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Abstract

Observed turbulence in space and astrophysics is expected to involve cascade and subsequent dissipation and
heating. Contrary to standard collisional fluid turbulence, the weakly collisional magnetized plasma cascade may
involve several channels of energy conversion, interchange, and spatial transport, leading eventually to the
production of internal energy. This paper describes these channels of transfer and conversion, collectively
amounting to a complex generalization of the Kolmogorov cascade. Channels may be described using
compressible magnetohydrodynamic (MHD) and multispecies Vlasov–Maxwell formulations. Key steps are
conservative transport of energy in space, parallel incompressible and compressible cascades in scale,
electromagnetic work on particles driving macroscopic and microscopic flows, and pressure–strain interactions,
both compressive and shear-like, that produce internal energy. A significant contrast with the collisional case is that
the steps leading to the disappearance of large-scale energy in favor of internal energy are formally reversible. This
property motivates a discussion of entropy, reversibility, and the relationship between dissipation with collisions
and in the Vlasov system without collisions. Where feasible, examples are given from MHD and Particle in Cell
simulations and from MMS observations.

Unified Astronomy Thesaurus concepts: Plasma physics (2089); Plasma astrophysics (1261); Space plasmas
(1544); Interplanetary turbulence (830); Solar coronal heating (1989); Solar wind (1534)

1. Introduction

In standard turbulence theory for a collisional medium, the
cascade transfers energy from large scale to small scale where
viscosity and resistivity remove fluctuation energy in favor of
heat. In weakly collisional plasmas, such as the solar wind,
solar corona, or terrestrial magnetosheath, a cascade is
observed, and heating occurs, but through what mechanisms?
Detailed observation (Cranmer 2009; Matthaeus & Velli 2011;
Bruno & Carbone 2013) and supporting simulations (Daughton
et al. 2011a; Karimabadi et al. 2013) indicate that dissipation of
turbulent fluctuations makes important contributions to heating,
transport, and particle energization in solar and heliospheric
environments (Zank et al. 1996, 2014). There have been
various efforts to describe this dissipation as occurring due to
specific wave modes and instabilities, or through specific
physical mechanisms such as reconnection, phase mixing, or
stochastic heating. Another approach, reviewed and developed
in the present paper, describes the channels for energy transfer
across scales, and for conversion from one form to another,
leading eventually to heating and dissipation. Instead of
identifying specific mechanisms, the pathways for energy
transfer are identified, and then quantified, without resorting to
simplifying assumptions that accompany the identification of
specific dominant mechanisms. All available channels, apart
from collisions, are formulated based on the multispecies
Vlasov equation. Therefore, an identification of a dominant
pathway to dissipation necessarily includes all mechanisms that
are consistent with that description. We offer the viewpoint that
the description of transfer and conversion channels, even if less
familiar in space plasma physics, is a potentially direct and

compact approach to problems such as plasma dissipation.
Such an effort is well supported by modern simulation tools
and observational instruments that are capable of quantifying
all of the terms that contribute to these pathways.

2. Mechanisms and Pathways in Turbulence

In plasma physics, candidate dissipation mechanisms are
often based on linear Vlasov theory. In this approach, largely
based on laboratory plasma studies, solutions for perturba-
tions about an assumed equilibrium give rise to wave modes,
damping rates, and instabilities. A typical strategy might
consist of identifying the correct instability or wave that
accounts for specific observed features of interest. In the
laboratory context, the calculation of the correct eigenmode or
fastest growing unstable mode might give insight into the
failure mode of a plasma discharge. A similar approach is
frequently adopted in identifying mechanisms in space
physics.
Linear theory may also be extended into weak turbulence

theory, in which nonlinearities are computed as a higher-order
correction. An even deeper extension, the “wave turbulence”
perspective, assumes that strong turbulence states remain
decomposable in terms of the linear eigenstates.
Mechanisms relevant to dissipation might also be fully

nonlinear but simple enough to be useful paradigms. A familiar
example is magnetic reconnection, a mechanism frequently
invoked for the release of energy stored in magnetic fields and
as a source of suprathermal particles. Different perspectives
exist—it has been argued recently (Mallet et al. 2017) that
reconnection modifies the cascade, in contrast to the earlier
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suggestion (Matthaeus & Lamkin 1986) that reconnection is
essential in order to have a cascade in a magnetized plasma or
magnetofluid.

A contrasting perspective is that strong turbulence is not well
characterized by equilibria. The dispersion relations needed to
define eigenstates may be only rarely realized. Even if (near-)
equilibria are formed, for example, relaxation processes
(Servidio et al. 2008b), these are likely nonuniform, and it
may be very difficult to quantitatively define those states.
Furthermore, attempts to identify an isolated dissipative
mechanism that operates within turbulence could be over-
optimistic, as it is quite possible that many individual processes
may be operating. For example, in the high-resolution, shear-
driven, strongly turbulent simulation described by Karimabadi
et al. (2013), one can clearly identify Alfvén waves,
reconnection, linear tearing, Kelvin–Helmholtz, compression,
and other contributing mechanisms. However, in describing
such complex dynamics, one tends to rely more on ideas
developed from hydrodynamics, such as the notion of the
Kolmogorov cascade (to be described below), that produce
different types of simplification, many of which are statistical
rather than deterministic.

A standard view of turbulence, whether in hydrodynamics or
magnetohydrodynamics, or in a weakly collisional plasma, is
that available energy resides at large scales, and through
nonlinear interactions, this energy is transferred through an
intermediate inertial range of scales into small scales where
dissipation occurs (Orszag 1977). This nonlinear energy
cascade has numerous influences on the macroscopic and
thermal properties of heliospheric plasmas, in that it contributes
to the heating of the solar corona, the origin of the solar wind,
and numerous other space physics problems (Matthaeus &
Velli 2011). In collisionless plasmas, the scattering and
energization of charged particles often depends sensitively on
turbulence properties (Jokipii 1966; Shalchi 2009), so that
turbulence can be a controlling factor in suprathermal particle
and energy transport in space and astrophysics. Similar
physical effects are broadly relevant in astrophysical plasmas
(Lazarian et al. 2012), where turbulence plays a role in the
dynamics of molecular clouds and star formation (Mac
Low 1999), and in cooling flows where turbulence regulates
heat transport (Chandran & Cowley 1998; Banerjee &
Sharma 2014).

For a kinetic plasma, the theoretical understanding is less
developed and perhaps more controversial, but there is also
accumulating evidence that large-scale reservoirs of energy
regulate the rate of relaxation, fueling the plasma physics
response at very much smaller scales, leading eventually to
dissipation (Karimabadi et al. 2013).

