
SICE Journal of Control, Measurement, and System Integration, Vol. 3, No. 1, pp. 043–049, January 2010

Nonlinear Speed Control Scheme and Its Stability Analysis for SI Engines

Jiangyan ZHANG ∗, Tielong SHEN ∗, and Riccardo MARINO ∗∗

Abstract : For international combustion engines, due to the combustion cyclic nature, the intake-to-power stroke delay
is inherent that causes additional difficulties in control design and validation phases. In this paper, a nonlinear speed
control scheme is proposed based on the proportional feedback control method. From the consideration of improving the
transient performance, a reference model is introduced to design the feedback controller. Then, the speed controller is
formulated as a designed feedback control law connecting with a model-based feedforward compensation. The asymp-
totic convergence to the desired speed is guaranteed under the presented conditions of the feedback gains, which include
the cases of using a speed-depended gain function and a constant gain, respectively. For the stability analysis of the
proposed delayed control system, an initial method is presented via Lyapunov-Krasovskii functional stability theorem.
Experimental results on the transition speed control are shown to demonstrate the control scheme.
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1. Introduction

Engine speed control is a classical issue in automotive con-
trol applications. The performance of engine speed has signif-
icant impacts on the vehicle design attributes such as comfort,
emission, fuel economy, etc., especially during transitional op-
erations [1],[2]. In the community of control engineering, this
has led to many approaches to tackle the speed control prob-
lem, such as l1 optimal control [3], sliding mode control [4],
fuzzy control [1] and others referring to the references therein.
However, one of the main characteristics of engine dynamics
is that it involves the intake-to-power stroke delay, which was
ignored in many works. As is well-known, the presence of time
delay in the system may induce undesired behaviors included
of oscillation and instability, therefore, this delay characteristic
should be considered properly in investigating engine control
problems [5].

Over the years, several speed control methods that take
the intake-to-power stroke delay into account have been pro-
posed [6]–[8], in which the controllers are constructed apply-
ing the design techniques for linear systems to the linearized
engine model. On the other hand, the engine system, as an ac-
tive benchmark example, has been used to assess the control
design methods for time-delay systems [9],[10].

In this paper, we present a nonlinear feedback speed control
scheme that consists of the speed error feedback with nonlinear
proportional gain. The presented scheme focuses on dealing
with transition speed control. A reference model, which gen-
erates a reference trajectory for any desired speed, is used to
construct the feedback controller to ensure the tracking perfor-
mance and a nominal model-based feedforward compensation
is appended to achieve a rapid responsibility. Another contri-
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bution is to provide the stability analysis exactly based on an
engine model involving the intake-to-power stroke delay. It is
shown that the proposed control system is asymptotically sta-
ble at the desired speed if the nonlinear gain function satisfies
the provided condition. Furthermore, the case that utilizes tra-
ditional proportional controller with constant feedback gain is
discussed. In this case, a sufficient condition for the constant
gain is given such that the control system is locally asymp-
totically stable, and an estimated domain of attraction which
plays significant role from the view of practical applications
is provided. The analysis results are obtained with Lyapunov-
Krasovskii functional stability theorem for functional differen-
tial equations [11]. By using an engine test bench, the nominal
model is identified and experimental validation results are car-
ried out.

2. Control Scheme and Model-Based Analysis
2.1 Control System Structure

The control scheme proposed in this paper is shown in Fig. 1,
where engine speed ω[rad/s] denotes the angular velocity of
crankshaft and u is the control input that is the normalized sig-
nal of throttle opening. The control input u(t) is constructed by
combining a feedforward compensation u∗ with a proportional
feedback controller.

Fig. 1 Scheme of the speed control system.

The aim of this control system is to drive the engine speed
ω to a given transition speed trajectory ωd(t)[rad/s] asymptot-
ically, which is generated by a reference model forced by the
desired speed command ωr[rad/s]. To complete the proposal
of the control scheme, we will show a detailed stability analysis
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for the control system. Precisely, we will present the conditions
for the gain function and constant gain in the feedback control
loop, respectively, that guarantee asymptotical stability. That
is, the speed tracking error eω(t) → 0 as t → ∞, ∀eω(0) where
eω = ωr − ω.

