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  ABSTRACT 

  In this work, the polar metabolite pool of commercial 
caprine milk was studied by gas chromatography-mass 
spectrometry and multivariate statistical data analysis. 
Experimental data were compared with those of cow 
milk and the discriminant analysis correctly classified 
milk. By the same means, differences due to heat treat-
ments (UHT or pasteurization) on milk samples were 
also investigated. Results of the 2 discriminant analyses 
were combined, with the aim of finding the discrimi-
nant metabolites unique for each class and shared by 2 
classes. Valine and glycine were specific to goat milk, 
talose and malic acid to cow milk, and hydroxyglutaric 
acid to pasteurized samples. Glucose and fructose were 
shared by cow milk and UHT-treated samples, whereas 
ribose was shared by pasteurized and goat milk. Other 
discriminant variables were not attributed to specific 
metabolites. Furthermore, with the aim to reduce food 
fraud, the issue of adulteration of caprine milk by addi-
tion of cheaper bovine milk has been also addressed. To 
this goal, mixtures of goat and cow milk were prepared 
by adding the latter in a range from 0 to 100% (vol/vol) 
and studied by multivariate regression analysis. The er-
ror in the level of cow milk detectable was approximately 
5%. These overall results demonstrated that, through 
the combined approach of gas chromatography-mass 
spectrometry and multivariate statistical data analysis, 
we were able to discriminate between milk typologies 
on the basis of their polar metabolite profiles and to 
propose a new analytical method to easily discover food 
fraud and to protect goat milk uniqueness. The use of 
appropriate visualization tools improved the interpreta-
tion of multivariate model results. 
  Key words:    goat milk ,  gas chromatography-mass 
spectrometry ,  metabolomics ,  heat treatment ,  food fraud 

  INTRODUCTION 

  Goat (Capra hircus) milk and related dairy prod-
ucts have nowadays gained a valuable industry niche 
(Dubeuf et al., 2004). Many commercial parameters 
indicate that the diffusion of goat dairy products is 
increasing as whole milk, fermented milk derivatives, 
dried or evaporated milk, and for the production of 
cheese. The nutritional and health benefits of goat milk 
are of the utmost relevance for people affected by food 
allergies, with bovine milk proteins the dominant food 
cause. Although controversial, superior digestibility of 
goat milk compared with cow milk, attributed to the 
higher content of the αs2-CN variant rather than αs1-
CN, lower naturally homogenized fat globule size, and 
the higher proportion of medium-chain triacylglycerols 
has been commonly accepted. Despite the huge number 
of reports on its nutraceutical properties (Silanikove et 
al., 2010; Ceballos et al., 2009), the use of goat milk for 
nutraceutical needs still deserves in-depth discussion 
and documentation (Haenlein, 2004). Milk is a very com-
plex mixture of several components in different physical 
states. Milk composition is influenced by a range of dif-
ferent factors (e.g., diet, genetics, number and stage of 
lactation, seasonal variation, SCC, and milk processing; 
Goetsch et al., 2011). These factors may have remark-
able quantitative effects on milk nutrients as well as on 
the physical and technological properties of milk (e.g., 
coagulation properties, heat stability, and fermentation 
quality of the milk; Dubeuf et al., 2004). Whereas lip-
ids and lactose are the 2 major caloric nutrients, milk 
also contains a wide variety of bioactive compounds, 
including immunoglobulins and other immune proteins, 
peptides, nucleotides, oligosaccharides, and metabolites 
(Raynal-Ljutovac et al., 2008; Sundekilde et al., 2013). 
Sugars, free amino acids, organic acids, and other low-
molecular-weight compounds compose the metabolite 
pool of milk. The different origin and sources of these 
compounds contribute to the variability of milk metab-
olite profiles. Milk metabolites often reflect metabolic 
activity in the mammary gland or metabolism in the 
whole organism, or both; they may also originate from 
enzymatic reactions or from microorganisms present in 
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raw milk, or both (Sundekilde et al., 2013). Moreover, 
before entering the market, milks undergo different heat 
treatments that determine their commercial value and 
their quality; these treatments can modify the over-
all metabolite composition of milk. It was found that 
levels of monosaccharides in milk change because of 
thermal processing (Mendoza et al., 2005) and during 
storage (Troyano et al., 1996). The characterization of 
the metabolite profile in a biological matrix is well per-
formed by metabolomics; this science is based on the 
use of analytical methods, such as GC-MS (Marincola 
et al., 2012), nuclear magnetic resonance (Locci et al., 
2011), and direct analysis in real time-mass spectrom-
etry (Hrbek et al., 2014), coupled with multivariate 
statistical data analysis (MVA). Metabolomic studies 
have been extensively applied in the areas of nutrition 
sciences and food matrices, such as milk (Chen et al., 
2004; Boudonck et al., 2009; Klein et al., 2010; Marin-
cola et al., 2012; Harzia et al., 2013; Sundekilde et al., 
2013; Hrbek et al., 2014).