The classical cascade scenario often features a power-law
inertial range spectrum that describes a spectral distribution of
energy across scales. Of equal importance is that the inertial
range acts as a near-lossless conduit that connects energy-
containing large scales to the dissipative small scales. This
energy transfer across scales in effect “completes” the circuit
that allows a system far from equilibrium to relax toward
thermal equilibrium. In sufficiently large hydrodynamic and
MHD systems, it is widely recognized that the energy-
containing eddies control the rate of transfer into the inertial
range and therefore control the dissipation rate, on average. In
the following sections, we will be examining how the
turbulence cascade in collisionless plasma becomes more

complex than the von Karman–Kolmogorov picture, simply
because there are more channels available for energy transport
and conversion. As a first step, we review the salient features of
the standard Kolmogorov 1941 cascade picture.

3. Simple Cascade and First Level of Complexity due to
Compressions

A von Karman–Howarth picture of turbulent decay
(de Kármán & Howarth 1938) may be adapted for MHD
(Hossain et al. 1995; Wan et al. 2012). A similarity-law decay
rate, written in terms of the Elsässer amplitudes +Z and -Z and
their respective similarity length scales l+ and l-, may be
written as = ++ -   with  lº    C Z Z2 . The constants
C± may depend on other parameters. A recent study
(Bandyopadhyay et al. 2018b) examined the behavior of the
constants C± for varying Reynolds numbers and mean
magnetic field strengths. A simplified version, accurate
when normalized cross-helicity ( ) ( )s = - ++ - + -Z Z Z Zc

2 2 2 2

is small, is »
l

 CK
Z3

in terms of a single correlation scale λ, a
single von Karman constant CK, and total fluctuation
strength = ++ -Z Z Z2 2 2.
Upon examining the scale (or wavenumber) decomposition

of the fluctuations, one may argue, based on the symmetries of
the problem, that a self-similar cascade might be local in scale
so that statistical properties at a given scale might depend only
on that scale ℓ and the rate of energy transfer across scales ò.
Ignoring nonsteady fluctuations and intermittency, and other
complications, the decay rate ò enters the expression for the
steady inertial range spectrum,

( ) ( )= - k C k . 12 3 5 3

This spectral law is the basic content of the Kolmogorov 1941
theory (K41). It is, strictly speaking, appropriate to isotropic
incompressible hydrodynamics at high Reynolds number, but is
more widely applied as a baseline description of turbulence.
For example, with suitable simplifications, the same reasoning
is expected to hold also for incompressible MHD.
If one adds to this picture an accommodation for nonuniform

dissipation, then the dissipation function becomes a random
function of position ( )  x . In the Kolmogorov (1962,
hereafter K62) picture, this forms the basis of intermittency and
the emergence of coherent structures, while only slightly
modifying the isotropic spectral law. This view of turbulence
cascade is the template for what we refer to here as the simple
cascade picture, which is illustrated in Figure 1.
Third-order law and complexity. Attaining a direct cascade

from large to small scales is not quite as simple as suggested in
the above picture. Even though the incompressible cascade is
approximately local in scale, there is some degree of
nonlocality (Verma et al. 2005; Alexakis 2007; Alexakis
et al. 2007). Furthermore scale to scale transfer occurs in both
forward and reverse directions, with a slight preponderance of
large- to small-scale transfer. This is manifestly seen in the
statistical distributions leading to Kolmogorov’s third-order
law (Kolmogorov 1941a; Taylor et al. 2003). Individual
estimates of the cubed longitudinal increment duℓ

3 are almost
equally likely to be negative or positive. But in the ensemble
average sense, there is a definite sign and dá ñ = - u ℓℓ

3 4

5
(Pope 2000). For this reason, one expects that estimates of all
types of energy transfer (scale-to-scale, sharp Fourier, third
order, etc.) will exhibit large fluctuations (Verma et al. 2005;
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Coburn et al. 2015), with the direct cascade emerging only after
suitable averaging.

In incompressible MHD, the energy cascade within the
inertial range satisfies the Politano–Pouquet law (Politano &
Pouquet 1998):

( ) ( ) 
d d d= á ñ = -   S r z z z

d
r

4
, 2i i

where pr= z u b 4 , ( ) ( )d = + -  z z x r z x , d =z

·d z r r ,  is the mean energy transfer rate, and d is the
spatial dimension. The average total energy transfer rate is
defined as ( )= ++ -   2. Recently, the unaveraged third-
order mixed structure function has been used in applications
(Sorriso-Valvo et al. 2018a, 2018b) as a surrogate of the local-
in-position energy transfer rate (LET). We denote by  r the
“local” pseudo-energy transfer rate at the scale r,

( )
d d d

= -
 


d z z z

r4
, 3r

i i

so that the LET is computed as

( )=
++ -


 

2
. 4r

r r

The averaged third-order structure functions (see Equation (2))
are shown in Figure 2, for both kinetic simulation (see
Appendix A) and for magnetosheath observations by the MMS
spacecraft. In both cases, the turbulence being described is in a
weakly compressive regime, and the scales examined are those
thought to be well described by MHD. Such results represent a
quantitative evaluation of the average energy transfer through the
incompressible cascade channel. Fluctuations in this channel, and
the behavior of additional channels of energy transfer and
conversion, are discussed in Section 5.

Compressibility adds a new channel. When incompressibility is
relaxed, the internal energy becomes another new element in the
turbulence energy balance. While the incompressible channel
remains available, an additional contribution to energy transfer
emerges, the so-called pressure dilatation · up . The relationship
between compressible and incompressible turbulence has been
studied in a variety of approaches, including formal analysis
(Klainerman &Majda 1981), asymptotic perturbation theory (Zank
& Matthaeus 1991), and scale filtering (Eyink 2005; Aluie 2011),
as well as in MHD (Zank & Matthaeus 1993; Yang et al.
2016; Andrés et al. 2018; Hadid et al. 2018; Hellinger et al. 2018).

An interesting recently discovered feature is that the net transfer
into pressure dilatation saturates at small scales, so that the
incompressible and compressible cascades decouple at smaller
scales (Aluie 2011; Aluie et al. 2012). This provides justification
for treating the kinetic energy as a cascaded quantity, although it is
not formally conserved by compressible nonlinear interactions. A
diagram suggesting the increased complexity of a compressible
cascade is shown in Figure 3.

Figure 1. Simple cascade diagram based on incompressible equations and
depicting only the average scale transfer. Intermittency emerges even in this
simple picture.