The stability analysis is performed based on the so-called
mean-value engine model, which ignores the characteristics of
individual cylinders and captures the average features of en-
gine physics, and is widely used for engine control. Under the
ideal air-fuel ratio and spark timing, the model for speed con-
trol, which includes the dynamics of air intake and crank rota-
tion, is described as follows [12] (see Table 1 for the symbol
nomenclature of physical parameters)

ṗm =
RTm

Vm
(ṁi − ṁo) (1)

Jω̇ = τe − τ f − τl (2)

ṁi = s0(1 − cos φ) · pa√
RTa

√
ψ

(
pm

pa

)
(3)

ṁo =
ρaVcη

4πpa
pmω (4)

where ṁi[kg/s] represents the air mass flow rate through the
throttle, ṁo[kg/s] represents the air mass flow rate into the
cylinders, τe[Nm], τ f [Nm] and τl[Nm] denote the engine
torque, the frication torque and the external load torque, respec-
tively. ψ(·) is defined by

ψ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s

2
κ

[
2κ
κ−1 (1 − s)

] κ−1
κ , s ≥

(
2
κ+1

) κ
κ−1

κ
(

2
κ+1

) κ+1
κ−1 , others

The mean-value expression exploited to model the engine
torque is as follows

τe = c · ṁo(t − td)
ω(t − td)

(5)

where c[Nm/kg/rad] denotes the maximum torque capacity
and td[s] denotes the intake-to-power stroke delay, which is
determined by engine speed. The friction torque is modeled
simply as [13]

τ f = Dω + D0 (6)

where D and D0 are constants.

Table 1 Notations of physical parameters.

symbol meaning
κ specific heat ratio ([−])
R gas constant ([J/(kg · K)])
pm intake manifold pressure ([Pa])
Tm intake manifold temperature ([K])
Vm intake manifold volume ([m3])
Vc volume of six cylinders ([m3])
J crank inertia moment ([kg · m2])
φ throttle opening ([rad])
s0 throttle area ([m2])
pa air pressure ([Pa])
Ta air temperature ([K])
ρa air density ([kg/m3])
η volumetric efficient ([−])

The engine model (1)∼(6) can be rewritten as follows

⎧⎪⎪⎨⎪⎪⎩ ω̇(t) = a1 pm(t − td) − D̄ω(t) − D̄0 − τ̄l

ṗm(t) = u(t) − a2 pm(t)ω(t)
(7)

where the parameters are defined by

a1 =
cρaVcη

4Jπpa
, D̄ =

D
J
, D̄0 =

D0

J
, τ̄l =

τl

J

a2 =
RmTm

Vm
· ρaVcη

4πpa
,

and control input u(t) is defined by

u(t) :=
RTm

Vm
ṁi(φ, pm)

which can be realized by the throttle opening φ.
For desired speed ωr, we denote the equilibrium of system

(7) as (ωr p∗m) which satisfies the following conditions

p∗m =
D̄ωr + D̄0 + τ̄l

a1
(8)

u∗ = a2ωr p∗m (9)

It can be seen from (8) ∼ (9) that the value p∗m varies with the
changes of load torque τl, in other words, the control action u∗

depends on the desired speed and external loads (see Fig. 2 for
an image illustration).

Fig. 2 Image for the equilibrium of model (7).

Furthermore, it is clear from the physics that the parameters
a1, a2 and D̄ are positive numbers. Taking these physics into ac-
count and assuming that the model parameters and load torque
are known and measurable, the following control laws are pro-
posed for each block in the control scheme.

First, the reference model is introduced as

ω̇d(t) = σ (ωr − ωd(t)) (10)

with a positive number σ, and the feedback control law u is
designed as

u(t) = u∗ − a2 p∗meω(t) + kp(ω) (ωd(t) − ω(t)) (11)

where kp(ω) is the feedback gain function. In the following,
two cases of the feedback gain kp(ω), a nonlinear function and
constant, will be addressed for ensuring the stability of the
tracking dynamics.

Before going to the detail of system analysis, we give a short
comment on the structure of control law (11). Noticing that
ωd − ω = eω − er where er = ωr − ωd, control law (11) can be
rewritten as

u(t) = u∗ +
(
kp(ω) − a2 p∗m

)
eω(t) − kp(ω)er(t)

where u∗ is the constant determined by (9). Moreover, as we
can see below, the error system of (7) under the control of (10)



SICE JCMSI, Vol. 3, No. 1, January 2010 45

and (11) can be represented with the state variables (eω, ep, er)
where ep = p∗m−pm. Therefore, the presented controller is a par-
tial state feedback of er and eω with nonlinear gains. It should
be noted that a natural idea of output feedback with feedforward
is to choose the control law as

u = u∗ + k(ω)(ωd − ω)

however, with this control law, we cannot obtain the theoretical
results on the convergence of the error system.

