body
potentials in hypercentral approximation [22,23]. The
Schrödinger equation in the hyperspherical coordinates
is, for hypercentral potentials, simply reduced to a single
equation for the hyperradial part of the 3q-wave function,
since the angular and hyperangular parts of the 3q-states
are factored out and are given by the known hyperspher-
ical harmonics [20]. The h.o. potential, which is widely
used in quark models because of its analytical solution,
can be treated also in the hyperspherical formalism. In
fact, it turns out to be exactly hypercentral, since∑

i<j

1
2
k(ri − rj)2 =

3
2
kx2 = Vh.o(x) (3)

There is at least another potential which leads to analyti-
cal three-quark wave functions, that is the ’hypercoulomb’
potential [24,25,22,26]

Vhyc(x) = −τ
x
. (4)

This potential is not confining, however it has interest-
ing properties. It leads to a power-law behaviour of the
proton form factor [24,25] and of all the transition form
factors [6] and has a perfect degeneracy between the first
0+ excitated state and the first 1− states [27,24,28,26],
which can be respectively identified with the Roper reso-
nance and the negative parity resonances. This degener-
acy seems to be in agreement with phenomenology and is
typical of an underlying O(7) symmetry [26,6].

According to the analysis of [17,29,7], one can give a
good description of the non-strange baryon spectrum, the
photocouplings and the electromagnetic transition form
factors using a three-body potential of the form

V (x) = −τ
x

+ βx. (5)

The hypercentral equation is solved numerically and,
starting from the corresponding hyperradial wave func-
tions, one can construct a complete basis of antisymmetric
three-quark states, analogously to what is done in stan-
dard h.o. models [1], combining the SU(6)-spin-flavour
configurations with the space wave functions [17]. In order
to account for the splitting within each SU(6)-multiplet,
one can introduce a hyperfine interaction, which is treated
as a perturbation and therefore each resonance is a super-
position of SU(6)-configurations. In this way, one obtains
[17] model wave functions for the three-quark states which

are fixed by fitting the energy spectrum and which can
then be used for parameter free calculations of any fur-
ther baryon property, as for instance the electromagnetic
transiton form factors reported below.

3 Electromagnetic transition form factors

The electromagnetic transition form factors, A1/2 and
A3/2, are defined as the transition matrix element of the
transverse electromagnetic interaction between the nu-
cleon, N , and the resonance, R, states:

A1/2 =
√

2πα
kW
〈ΨR, J ′, J ′z = 1

2 |ε+µ
∑3
i=1 j

µ(i)
ΨN , J = 1

2 , Jz = −1
2 〉

A3/2 =
√

2πα
kW
〈ΨR, J ′, J ′z = 3

2 |ε+µ
∑3
i=1 j

µ(i)
ΨN , J = 1

2 , Jz = 1
2 , 〉

(6)

where jµ(i) is the e.m. current of the i-th quark and the
photon polarization vector is ε+µ = − 1√

2
(0, 1, i, 0); α is the

fine structure constant and

kW =
M2
R −M2

N

2MR
. (7)

We shall perform the calculations in the so called Equal
Velocity Frame (EVF) which is defined by the following
condition

PR

MR
= −PN

MN
, (8)

where PN and PR are the three-momenta of the nucleon
and of the resonance respectively, and MN and MR are
their masses. In the elastic case, the EVF coincides with
the Breit frame.

In order to calculate the current matrix elements of
(6) we introduce the quark-momenta, pi, in a generic ref-
erence frame, which are related to the intrinsic ones, p∗i
(that is in the baryon rest frame), by the Lorentz trans-
formations

pi = p∗i +
P

M

[ P

M + E
p∗i + ε∗i

]
, (9)

where ε∗i is the quark energy in the baryon rest frame;
M =

∑3
i=1 ε

∗
i is the baryon mass, E and P are the baryon

total energy and momentum in the new reference frame,
respectively. We assume that the virtual photon is ab-
sorbed by a single quark, that for symmetry reasons can be
taken as the third one. We apply the Lorentz transforma-
tion of (9) to the intrinsic quark momenta in the nucleon
and in the resonance states separately. Then we use the
three-momentum conservation and assume ε∗i ' MN

3 for
the nucleon and ε∗i ' MR

3 for the resonance and, consid-
ering that the boost is parallel to the photon momentum
q, we have

−
√

2
3
ER
MR

p′λq +
PR
3

= −
√

2
3
EN
MN

pλq +
PN
3

+ q, (10)
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ER
MR

p′ρq =
EN
MN

pρq, (11)

p′λ⊥ = pλ⊥ , (12)

p′ρ⊥ = pρ⊥ , (13)

where the indices q and ⊥ mean the parallel and the or-
thogonal components to q, respectively, the apex is used
to denote the intrinsic momenta of the resonance state
and pρ and pλ are conjugate to the Jacobi coordinates of
(1).