Figure 2. Estimates of transfer rate as a function of scale for the MHD-like
cascade, extended into the kinetic range, showing attenuation of this channel at
subproton scales. (Top) Results from a 2.5D kinetic PIC simulation. See Yang
et al. (2019) and Appendix A. (Bottom) Results from MMS data analysis in the
terrestrial magnetosheath. Lines are computed from single spacecraft analysis
using the Taylor hypothesis. Symbols are two spacecraft estimates using pairs
of MMS spacecraft. See Bandyopadhyay et al. (2018a).

Figure 3. A more complex cascade diagram, including bidirectional scale-to-
scale transfers, possible nonlocality, and compressional effects.
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4. Multiple Channels of Energy Transfer and Conversion

In obtaining fluid models such as hydrodynamics or MHD,
collisions are important because they rapidly produce an
isotropic pressure tensor, and in the Chapman–Enskog limit of
strong collisions, the even stronger condition of Local
Thermodynamic Equilibrium (LTE). However in the opposite
limit, widely applicable in space and astrophysical plasmas,
collisions are weak or absent. Then we consider a collisionless
plasma consisting of species labeled by α to be described by
the Vlasov equations,

· · ( )⎜ ⎟⎛
⎝

⎞
⎠¶ +  + + ´  =a a

a

a
av E

v
Bf f

q

m c
f 0. 5vt

These are coupled to the Maxwell equations that determine the
electromagnetic fields. We will be particularly concerned
below with the energy budgets of the particles and fields, and
the physical quantities that contribute to their time variations.

We will examine the energy budget of a weakly collisional
plasma, and the manner in which turbulence influences it,
leading to transfer from energy-containing large scales, and in
analogy to the treatment of fluid cascades discussed above,
through intermediate scales, and eventually into heat or internal
energy. The total energy density at position x and time t is the
sum of the electromagnetic energy density,

( ) ( ( ) ( ) ( )
p

= + x B x E xt t t,
1

8
, , , 6m 2 2

and the sum over species of the individual particle kinetic
energy densities,

∣ ∣ ( ) ( )ò=a a a v x v vm f t d
1

2
, , . 72

Here, B and E are magnetic and electric fields, respectively, mα

is the mass of particles of species α, and fα is the velocity
distribution function (vdf) of particles of type α, varying in
position and time.

The collective motion is quantified by the fluid velocity au
defined by

( )ò=a a au v vn f d , 8

where ò=a a vn f d is the number density of species α. We refer
to the above energy densities, for brevity, simply as energies.

Separating the kinetic energy into the contribution due to the
fluid motion, and the remainder, which we call the internal
energy, is essential for understanding the energy conversion
processes. The fluid flow kinetic energy of species α is

∣ ∣ ( )r=a a a u
1

2
, 9f 2

and the corresponding internal energy is

( ) ( ) ( )ò= -a a a a v u x v vm f t d
1

2
, , . 10th 2

It is obvious that = +a a a  f th.
The time evolution of the energies follows directly from

standard elementary manipulations of the Vlasov equation and
Maxwell equations. The fluid flow energy evolves in time

according to

· ( ) · ( · )
( · ) · · ( )

¶ +  + 
=  +

a a a a a

a a a a a

  u P u
P u u En q . 11

t
f f

Similarly, one obtains the time evolution equation for the
internal kinetic energy of species α,7

· ( ) ·
( · ) · ( )

¶ +  + 
= - 

a a a a

a a

  u h
P u . 12

t
th th

where ah is the heat flux vector.
Finally, using the Maxwell equations, the evolution of the

energy m in the electromagnetic field is described as

· ( ) · ( )
p

¶ +  ´ = - E B J E
c

4
. 13t

m

Here, = åa aJ J is the total electric current density and
=a a a aJ un q is the electric current density of species α.
Several features of Equations (11)–(13) must be emphasized.

First, all the terms grouped with the time derivatives on the
left-hand sides are transport terms that do not change the total
amount of energy of the respective types, but simply relocate
energy of a given type from one location to another. These
transport terms integrate to zero for suitable boundary
conditions and may be extremely important in reconciling the
energy balance at any point in space and time. However,
important as they may be in particular problems, we are less
concerned with transport effects here, as the emphasis is on
conversion between different types of energy.8 Therefore, we
will focus on the terms of these equations that are responsible
for the conversion of energy from one form to another.
Examining the expressions on the right-hand side, it is

evident that the term ·aJ E exchanges electromagnetic energy
and flow energy for a species α. All changes of internal
(“thermal”) energy of each species are accomplished exclu-
sively by the pressure–strain interaction, which we abbreviate
as ( · ) · ( ) ( )º -  = - a a a

a aP u P uPS ij i j . The importance of
pressure–strain interactions has been emphasized in a number
of recent papers (Del Sarto et al. 2016; Yang et al.
2017a, 2017b, 2019; Chasapis et al. 2018; Pezzi et al. 2019b)
It should be emphasized that quantities such as ·aJ E and
aPS are not single-signed, as energy may be transferred into, or

out of, the electromagnetic fields, and likewise, into or out of
the collective fluid motion of each species α. While the
distributions of these quantities are not sign-definite, the
expectation is that when there is net dissipation and heating,
the appropriate sign indicating net transfer into random motions
will be favored. This has been seen in magnetosheath
observations (Retinò et al. 2007) and in plasma simulations
in decaying turbulence (Wan et al. 2012; Yang et al. 2017a).
Therefore, with some care, these quantities may be used to
trace the flow of energy through different channels leading to
dissipation. In fact, the evaluation of total ·J E in the proton or

7 Some readers may prefer to use terminology such as “thermal energy” or
“random kinetic energy” to refer to the quantity a

th.
8 Transport effects such as heat flux and convective heat transport are in many
circumstances the dominant contributions to the balance of Equation (12);
however, these terms do not exchange energy between different forms, and it is
the exchange between different pathways or channels that is our main
interest here.
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electron fluid frames is often viewed as a “dissipation
measure.”9

Further decomposition of the pressure–strain term is
convenient and physically revealing. A standard procedure
for decomposing the pressure tensor ( )aPij and the stress tensor

( ) ( )= a aS uij i j is to separate out the trace. One then defines

( )( ) ( )d= + Pa
a

aP p , 14ij ij ij

where ( )=a
ap Pjj

1

3
. Similarly, the stress tensor is conveniently

decomposed as

( )( ) ( ) ( )q d= + + Wa
a

a aS D
1

3
, 15ij ij ij ij

where ( )q = a
aui i is the dilatation, and ( ) =aDij

( )( ) ( ) q d +  -a a
au ui j j i ij

1

2

1

3
and ( )( ) ( ) ( )W =  - a a au uij i j j i

1

2
are the symmetric and antisymmetric stress tensors, respec-
tively. Then we see immediately that the pressure–strain
interaction neatly separates as q= - +a a a ap DPS Pi , where we
have defined ( ) ( )º -Pa

a aD DPi ij ij and the antisymmetric stress
( )W a
ij does not appear (Del Sarto et al. 2016).
An aside: pressure–strain interaction in the collisional case.