2.2 Stability Analysis

Substituting (8) ∼ (11) into (7), we get the following error
dynamics⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ėω = −D̄eω + a1ep(t − td)
ėp = −kp(ω)eω − a2ωep + kp(ω)er

ėr = −σer

(12)

Denote xt =
[
eωt ept ert

]T . The notation xt represents the func-
tion in the space Cr := {x | x : [0, r] → R3}, where r > 0 is a
constant, and x(t − td) = xt(td), td ∈ [0, r] denotes the value of
function xt at td.

To analyze the stability of system (12), we choose a candidate
of Lyapunov-Krasovskii functional as follows

V
(
xt) =

γ1

2
e2
ω +

1
2

e2
p +

γ2

2
e2

r +
1
2

∫ t

t−td

e2
p(s)ds (13)

where γ1 and γ2 are given by

γ1 =
D̄ +

√
D̄2 − 2a2

1ε

a2
1

, γ2 =
ε

σ
(14)

with a given ε satisfying

0 < ε <
D̄2

2a2
1

(15)

For the sake of simplicity, we treat the delay time td in the
model (5) as constant, i.e. it takes the nominal value at the de-
sired speed ωr, td = π/ωr. Then, it is clear that for the candi-
date V(xt) given by (13), the derivative V̇(xt) on the trajectory
of system (12) can be calculated as

V̇(xt) =
∂V(xt)
∂xt(0)

ẋ +
1
2

(e2
p − e2

pt) (16)

where V̇ is defined as the right-hand upper derivative, i.e.

V̇(xt) = lim sup
h→0+

V(xt+h) − V(xt)
h

In addition, it is noticed that 2a2ω > 1 under the allowable
operation condition of the engine.

Proposition 1. For any given ωr and σ > 0, if the feedback
gain kp(ω) is given by

kp(ω) = ρ(t)
√
ε (2a2ω − 1) (17)

with a given function |ρ(t)| < 1, ∀t ≥ 0, then the time derivative
of Lyapunov-Krasovskii functional (13) along the trajectory of
system (12) satisfies

V̇(xt) ≤ −λ‖x‖2 (18)

for a sufficiently small λ > 0. In other words, for any initial
condition x0(td) ∈ Cr, xt asymptotically converges to zero as
t → ∞ .

Proof: Calculating V̇(xt) obtains

V̇(xt) = −γ1D̄e2
ω + γ1a1epteω − kp(·)eωep − a2ωe2

p

+kp(·)eper − γ2σe2
r +

1
2

e2
p −

1
2

e2
pt

= −γ1D̄e2
ω +

γ2
1a2

1

2
e2
ω −

(
a1γ1√

2
eω − 1√

2
ept

)2

+
1
2

e2
pt − kp(·)eωep − a2ωe2

p + kp(·)eper

−2γ2σe2
r +

1
2

e2
p −

1
2

e2
pt

≤ −1
2

[
2γ1D̄ − a2

1γ
2
1

]
e2
ω − γ2σe2

r − kp(·)eωep

−1
2

[2a2ω − 1] e2
p + kp(·)eper

In view of (14), it yields

V̇(xt) ≤ −xT Q(ω)x

where

Q(ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε

1
2

kp(ω) 0
1
2

kp(ω) a2ω − 1
2
−1

2
kp(ω)

0 −1
2

kp(ω) ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Taking the condition (17) into account, it is easy to verify that
a sufficiently small λ > 0 can be found such that

xT Q(ω)x ≥ λ‖x‖2

where ‖ · ‖ denotes the Euclidean norm. Namely, condition (18)
holds. Moreover, it is clear that for the Lyapunov-Krasovskii
functional (13), there exist continuous nondecreasing functions
μi(s)(> 0, s > 0) and μi(0) = 0 (i = 1, 2) such that

μ1(‖x‖) ≤ V(xt) ≤ μ2(‖xt‖c) (19)

Hence, the asymptotic stability of system (12) at the ori-
gin follows by the Lyapunov-Krasovskii functional stability
theorem 2.1 in [11]. �

As mentioned above, the delay time td is determined by en-
gine speed as π/ω exactly. If we take this time-variability into
account, the time derivative of V(xt) will depend on dtd/dt.
However, as we can see below if td does not vary much quickly,
then stability of the error system can be also guaranteed by the
same Lyapunov-Krasovskii functional with a slightly modified
coefficients.