Since in the EVF

EN
MN

=
ER
MR

, (14)

we have

p′λq = pλq −
√

2
3
qeff , (15)

p′λ⊥ = pλ⊥ , (16)

p′ρ = pρ, (17)

where qeff is defined as

qeff =
q

γ
, (18)

and γ is the ratio of Eq. 14

γ =
EN
MN

=
ER
MR

. (19)

We note that in the EVF the transformation eqs. (15),
(16) and (17) formally coincide with the ones obtained in
the elastic case [16] and so it is a convenient choice for
the calculations.

The 3-quark state wave function is obtained by apply-
ing the standard Dirac boost operator that transforms the
quark spinors ui(p∗i ) from the nucleon rest frame to the
EVF

ΨN =
3∏
i=1

Biui(p∗i )φ(pρ,pλ). (20)

and similarly for the resonance, ΨR; Bi is the Dirac boost
operator corresponding to the velocities of the nucleon and
of the resonance, which in both cases have the absolute
value

v =

√
γ2 − 1
γ

. (21)

In (20), φ(pρ,pλ) is the standard non relativistic 3q-
wave function, where for simplicity of notation, we have
omitted the spin and isospin variables. The quark boosted
spinors ψi = Biui(p∗i ) are normalized with the invariant
condition

ψiψi = 1. (22)

The current operator of the i-th quark, jµ(i), has the
form

jµ(i) =
√
m

ε′i
γµi

√
m

εi
, (23)

where m is the quark mass and εi (ε′i) is the initial (fi-
nal) quark energy in the EVF. The normalization factors√

m
ε′
i
,
√

m
εi

, have been introduced in order to obtain for the

current matrix elements the correct expansion in powers
of 1

m (i.e. coincident with what is usually quoted in the
literature) as shown in [19].

The resulting expression for the current matrix ele-
ment is complicated because of the presence of non-local
terms coming from the momentum dependence and the
calculations can be performed numerically. However, in or-
der to arrive at a preliminary calculation of the relativistic
effects for the e.m. currents we introduce some simplifying
assumptions.

Consistently with the use of a non relativistic model for
the internal nucleon dynamics, we approximate the quark
energies in the baryon rest frame as ε∗i ' m, where m
is the quark constituent mass. We perform an expansion
keeping contributions up to first order in the relative quark
momenta, but we treat exactly the dependence on the
momentum transfer q. To this end, we introduce in the
matrix element of (6) the variable πλ that is related to
pλq and p′λq in the following way

p′λq = πλ −
1
2

√
2
3
qeff (24)

pλq = πλ +
1
2

√
2
3
qeff . (25)

The helicity amplitudes of (6) can be given in a simple
factorized form as

AM = FSASM (qeff ) + FCACM (qeff ),M =
1
2
,

3
2
, (26)

where ASM (qeff ) and ACM (qeff ) are the non relativistic
transition matrix elements between the nucleon and the
resonance for the spin (S) and the transverse convective
current (C) respectively. The non relativistic helicity am-
plitudes have the standard expressions

ASM =
1

2m

√
2πα
kW
〈φR|3e(3)

(
σ3 × q

)
+
eiqz

∗
3 |φN 〉, (27)

ACM =
1

2m

√
2πα
kW
〈φR|3e(3)2p∗⊥3+e

iqz∗3 |φN 〉, (28)

where |φN/R〉 represents the nucleon/resonance non rela-
tivistic wave function. We observe that, according to (26)
and (15), the non relativistic matrix elements of (27) and
(28) are to be calculated as functions of qeff . The multi-
plicative factors in (26) are

FS = γ2(tS)2tIgS , (29)

FC = γ(tS)2tIhC , (30)

with γ as in (19) and
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Fig. 1. Comparison between the ex-
perimental data for the helicity am-
plitudes Ap3/2,Ap1/2 for the D13(1520)-

resonance and the calculations with
the relativistic corrections (full curve).
The data are from the compilation of
[31]. In the figure we report also the
non relativistic calulations in the EVF
(dashed curve) and in the Breit frame
(dot-dashed curve)

tS = γ
[
ηS −

1
6
vqeff
m

]
, (31)

tI =
1
γ

1
ηI + 1

3
vqeff
m

, (32)

gS =
2
3

+
2mηI

MR +MN
, (33)

hC = γ
[
1 +

1
3
vqeff
m

1
ηI + 1

]
, (34)