The role of pressure–strain interaction in dissipation may seem
at first unfamiliar to some readers, especially those with a
plasma background, given that the term “dissipation” is often
associated with the electromagnetic work on particles, ·J E, in
many recent published works. However, it is not difficult to
convince oneself that the pressure–strain interaction PS
represents a critical channel leading to dissipation, even in
ordinary gas dynamics. In fact, in collision-dominated gas
dynamics, the usual procedure is to develop a Chapman–
Enskog expansion in a small parameter, the Knudsen number.

One begins with a kinetic equation that is analogous to
Equation (5), except that a collision operator ( )W f is present in
the right-hand side, which, following Boltzmann’s assump-
tions, depends only on the one-body distribution ( )x vf t, , . If
the collisional mean free path λ is much smaller than the scales
L over which the medium varies, i.e., the fluid scales, then we
say that the medium is strongly collisional. Formally, in the
Chapman–Enskog approach, one treats l= L as small, the
collisions as strong and of order~ 1 . Then, the distribution is
expanded ( ) ( ) ( )= + + f f f f ...0 1 2 2 . In the perturbation
hierarchy, at ( )-O 1 , the sole relation is ( )( )W =f 00 , which
locally forces the leading-order distribution to be a stationary
state of the collision operator. In cases of interest, this is a local
Maxwellian, with spatially varying density and temperature. If
one then computes the familiar equations of evolution of the
first several moments of ( )f 0 , standard equations emerge: the
continuity equation, the ideal Euler equations, and the pressure
(internal energy) equation. Under fairly mild assumptions,
one also finds the associated pressure tensor is given by

( ) ·d m m d= -  +  +  uP p u uij ij i j j i ij
2

3
. Thus, one sees that

in the collisional fluid case, mP = - D2ij ij.

5. Channels of Transfer and Conversion in a Complex
Cascade

Having formally described the channels of conversion made
available in a two- (or multi-) species Vlasov plasma, we are
now in a position to describe a complex plasma cascade in
more detail.
At scales much larger than all kinetic scales, in plasmas such

as the solar wind, the description of the cascade is vastly
simplified. Kinetic effects in Ohm’s law are negligible, and
therefore, ion and electron densities and velocities are almost
equal. For weak collisions, the resistivity is negligible, so the
electric field at large scales and low frequencies is well
approximated as = - ´ +E u B D, where D is a weak
nonideal dissipative contribution and u is the proton velocity. It
is also reasonable to expect that the pressure averaged over
large scales is isotropic. In such circumstances, the dynamics at
the large, energy-containing scales is that of compressible
MHD, which may be obtained approximately by computing
moments of the Vlasov equation.
Whether the dynamics is incompressible (Hossain et al.

1995), nearly incompressible (Matthaeus & Brown 1988; Zank
& Matthaeus 1991), or highly compressive (Mac Low 1999),
one expects that the turbulent decay of the large-scale “energy-
containing” eddies will follow a von Karman–Howarth
description (de Kármán & Howarth 1938) appropriately
generalized (Hossain et al. 1995; Biskamp 2003; Wan et al.
2012; Bandyopadhyay et al. 2018a) to MHD. However, as
timescales become as small as the proton gyroperiod, and the
length scales of interest approach the larger of the ion inertial
scale and the thermal proton gyroradius, the fluid models break
down, and the fluid description must be expanded to include
kinetic effects.
Scale transfer in the plasma cascade is driven by advective

nonlinearities such as · a au u for species α, in analogy to
MHD scale transfer. Such cascades involve both the incom-
pressible and compressible degrees of freedom (Yang et al.
2016). A significant feature here, distinct from a collisional
fluid, is that there is a separate velocity cascade for each species
labeled by α. (Here, α will represent either ions a = i or
electrons a = e.) The cascades, especially the incompressible
parts, are widely viewed as approximately local in scale, in the
spirit of Kolmogorov theory (Kolmogorov 1941b).
Beyond advective cascade, other channels are available that

lead to scale transfer as well as eventual dissipation. These
channels—the work done on particles by the electromagnetic
field and the conversion between flow energy and internal
energy—couple the electromagnetic field to the first moment,
i.e., the flow velocities, and the gradients of the first moment to
the internal energy, that is, the sum of second central moments,
of the velocity distributions. Other effects, not discussed here,
contribute to anisotropies (Del Sarto et al. 2016) and higher-
order moments of the particle vdf’s. Eventually, the real space
cascade gives rise to a velocity space cascade (Schekochihin
et al. 2016; Servidio et al. 2017; Cerri et al. 2018; Pezzi et al.
2018), which then terminates through collisions and entropy
production; these effects, however, require a model more
complete than the Vlasov–Maxwell one (e.g., a Boltzmann
model; Pezzi et al. 2016, 2019a; Pezzi 2017; Vafin et al. 2019).
A point of immediate emphasis is that all of the main channels

of interest—the advective-driven scale transfer exemplified by
the “LET,” i.e., òr(x) in the third-order laws, as well as the
electromagnetic work aJ ·E, and the pressure–strain interaction

9 The electromagnetic work done on charged particles in the electron fluid
frame (sometimes with an additional small space charge correction) is called
the Zenitani dissipation measure (Zenitani et al. 2011) and is widely used in
reconnection studies. This quantity is also useful in turbulence analysis (Wan
et al. 2012). It is also sometimes indicated simply as “the dissipation,” a
designation that we do not favor in view of the present detailed discussion.
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q= - +a a a apPS PiD for the species α—have pointwise values
of indefinite sign. As a consequence, the pointwise distributions of
these quantities are broad, with the average values corresponding
to a slight offset. This property is illustrated in Figure 4. Note that
the broad sign-indefinite distributions of electromagnetic work
and pressure–strain interaction are in this way analogous to the
two-signed, broad distribution of the LET that underlies the third-
order laws at inertial range (Sorriso-Valvo et al. 2018a, 2018b.