In fact, since in Proposition 1 ε satisfies condition (15) and
|ρ| < 1, there exists a 0 < δ < 1 such that

2a2
1ρ

2ε

D̄2
= 1 − δ (20)

Let M < δ. There exists a constant γ′1 > 0 such that

D̄γ′1 −
a2

1

2(1 − M)
γ′21 > ρ2ε (21)

With γ′1, define a constant γ′2 as
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γ′2 =
D̄γ′1
σ
− a2

1γ
′2
1

2σ(1 − M)
(22)

and it is clear that γ′2 > 0. We now choose a candidate of
Lyapunov-Krasovskii functional as

V
(
xt) =

γ′1
2

e2
ω +

1
2

e2
p +

γ′2
2

e2
r +

1
2

∫ t

t−td

e2
p(s)ds (23)

which along the trajectory of the error system (12) with feed-
back gain kp(ω) given by Proposition 1, we have

V̇(xt) = −γ′1D̄e2
ω + γ

′
1a1epteω − kp(·)eωep − a2ωe2

p

+kp(·)eper − γ′2σe2
r +

1
2

e2
p −

1
2

(
1 − dtd

dt

)
e2

pt

≤ −1
2

⎡⎢⎢⎢⎢⎣2γ′1D̄ − a2
1

1 − M
γ
′2
1

⎤⎥⎥⎥⎥⎦ e2
ω − γ′2σe2

r − kp(·)eωep

−1
2

[2a2ω − 1] e2
p + kp(·)eper − 1

2

(
M − dtd

dt

)
e2

pt

= −xT Q′(ω)x − 1
2

(
M − dtd

dt

)
e2

pt

where

Q′(ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ′1D̄ − a2
1γ
′2
1

2(1 − M)
1
2

kp(ω) 0

1
2

kp(ω) a2ω − 1
2

−1
2

kp(ω)

0 −1
2

kp(ω) γ′1D̄ − a2
1γ
′2
1

2(1 − M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and it is easy to obtain that in view of (21) and (22), there exists
a sufficiently small λ such that

xT Q′(ω)x ≥ λ‖x‖ (24)

Obviously, in the case of dtd/dt ≤ 0, the following inequality
holds definitely,

V̇(xt) ≤ −λ‖x‖ (25)

on the other hand, it also holds if dtd/dt > 0 but dtd/dt ≤ M.
From the above discussion, we have the following result

which is guaranteed by the Lyapunov-Krasovskii stability the-
orem.

Corollary 1. Consider system (7), (10) with controller (11)
given by Proposition 1. The error system (12) is asymptotically
stable at the origin if the delay time td satisfies

dtd
dt
≤ M (26)

where M < δ.
For the proposed control scheme, Proposition 1 shows that

the speed tracking control can be achieved by using the non-
linear feedback gain in the proportional controller. Now, it is
natural to consider a constant feedback gain kp which can also
guarantee the control objective. The following conclusion is
obtained with the same Lyapunov-Krasovskii functional candi-
date (13).

Proposition 2. For any given ωr and σ > 0, the derivative of
(13) along the trajectory of system (12) satisfies

V̇(xt) ≤ −λ‖x‖2 (27)

over the domain D = {xt(td) ∈ Cr | |eω| ≤ ζ}, where λ > 0 is a
sufficiently small number and ζ is a constant satisfying

0 < ζ < ωr − 1
2a2

with respect to ωr, if the constant feedback gain kp satisfies

|kp| <
√
ε[2a2(ωr − ζ) − 1] (28)

i.e. the closed-loop system (12) is locally asymptotically stable
at the origin. Furthermore, the set

Ω =

{
xt ∈ Cr

∣∣∣∣∣ ‖eωt‖2c +
1 + td
γ1
‖ept‖2c+
γ2

γ1
‖ert‖2c ≤ ζ2

} (29)

is an estimated attraction domain of the solution xt = 0 of sys-
tem (12), i.e. xt → 0 as t → ∞, ∀x0(td) ∈ Ω.

Proof: Similar to the proof of Proposition 1, the time deriva-
tive of V(xt) along he trajectory of system (12) satisfies

V̇(xt) ≤ −xT Q′x

where

Q′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε

1
2

kp 0
1
2

kp a2(ωr − ζ) − 1
2
−1

2
kp

0 −1
2

kp ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Taking (28) into account, we obtain that Q′ is positive definite
which implies that there exists a sufficiently small λ > 0 such
that (27) holds ∀xt ∈ D. Therefore, by associating with con-
dition (19), the local asymptotic stability of system (12) at the
origin follows by the Lyapunov-Krasovskii functional stability
theorem 2.1 in [11].