ηS =
[ 1
36
q2
eff

m2
+ 1
] 1

2 , (35)

ηI =
[1
9
q2
eff

m2
+ 1
] 1

2 , (36)

with v as in (21). The coefficients tS , tI , ηS , ηI and gS are
the generalization for the inelastic transitions of the cor-
responding quantities introduced for the elastic case [16].
Within our approximations, we note that the relativistic
corrections introduce two kind of modifications with re-
spect to the non relativistic treatment: a multiplicative
factor coming from the expansion of the quark spinors
and the substitution of the momentum transfer q with
the effective momentum qeff in the non relativistic ma-
trix elements. The latter replacement is in agreement with
what was previously proposed by [30].

4 Results and comparison with experimental
data

The matrix elements of (26), (27) and (28) can be calcu-
lated using as input the wave fuctions obtained in a non

relativistic quark model. We present the results for the
three-body force hypercentral potential [17] introduced
in Sec. 2, which has been already used for the descrip-
tion of the spectrum [17,6], the photocouplings [29,6]
and the elastic form factors with relativistic corrections
[16]. We perform the calculations for the negative parity
resonances, choosing those for which there are some exper-
imental data available, namely the D13(1520), S11(1535),
S11(1650), S31(1620) and D33(1700) states. The results
are given in Figs. 1, 2, 3, 4, 5 and 6. We report the rela-
tivistic form factors of (26) in the EVF, compared with the
results without relativistic correction in the same frame.
For comparison we give also the non relativistic transition
form factors in the Breit system [7].

We can observe from the various figures that the rela-
tivistic corrections modify slightly the high Q2 behaviour,
which remains in agreement with data. On the contrary,
the relativistic corrections give a significant contribution
at low Q2, as already observed by [5]. It is interesting to
observe that, even if one takes into account the relativis-
tic kinematics, there still remains a strong discrepancy
with the experimental data at low Q2. This fact is in our
opinion an indication that the present description of the
e.m excitation of baryons has some deficiency. The prob-
lem is not that of finding a better 3-quark wave functions,
as proved by the similar results obtained with different
constituent quark models [4,9,12,14,7,6]. Actually some
fundamental mechanism is lacking, as for instance the pro-
duction of qq pairs and/or sea-quark effects.

In the figures the non relativistic calculations in the
Breit frame are not drastically different from the non rel-
ativistic ones in the EVF.

For the electromagnetic excitations, one can calculate
the transition radius. With the constituent quark model
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Fig. 2. Same as Fig. 1, but for the he-
licity amplitude Ap1/2 of the S11(1535)-
resonance

Fig. 3. Same as in Fig. 1, but for
the helicity amplitude Ap1/2 of the

S11(1650)-resonance

we are using, the radius for the transition to the negative
parity resonances is about 17% higher than the elastic
root mean square radius of the proton [6]. The relativistic
corrections given in (26) produce a further increase which
is of the order of 20% for both the spin and the convection
form factors. Here again the relativistic corrections lead to
larger radii as already observed for the elastic form factors
[16].

5 Conclusions

We have calculated the relativistic corrections to the he-
licity amplitudes for the electromagnetic excitation of the
negative parity nucleon resonances. We have used a sim-
plified and preliminary approach which leads to simple
analytical expressions. This method has been already ap-
plied to the calculation of the elastic charge and mag-
netic form factors of the nucleon [16]. We have used as



408 M. De Sanctis et al.: A relativistic study of the nucleon helicity amplitudes

Fig. 4. Same as Fig. 1, but for the he-
licity amplitude Ap1/2 of the S31(1620)-
resonance

Fig. 5. Same as Fig. 1, but for the he-
licity amplitude Ap1/2 of the D33(1700)-
resonance

input a non relativistic Constituent Quark Model with
three-body forces in the hypercentral approach [17]. We
have seen that at variance with what happens in the elas-
tic case [16], the relativistic corrections to the transition
form factors are not so important and in particular they
are not sufficient to explain the discrepancy with data at
low Q2. It should be noted that we have here considered
only the relativistic corrections coming from the Lorentz
boosts and not the dynamical relativistic effects, such as

for instance pair production, which are expected to be
important at low Q2.

We gratefully thank Prof. D.Prosperi for useful discussions.
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Fig. 6. Same as in Fig. 1, but for
the helicity amplitude Ap3/2 of the

D33(1700)-resonance
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