To build a picture of the plasma cascade, it is important to
understand how the different transfer and conversion terms
operate at varying spatial scales. To facilitate the analysis of
energy conversion and scale transfer, we introduce a filtering
operation that acts as a low-pass filter at scaleℓ. See
Appendix B for details. An overbar denotes a filtered quantity
and a tilde denotes a density-weighted (Favre) filtered quantity.
For example, the spatially filtered Vlasov equation is

¯ · ¯ · ( )⎜ ⎟⎛
⎝

⎞
⎠¶ +  +  + ´ =a a

a

a
a av E

v
Bf f

q

m
f

c
f 0. 16vt

To proceed with the analysis, we first define the relevant
energies, the filtered fluid kinetic energy,

¯ ∣ ˜ ∣ ( )r=~
a a auE

1

2
, 17

f 2

and the filtered electromagnetic energy,

(∣ ∣ ∣ ∣ ) ( )
p

= +B EE
1

8
. 18m 2 2

To obtain the time evolution of these energies (see
Appendix B), we compute filtered moment equations using
Equation (31), and after straightforward manipulations, obtain
the required time derivatives. For the filtered fluid kinetic
energy, we find

· ( )P F L¶ +  = - - -~
a a a a aJE , 19t
f u uu uT ub

where we introduce the abbreviations

˜ ¯ ˜ · ˜ · ˜ ( )tr= + +~
a a a a a a a aJ u u P uE 20u f u

for the spatial transport;

( ¯ ˜ · ) · ˜ ¯ ˜ · ˜ ( )t trP = -  -a a a a a a a au uq cn 21uu u b

for the flux of large-scale fluid flow energy transferred to
subscale fluid flow energy;

( · ) · ˜ ( )F = - a a aP u 22uT

for the filtered pressure–strain interaction—the rate of conver-
sion of fluid flow energy into internal energy; and

¯ · ˜ ( )L = - ~
a a a aE uq n 23ub

for the filtered ·- aJ E—the rate of conversion of fluid flow
energy into electromagnetic energy.
Similarly, the time evolution of the filtered electromagnetic

energy is

· ( )å åL P¶ +  = -
a

a
a

aJE , 24t
m b ub bb

where

( ) ( )
p

= ´J E B
c

4
25b

is the spatial transport;

¯ · ˜ ( )L = - ~
a a a aE uq n 26ub

is the rate of fluid flow energy conversion into electromagnetic
energy; and

¯ ˜ · ˜ ( )tP = -a a a a auq n , 27bb e

is the flux of electromagnetic energy across scales due to
subscale work done by the electric field, where ˜ ( )t = -

~
a E Ee .

Summing Equations (19) and (24), the filtered equation for the
total fluid flow and electromagnetic energy takes the form

( ) ( )·

( )P P F

¶ å + +  å +

= -å - å - å

~
a a a a

a a a a a a

J JE E

. 28

t
f m u b

uu bb uT

To illustrate the filtered transfer terms, we employ again a
time snapshot from the kinetic PIC simulation described in
Appendix A. As a first exercise, we focus on the scale-filtered

Figure 4. PDFs of pressure–strain interaction ( aPS ), electromagnetic work
done on particles ( ·aJ E), and LET r measured at =r d5 i, from a kinetic PIC
simulation. (For details of the simulation, see Appendix A.) (Top): PDFs of

aPS and ·aJ E for electrons, and PDF of = ;r d5 i . (Bottom): PDFs of aPS and
·aJ E for protons, and PDF of =r d5 i. Note that in all cases, the PDF of =r d5 i is

narrowest. For electrons, the fluctuations (measured by breadth of the
distribution) have more non-Gaussian tails for ·J Ee and are more Gaussian
for PSe but with similar width. For protons, the widths are largest for ·J Ei , and
the PSi distribution is much narrower.
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convective transfer, pressure–strain, and electromagnetic work
separately for each species, and as a function of scale. These
quantities are illustrated in Figure 5. For protons, we see that
the convective transfer induces negative electromagnetic work
that builds up magnetic energy throughout an inertial range. At
smaller scales approaching di, the pressure strain is converting
flow energy into internal energy of protons. In the lower panel
of Figure 5, the same filtered quantities are shown for the
electrons. The picture is quite different, owing to the difference
in proton and electron intrinsic inertia (mass). Here, the
electrons see the strong onset of electromagnetic energy
conversion into electron flow, giving rise to an inertial range
signified by peaks over a range of scales of both quantities.
Like the protons, the electron contribution to convective
transfer and electromagnetic work diminishes in intensity
approaching kinetic scales near di. Over a similar range,
approaching di from above and extending to the electron
inertial scale de, the pressure–strain interaction becomes
progressively more important.

A view of the net effect of the transfer associated with both
species is shown in Figure 6. Illustrated are the relevant cascade

terms summed over species: the scale-to-scale flux due to
advection, the scale-filtered pressure–strain interaction, and the
total (sum over the two Elsässer variables) of the third-order
energy transfer. Here we see the intuitive result that the third-
order law closely follows the scale-to-scale flux, each
delineating an expected (even if narrow) inertial range. The
level of inertial range transfer is suggested by the horizontal
reference line at ∼0.0002. As the inertial range transfer
diminishes approaching di, the total filtered pressure–strain
effect increases toward smaller scales, approaching the same
reference line at subelectron scales. This clearly indicates that
the kinetic range is associated with a suppression of the
standard cascade terms in favor of the production of internal
energy.
A diagrammatic representation of the pathways to dissipa-

tion is described in Figure 7. Overall, the transfer from scale to
scale is believed, with substantial and growing empirical
support, to proceed in a way that is analogous to the
Kolmogorov cascade. The transfer is necessarily more complex
in a collisionless multispecies plasma.

6. Kinetic Activity and Coherent Spatial Structures

Coherent structures in the magnetic and plasma flow (Dmitruk
et al. 2004; Markovskii et al. 2006; Parashar et al. 2011; Dalena
et al. 2014; Drake et al. 2014; Wan et al. 2015) play an important
role in heating, as is confirmed in observations (Retinò et al. 2007;
Osman et al. 2011). These structures typically have one or more
dimensions on the order of an ion inertial scale (Dmitruk &
Matthaeus 2006; Markovskii & Vasquez 2011; Wang et al. 2013;
Makwana et al. 2015). The dynamical processes that occur in
association with these structures include energization by direct
(parallel) electric fields, strong scattering and confinement leading
to stochastic orbits, betatron effect, and pickup by flows through
the E×B drift effect. These effects have been parameterized in
various phenomenologies (Ambrosiano et al. 1988; Drake et al.
2006; Chandran et al. 2010; Shay et al. 2014; le Roux et al. 2015).
The net effect of these processes, and notably their localization
in structured patterns reflecting the magnetic structure of the
turbulence, is evident in simulations. Hybrid Vlasov simulations

Figure 5. Volume-integrated scale-filtered energy transfer terms: scale-to-scale
fluxes áP ña

uu and áP ña
bb , filtered electromagnetic work on particles ˜ · ¯á ñaE J , and

filtered pressure–strain interaction ( ¯ · ) · ˜á-  ña aP u , for species α from a
kinetic PIC simulation (see the Appendix). (Top) Filtered energy transfer terms
vs. filtering scales for ions. (Bottom) Filtered energy transfer terms vs. filtering
scales for electrons.