On the other hand, we have that

V(xt) ≤ μ2(‖xt‖c) , ∀xt ∈ Ω (30)

where

μ2(·) = ‖eωt‖2c
ζ2
+

(1 + td)‖ept‖2c
γ1ζ2

+
γ2‖ert‖2c
γ1ζ2

Moreover, it is clear that the set Ω defined by (29) is bounded
and

Ω ⊂ D (31)

then, it follows from the condition (27) that

V̇(xt) ≤ −λ[μ−1
2 (V(xt))

]2 (32)

According to Lemma 4.4 in [14], this implies that for any initial
condition x0(td) ∈ Ω

V(xt)→ 0 as t → ∞ ⇒ xt → 0 as t → ∞
This concludes the proof. �

Remark 1. It should be noted that Proposition 1 provides a
sufficient condition for choosing the gain function such that the
tracking system is globally asymptotically stable in the prac-
tical sense. Observing the proof of the proposition, it can be
seen that the free coefficient ρ affects the damping rate λ of the
Lyapunov functional. A larger λ is recommended if a quick
response is required.

Remark 2. In the meantime, Proposition 2 presents a range
for constant feedback gain that guarantees local convergence,
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and an estimated attraction domain with the feedback gain is
given. As shown in (29), to enlarge the provided attraction do-
main, larger ζ should be chosen which according to condition
(28) will cause limitations on the selection of feedback gain
kp consequently. Moreover, it can be noted that in this case,
the value of ζ also affects the damping coefficient of Lyapunov
functional V(xt), specifically, the term of −1/2[2a2(ωr − ζ)]e2

p

in V̇ . Therefore, a tread-off between a large attraction domain
and the response performance should be considered to choose
kp according to condition (28).

Remark 3. It is of interest to notice that condition (26) pro-
vides sufficient margin to cover the real dtd/dt (= −πω̇/ω2) in
practical situation. For example, if δ = 0.5 and let M = 0.499,
according to (26) the acceleration of engine speed should be
more than −0.5ω2/π. In other words, if the engine runs in
1000 rpm ∼ 3000 rpm, the acceleration should be large than
−277 rpm/s2. This means that the feedback gain (17) is appli-
cable for engine operations with time-varying intake-to-power
stroke delay.

3. Experimental Results

The engine used for verification experiments is a 2GR-FSE
(3.5L-V6) internal combustion engine supported by Toyota
Motor Corporation as shown in Fig. 3. Figure 4 shows a sketch
of the engine test bench set up in the laboratory. It includes the
software module ECU that serves for engine control in practical
vehicles. The control software of the test bench has been mod-
ified such that the engine can accept the control commands of
designers, which is realized by the dSPACE instrument. Con-
trol algorithms that are built in Matlab/Simulink by the design-
ers are downloaded to dSPACE, then are delivered to ECU to
control engine through a standard CAN bus. Several sensors are
equipped to measure physical variables of engine (e.g. manifold
pressure, etc.). A dynamometer that acts the load of vehicles is
connected to the engine. During the experiments, the control
commands expect for throttle opening are all from the initial
controllers of ECU, and the control results of corresponding in-
dexes (spark timing and air-fuel ratio) satisfy the requirements
of ideal conditions.

It is clear that to conduct validation experiments, the nomi-
nal parameter values of model (7) are needed to obtain the con-
trol law (11). The model identification is performed first. By
changing the given throttle opening command φ̂, we obtain ex-
perimental data of engine speed, intake manifold pressure and
throttle opening from ECU as shown in Fig. 5. With these off-

Fig. 3 Engine test bench.

Fig. 4 Sketch of engine test bench.

line data, recursive least square algorithm is applied to the dy-
namic model of air intake and crank rotation (7), respectively.
Considering that u(t) = RTm/Vm · ṁi = au(1 − cos φ), the iden-
tified nominal values at ω � 1500 rpm are au = 9.51 × 106,
a1 = 5.8×10−3, D̄ = 3.5×10−3, D̄0 = 111.924, a2 = 4.91×10−3.
The fitting effects of the model output to the experimental date
are illustrated by Fig. 5, where p̂m and ω̂ are the output of model
(7). It should be noted that the identification result is applicable
to the proposed speed control scheme under the corresponding
operation mode. Practically, engine model with constant pa-
rameters is effective for a certain working range with respect to
a nominal engine speed.

Based on the identification result, experiments are conducted
to validate the proposed control scheme shown in Fig. 1. Un-
der an attached external load torque τl = 15[Nm] provided
by the dynamometer, the control performance is assessed by
applying a series of step tracking commands of ±200 rpm,
respectively, at operating speed ω = 1500 rpm. Throttle
opening is the control input command computed from u(t) by
φ = arccos(1 − u/au) · 180/π. For providing a proper response
time of the transient speed, the time constant of reference model
(10) is set as σ = 1.5. According to condition (15), the advis-
able ε belongs to (0, 0.0421). For comparison, experiments are
also conducted with the proposed control law that is with the

Fig. 5 Identification result of model (7).
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feedback of speed error ωr − ω instead of ωd − ω.
In the experiments carried out under the feedback con-

trol with gain function (17), the turning parameters are set
as ε = 0.04 and ρ = 0.65, which are selected from
compromising consideration between quickness and oscilla-
tion of speed responses. First experiment is to follow an
accelerating-decelerating operation mode, and the result is
shown in Fig. 6(a). Then, experiment is conducted with twice
accelerating operations. The response curve shown in Fig. 6(b)
indicates that the presented speed control algorithm can work
effectively under different operation range. Finally, the test is
carried out with the control law using a constant feedback gain.
In the experiment, ωr is set at 1500 rpm and 1700 rpm, respec-
tively. Consider a constant ζ = 300 rpm. Solving the condition
(28) of Proposition 2 with ε = 0.04, the constant gain kp can be
chosen as |kp| < 0.091 and |kp| < 0.128 with respect to each ωr,
respectively. Furthermore, for a given ε = 0.04, the attraction
domain presented in Proposition 2 can be obtained, for exam-
ple, as wr = 1500 rpm, substituting (14) into (29) obtains

Ω =
{
xt ∈ Cr | ‖eωt‖2c + 1.7 × 10−2‖ept‖2c

+5.0 × 10−4‖ert‖2c ≤ 986.96
}

By using feedback gain kp = 0.085, experimental result in
Fig. 7 shows similar performance of speed response to the case
with the nonlinear feedback gain in Fig. 6(a).

Figures 8 and 9 show the response curves under the control
law that does not involve reference trajectory ωd. The results
are obtained with same command ωr and feedback gain param-
eters ρ, ε and constant kp in the above experiments for the re-

Fig. 6 Control result with nonlinear kp(ω).

sults Figs. 6(a) and 7, respectively.
It can be observed from experimental results Figs. 6 and 7

that engine speed converges to the desired speed value with tol-
erant transient performance under the presented nonlinear con-
trol law, and both overshoot and adjusting time are reduced by
comparing Figs. 6(a) and 7 with the curves in Figs. 8 and 9, re-
spectively. In other words, the introduced reference trajectory
can improve the transient performance to some extent for the
considered set-point speed tracking control problem. On the
other hand, it can be seen from the response result shown in
Fig. 6(a) and Fig. 7 ∼ Fig. 9 that deceleration response shows
larger overshoot than during acceleration. This gives an intu-
itively suggestion that using small turning parameters in the

Fig. 7 Control result with constant kp.

Fig. 8 Control result with nonlinear kp(ω) but without ωd .

Fig. 9 Control result with constant kp but without ωd .
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feedback gain during deceleration.

4. Concluding Remarks

A nonlinear speed control scheme was discussed for SI en-
gines. By applying the Lyapunov-Krasovskii stability theory,
a precise stability analysis of the error system was provided
with explicit consideration of the intake-to-power stroke delay,
which is an essential physics of combustion engines. Moreover,
it was also shown that under the proposed control scheme, the
stability is guaranteed even though the delay time is varied ac-
cording to the engine speed. The situation of a more simple case
of the controller with constant feedback gain was addressed.
The effectiveness of the proposed control scheme was demon-
strated by experimental results conducted on a practical engine
test bench.

Finally, it should be noted that the proposed design and anal-
ysis are based on the engine model. Hence, the performance
will depend on the precision of the model. For example, the
load torque in the model is assumed to be known, in practical
applications, which will be provided by the vehicle manage-
ment level, or the load torque estimation might be a significant
research issue from the view of control theory. Another impor-
tant issue for practical applications is to improve the robustness
on the model parameter uncertainty. In fact, the parameter is de-
pendent on the operation modes. As was presented in section 3,
the experimental validation was performed around certain op-
erating range. From the view of control theory, the approaches
such as gain scheduling, parameter adaption might be feasible
ways to enlarge the effective range in application. The authors
should like to keep these issues in the next stage.
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