Figure 6. Cascade effects summed over species. Volume-integrated scale-to-
scale flux áå P + å P ña a a a

uu bb , filtered pressure–strain interaction áå F ñ =a a
uT

( ¯ · ) · ˜-áå  ña a aP u , and estimate of transfer rate from third-order moment.
The horizontal reference line at ∼0.0002 suggests the approximate level of the
inertial range flux. See discussion in the text.
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have permitted these associations for protons to be studied in
some detail (Greco et al. 2012; Servidio et al. 2012, 2014, 2015).

Based on prior results showing the formation of coherent
structures in MHD and plasma, it should not be at all surprising
to find that the physical quantities that are responsible for the
transfer and conversion of energy in collisionless plasmas are
also found in the same kinds of spatial concentrations. Figure 8
illustrates the formation of several types of coherent spatial
structures in a well-resolved kinetic PIC simulation (see
Appendix A).

The top panels show the electric current density and the LET
at a scale of 5di, exhibiting the type of spatial concentration
familiar even in MHD simulations. The next row shows maps
of the electromagnetic work ·aJ E on electrons and protons.
Below that is illustrated the pressure–strain interaction for
electrons and protons, respectively. The following row shows
the scale-to-scale transfer for electrons and protons. Finally, the
last row shows the spatial distribution of electron temperature
and proton temperature.

The electrons are hottest near sites of the strongest thin
current sheets. Proton hot spots are relatively broader and
are concentrated around the strong currents near magnetic
“islands,” and the interaction region between pairs of islands
(Ambrosiano et al. 1988; Dmitruk et al. 2004; Chandran et al.
2010; Shay et al. 2014). The spatial coincidence of all of the
above quantities is of the type that may be called regional
correlation (Yang et al. 2019), meaning that the quantities may
be found in nearby regions or even interleaved with one
another, so that pointwise correlations can be small, but coarse-
grained correlations substantial.

7. Dissipation, Entropy, and a Thought Experiment

Any discussion of turbulent cascade in collisionless Vlasov
plasma leads inevitably to the question of what one means by
“dissipation.” Here we have adopted the definition, perhaps
not universally agreed upon, that energy is dissipated when
the dynamics leads to the global reduction of total energy in
the electromagnetic field and in the fluid velocity fluctuations
in all species, while internal energy summed over species,
increases. While variations of this meaning may be encoun-
tered, this definition has the advantage in the sense that
the transfer of energy due to cascade leads to its reduction
by “dissipative processes,” in direct analogy to the viscous-
collisional case.

Within the context of this definition, there are important
questions about dissipation that arise. For example, the
pathways leading to dissipation, as we have discussed above,
emerge from the Vlasov equation. Critics may note that the
Boltzmann entropy ò ò= -S k d x d v f fln3 3 is invariant in
time for Vlasov–Maxwell dynamics. Then, if one assumes that
there is always a one-to-one relation between this definition of
entropy and the temperature, one might conclude that
dissipation (and associated heating) cannot occur in a Vlasov
formalism. Or, if it does, it must be due to numerical artifacts.
A similar and also familiar criticism of a Vlasov-based theory
of dissipation is the argument that the Vlasov equation is
reversible due to the lack of collisions, and therefore it cannot
describe dissipation, which is claimed to be inherently
irreversible.
Our perspective is that neither of the above arguments is

completely accurate. Regarding the argument based on
invariance of entropy in a Vlasov theory, we note that the
entropy defined above as S is the Boltzmann entropy, and this
is distinct from the Clausius (or “thermodynamic”) entropy. It
is not obvious that the Boltzmann entropy so defined is the
correct entropy to describe the statistical dynamics of turbulent
Vlasov dissipation. In particular, the Clausius entropy, with its
connection to temperature, is well defined only in LTE, while
the Boltzmann entropy does not take into account explicit
contributions from turbulence (Goldstein & Lebowitz 2004).
There are an infinite number of invariants of the Vlasov
equation (e.g., any function Q( f )); one of these is the
Boltzmann entropy, but we are unaware whether it has been
demonstrated that this functional is a fully useful definition of
entropy in a strongly turbulent Vlasov plasma.
Regarding the second argument, and reversibility, we note

that classical mechanics is always formally reversible. There-
fore, not only Vlasov, but also N-body classical dynamics, is
reversible, even when collisions are included. While classical
collisions are reversible, it is the approximations inherent in
collision operators that introduce formal irreversibility. Of
course, in a reversible system with a large number of degrees of
freedom (Ford 1992), the recurrence time becomes astronomi-
cally large, except for very special initial conditions.10

It should be clear from considerations such as those above
that the Boltzmann entropy ò ò= -S k d x d v f fln3 3 is of
limited utility in a turbulent collisionless plasma. The two main
reasons for this—lack of collisions and the lack of complete
treatment of turbulence (Goldstein & Lebowitz 2004)—are
often discussed, usually without clear conclusions. There has
been recent interest in studying the conservation of S in the
absence of collisions (Liang et al. 2019); such studies lead to
clarification of the spatial distribution of entropy and provide
useful tests of the resolution of collisionless PIC kinetic codes.
Other recent studies examine the systematic effects of including
collisions in a kinetic model (Daughton et al. 2009), notably
including changes of entropy S (Liang et al. 2019; Pezzi et al.
2019a). This active area of research is providing insights into
issues such as the relationship of entropy to velocity space
structure (Pezzi et al. 2019b), the spatial distribution of
dissipation (Howes et al. 2011), and the effect of collisions
on the rate of magnetic reconnection (Daughton et al. 2011b).

Figure 7. Collapsing the complex pathways into four transfer rates. Complex
pathways and channels lead to dissipation in weakly collisional plasma. Each
species engages in scale-to-scale transfer, analogous to a Kolmogorov cascade.
Each species also exchanges energy with the electromagnetic field. The
pressure–strain interactions, both pressure dilatation and PiD types, exchange
energy between the flow of each species and the corresponding internal energy
of that species.

10 It is important to keep in mind that the Vlasov description is an
approximation, specifically a mean field theory, in which properties of
individual particles, including their coordinates, do not appear explicitly, while
the associated interparticle forces, are treated as negligible and ignored.
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Figure 8. Contour maps of normalized electric current density J Jrms, LET =r d5 i, electromagnetic work ·aJ E on electrons and ions, pressure–strain interaction PSα
for electrons and ions, scale-to-scale fluxP + Pa a

uu bb for electrons and ions, and electron and ion temperature Tα. It is apparent that all quantities have elevated activity
in similar small subregions, suggesting intermittency. However, examined in greater detail (not shown), there are no strong pointwise correlations among these
quantities.
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Some of the subtle aspects of the relationship between fluid and
thermodynamic entropies, especially with regard to anisotropic
and nongyrotropic fluids, have been discussed in an interesting
recent paper by Du et al. (2019).

As a mean field theory that ignores particle correlations, the
Vlasov system is manifestly incomplete, but nevertheless
important physics may be addressed within this limited context.
In particular, because the Vlasov–Maxwell system is frequently
employed to study plasma turbulence, it is reasonable to ask—
what is the nature of entropy, and dissipation, in these
solutions? In spite of the large amount of recent studies on
the subject, one may observe from the discussion and frequent
disagreement at conferences that there is a lack of consensus on
these issues, and even on the definition of dissipation itself.

To organize thoughts on the subject, we propose here a
gedanken experiment that we suggest may clarify some of these
issues. The experiment itself is numerical, and while it would
be very illuminating to actually perform such a simulation, it is
our opinion that its implementation would be intractably
difficult at present. We will, however, propose a hypothesis
concerning its results.

Let us consider a large ( L d 1i ) electron–proton plasma
in a periodic (isolated) domain. For simplicity, assume the
electrons are collisionless and that there are no electron–proton
collisions. Now consider the evolution of this plasma in two
distinct cases: collisionless protons and weakly collisional
protons.

We make the following assertions:

1. The collision operator conserves momentum and energy.
Therefore, collisions alone cannot change energy from
flows into the trace of the pressure tensor, i.e., into the
reservoir of internal energy. The above property means
that collisions do not contribute directly to “heating,” for
example, in a uniform homogeneous flow at finite
“temperature.”

2. Whether or not there are collisions, the pressure–strain
interactions, pθ and PiD, can convert energy between
flows and the second central moment of distribution
functions.

3. Collisions act to limit the distortions of the ion vdf’s, i.e.,
the local effect of collisions is to smooth the vdf’s.

4. When there are no collisions, the Boltzmann entropy
= - á ñS k f fln x v, (B-entropy) is a constant. This Boltz-

mann entropy coincides with the thermodynamic entropy
(Clausius, or C-entropy) only when the system is in
thermal equilibrium.

With these ideas in mind, we formulate an illustrative
thought experiment as follows (see Figure 9):

1. A simulation is initiated with incompressive turbulent
fluctuations at large scales. There are no collisions. A cascade
develops in time.

2. The cascade causes degeneration or “dissipation” of large-
scale fluctuation in velocities and electromagnetic fields. The
Boltzmann entropy stays constant during the process, while
energy is exchanged, finding its way into internal energy. The
increase of the second central moment, i.e., the kinetic
temperature, while B-entropy remains constant is very different
from the state of affairs in collisional gas dynamics that remains
always in LTE.

3. After many eddy turnover (large-scale nonlinear) times
have transpired, almost all the energy has disappeared from

macroscopic, fluid-scale fluctuations. Because energy is
conserved, it is clear that energy has been transferred into
kinetic-scale degrees of freedom, and we assume that most of
this energy resides the particle’s kinetic energy. The associated
temperature increase has slowed drastically, and the kinetic
temperature is almost constant, near a value T1 (See Figure 9).
But with little or no energy left to dissipate, the temperature
cannot increase appreciably after this time. We may therefore,
to a reasonable approximation, compute the equivalent
C-entropy based on T1. We write down this number as a
prediction, even though Clausius is not applicable to this state,
which is not in an LTE/Maxwellian state.
4. At this point, time t1, the collisions are turned on and the

system continues to evolve. The Boltzmann entropy increases
during this period. However, the kinetic temperature cannot
increase because total energy is conserved, and the supply of
fluctuation energy was exhausted prior to time t1.
5. The collisions cause the evolution after time t1 to

approach a local Maxwellian (or even a global Maxwellian).
When a Maxwellian state is achieved to a good approximation,
the simulation is stopped at time t2.
6. Now compute the B-entropy and the C-entropy. They will

agree. They will also agree with the equivalent C-entropy we
wrote down in step 3. Therefore, this experiment enables a
“prediction” of the final Boltzmann entropy using a Vlasov
simulation (having no collisions.)
We offer this as a hypothesis regarding the outcome of the

thought experiment. If this hypothesis were to be verified, we
suggest that this sequence of events would serve to clarify the
roles of entropy/collisions and temperature/pressure–strain in
dissipation.
We have seen that in order to heat the plasma, one needs the

pressure tensor to interact with flow gradients. Collisions
indirectly contribute to heating, e.g., scattering particles and
subsequently changing the off-diagonal pressure tensor in
nearby locations. Note that turbulence, e.g., through pitch angle
scattering, does that as well, so the role of collisions in this

Figure 9. Diagram of a thought experiment discussed in the text, intended to
clarify the relationships among Vlasov dissipation, temperature, collisions, and
entropy. An idealized proton–electron kinetic (Vlasov) code is initialized with a
large (many di) sample of nearly incompressive fluctuations. The turbulent
evolution causes the decay of fluctuation energy until time t1, during which
time the Boltzmann entropy S remains constant while the proton internal
energy increases. At time t1, almost all fluctuation energy is dissipated and the
proton kinetic temperature has increased to a value Tkin. Now, proton–proton
collisions are “turned on.” Subsequently, the Boltzmann entropy increases, and
the kinetic temperature of protons remains essentially constant. At some later
time t2, the protons are at or close to Maxwellian distributions. We expect that
the thermodynamic temperature Tth and kinetic temperature Tkin will now be
equal and the thermodynamic entropy Sth will equal the Boltzmann entropy

( )=S S Tth at thermodynamic temperature Tth.
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regard is not unique. The conclusion is that, under the assumed
circumstances, collisions act to increase the B-entropy, but
collisions cannot change the temperature. In this sense,
temperature and entropy are, in general, independent concepts,
even though they coincide completely only in thermal
equilibrium.

8. Discussion: Recovering a Complex Cascade in Vlasov–
Maxwell Plasma

We have reviewed current understanding of the pathways to
energy dissipation in a proton–electron Vlasov–Maxwell
plasma, focusing mainly on the available channels for energy
conversion. Most of our discussion extends readily from the
simplest incompressible MHD model to more complex multi-
component collisionless plasma models.

The interaction between the pressure tensors and the gradients
of the velocity fields (for each species) occupies a particularly
important role, as these couplings are responsible for exchanges
between flows and internal energies. The pressure–gradient
couplings are conveniently decomposed into pressure–dilatation
and pressure–strain interactions. These interactions are not single-
signed and are observed to be broadly distributed, with a
relatively small net value (compared to their half-widths)
corresponding to the increase of internal energy. In this regard,
pressure–strain interaction is similar to electromagnetic work on
particles and to the unaveraged Kolmogorov–Yaglom third-order
correlations (Kolmogorov 1941a; Politano & Pouquet 1998),
which also are not single-signed, have broad distributions, and
usually have small net values after suitable averaging. All of
these quantities also admit highly nonuniform distributions in
space, corresponding to different facets of intermittency.

An interesting feature, revealed by scale filtering, is that
there are different ranges of scales in which each type of
transfer and conversion is most effective, or even dominant
over the others. In addition, other papers have shown that
transfer into compressive modes occurs mainly at larger scales
(Aluie 2011; Aluie et al. 2012). In the inertial range, the
Kolmogorov incompressive transfer occurs without loss over
the extent of the power-law range, while the compressive
cascade operates almost in parallel. Approaching kinetic scales,
the non-MHD part of the electromagnetic work on protons and
electrons becomes significant, with work on protons occurring
at somewhat larger scales. The key step of pressure–strain
conversion turns on strongly at subproton scales, leading to
robust production of internal energy at subproton kinetic scales.

The large fluctuations observed in the main channels of
transfer and conversion, the LET, the electromagnetic work
( ·J E), and the pressure–strain interactions (pθ and PiD) are an
intrinsic feature of plasma turbulence. The relatively small
average values of these quantities support the cascade itself,
transferring toward smaller scales and through small-scale fluid
velocity gradients, into internal energy.

Our current perspective is that, in this collisionless system,
the disappearance of macroscopic flow and magnetic field
fluctuations, and increase of internal energy are driven solely
by the enormous numbers of degrees of freedom available at
the level of thermal motions relative to those available to fluid
motions. Based on this idea, which we regard as plausible but
unproven, we developed the thought experiment described in
Section 7, which we offer as a hypothesis to clarify the role
of B-entropy and temperature in this type of collisionless
dissipation.

The above ideas concerning dissipation of turbulence in the
Vlasov–Maxwell regime are consistent with current knowledge,
largely based on inferences derived from numerical experiments,
and observations. Clearly, these cannot be viewed as proven or
rigorous in any sense. The closest theoretical analogy that we
envision as supporting this perspective is our current under-
standing of the Gibbsian absolute equilibrium ensemble
treatment of an ideal Galerkin truncated incompressible fluid
and MHD turbulence (Frisch et al. 1975; Kraichnan &
Montgomery 1980; Stribling &Matthaeus 1990; Shebalin 1996).
In those cases, the dynamics are fully ideal, with dissipation
coefficients such as viscosity and resistivity absent. However,
numerous computer experiments have shown that these systems
essentially always relax to a predictable statistical state that
maximizes a suitably defined entropy. This description qualita-
tively aligns with the present treatment of Vlasov–Maxwell
turbulence, but also hints at several caveats. An important
limitation is that in the Gibbsian case, the correct entropy is
apparently known, and it involves all available degrees of
freedom. Meanwhile, in the plasma case, we can only suggest at
present that a generalization of the Boltzmann entropy might be
developed that includes the turbulent fluctuations properly and
would then describe the dissipation process itself. Second, in the
Gibbsian fluid case, it is well known that the approach to the
statistical state sometimes involves strong transfer to the largest
scale, a phenomenon known as (Bose) condensation (Kraichnan
& Montgomery 1980; Servidio et al. 2008a). By analogy, in the
plasma case, dynamics associated with dynamo action might
also cause a reversal of scale transfer and of electromagnetic
work, so that the overall diagrammatic description of the cascade
would need to be appropriately modified. We therefore must
conclude with the caveat that the plasma turbulence cascade is
not likely to be universal in any meaningful sense. Conse-
quently, the conclusions and hypotheses we offer here, based
mainly on the analysis of weakly compressible, solar wind-like
plasma conditions (near equipartition, plasma beta order unity,
etc.), may require modifications when plasma parameters vary
into other regimes.
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the Presidential Postdoctoral Fellowship from the Southern
University of Science and Technology and NSFC grant No.
11902138.

Appendix A
Simulation

The kinetic simulation used in this paper was performed
using the fully electromagnetic particle-in-cell code P3D
(Zeiler et al. 2002) in 2.5D (three components of dependent
field vectors and a two-dimensional spatial grid) geometry. The
simulation was performed in a periodic domain, whose size is
=L d149.5648 i, with 40962 grid points and 3200 particles

of each species per cell (∼107× 109 total particles). The ion
to electron mass ratio is mi/me=25, and the speed of light in
the simulation is c=15vAr (vAr is the Alfvén speed). The run
is a decaying initial value problem, starting with uniform
density (n0= 1.0) and temperature of ions and electrons
(T0= 0.3). The uniform magnetic field is B0=1.0 directed
out of the plane. We analyzed statistics using a snapshot near
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the time of maximum root mean square (rms) electric current
density. Prior to statistical analyses, we removed noise inherent
in the particle-in-cell plasma algorithm through low-pass
Fourier filtering of the fields. This simulation was also used
to study kinetic plasma turbulence as a function of plasma β
(Parashar et al. 2018) and scale dependence of energy transfer
in turbulent plasma (Yang et al. 2019).

Appendix B
Filtering

This Appendix briefly describes the filtering technique
employed in Section 5 of the paper. The spatially filtered fα in
Equation (15) is given by

¯ ( ) ( ) ( ) ( )ò= ¢ - ¢ ¢a ax v x v x x xf t f t G d, , , , , 29l

where ( ) ( )= -r rG ℓ G ℓℓ
3 is a filtering kernel and ( )rG is a

normalized boxcar window function. The low-pass filtered āf
only contains information at length scales >ℓ.

The filtering operation can commute with derivative
operations, i.e.,

¯ ¯ ¯ ( )¶ = ¶  =   = a a a a a af f f f f f, , . 30v vt t

Then, the spatially filtered Vlasov equation is written as
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From Equation 31, moment equations for each species yields
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A Favre-filtered (density-weighted-filtered) field (Favre 1969)
is defined as

˜ ¯ ( )=a an n. 34

Then, the moment equations aforementioned can be written as
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t

t

r r r¶ +  = -

+ -  + + ´ ~~
a a a a a a a

a a a a a a a

u u u

P E u Bq cn q n c , 36

t
u

b

where ˜ ( ˜ ˜ )t = -~
a a a a au u u uu and ˜ ( ˜ )t = ´ - ´

~~
a a au B u Bb .
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