The risk linked to food fraud is increasing due to 
the global and composite nature of food supply chains. 
With the aim to reduce this risk and in view of detect-
ing economically driven adulterations, in this study, the 
issue of adulteration of caprine milk by the addition of 
cheaper bovine milk was addressed. The commercial 
value of goat milk is much higher than that of cow milk 
due to lower productivity and little market demand; 
therefore, the addition of cow milk to goat milk can 
allow economic advantages and becomes a fraud when 
the mixture is sold with label. Taking into account this 
option, in this paper, an attempt to assess whether 
the metabolomic approach could be suitable tool for 
discovering such fraud was carried out. The literature 
reports several attempts to find suitable methods to 
detect milk adulteration. Quantification of cow milk 
adulteration of goat milk, based on solvent separation 
of whey proteins, followed by HPLC with electrospray 
ionization mass spectrometry, was performed by Chen 
et al. (2004); levels as low as 5% of cow milk were de-
tected. Levieux and Venien (1994) proposed an ELISA 
to detect cow β-LG at 5 ng/mL. Antonilli et al. (2005), 
by inspection of the ratios of some FAME, offered some 
parameters suitable for discovering such fraud. Proton 
nuclear magnetic resonance low-molecular-weight me-
tabolite fingerprinting was applied for the quantifica-
tion of the relative amount of cow and sheep milk in 
mixtures (Lamanna et al., 2011).

In this work, for the first time, the goat milk me-
tabolite profile, composed by polar and hydrophilic 
low-molecular-weight compounds, was characterized by 
the means of GC-MS and compared, through the appli-
cation of discriminant multivariate analysis, with cow 

milk. Differences in milk metabolite profiles correlated 
with heat treatments: UHT and pasteurization were 
also investigated. Moreover, milk mixtures of goat milk 
with increasing quantities of cow milk were prepared 
and their GC-MS metabolic profiles used to construct 
a suitable model, based on orthogonal projections to 
latent structures (OPLS) regression, to detect adul-
teration of goat milk with cow milk.

MATERIALS AND METHODS

Chemicals and Reagents

Methanol, chloroform, hexane, pyridine, methox-
amine hydrochloride, potassium chloride, N-methyl-N-
(trimethylsilyl)trifluoroacetamide, lactic acid, valine, 
butyric acid, urea, glycine, succinic acid, fumaric acid, 
serine, malic acid, proline, alanine, creatinine, gluta-
mine, phosphoric acid, fructose, glucose, galactose, 
gluconic acid, palmitic acid, inositol and stearic acid 
were purchased from Sigma-Aldrich (Milan, Italy). 
Bidistilled water was obtained from a Milli-Q purifica-
tion system (Millipore S.p.A., Milan, Italy) before use.

Samples

Seventeen commercial samples of goat whole milk 
(G1–G17) and 14 samples of cow whole milk (C1–
C14) were acquired in local markets; all samples were 
within the expiration date. Seventeen milk samples 
were subjected to UHT and 14 samples were subjected 
to pasteurization processes. Furthermore, 9 mixtures 
were prepared by adding different aliquots (%, vol/vol) 
of cow milk to goat milk as follows: 0, 5, 10, 20, 40, 50, 
60, 80, and 100%.

Extraction and Derivatization

To obtain rupture of the milk micelles, 15 mL of 
sample was sonicated for 15 min; 100 μL of milk was 
transferred to an Eppendorf tube and then 250 μL of 
methanol and 125 μL of chloroform were added. Samples 
were vortexed every 15 min 4 times and then 380 μL 
of chloroform and 90 μL of aqueous 0.2 M potassium 
chloride were added. The suspension was centrifuged 
at 13,572 × g for 10 min at 4°C. After centrifugation, 
the aqueous layer was transferred to a glass vial and 
dried by a gentle nitrogen stream and derivatized with 
50 μL of pyridine containing methoxamine hydrochlo-
ride at 10 mg/mL. After 17 h, 100 μL of N-methyl-N-
(trimethylsilyl)trifluoroacetamide was added and after 
1 h, samples were resuspended with 600 μL of hexane.
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GC-MS Analysis

One microliter of derivatized samples was injected 
splitless into a 6850 gas chromatograph coupled with 
a 5973 Network mass spectrometer (Agilent Technolo-
gies Inc., Santa Clara, CA). The injector temperature 
was 200°C. The gas flow rate through the column was 
1 mL/min. The fused silica capillary column was a 
0.25-μm DB5-MS column (30 m × 0.25 mm i.d.; J&W 
Scientific Inc., Folsom, CA). The initial temperature 
program was as follows: 3 min of isothermal heating at 
50°C, which was then increased to 250 at 3°C/min and 
held at 250°C for 25 min. The transfer line and the ion 
source temperatures were 280 and 180°C, respectively. 
Ions were generated at 70 eV with electron ionization 
and were recorded at 1.6 scans/s over the mass range 
m/z 50 to 550. The GC-MS data analysis was conduct-
ed by integrating each resolved chromatogram peak. 
Identification of metabolites was performed using the 
standard NIST08 mass spectra library (http://www.
nist.gov/srd/mslist.cfm), a library developed at the 
Max Planck Institute of Golm (Germany), and, when 
available, by comparison with authentic standards.

Multivariate Statistical Data Analysis

A 31 × 40 matrix composed of the analyzed milk 
samples (31 samples) and the chromatographic peak 
areas (40 variables) was constructed together with a Y 
matrix with sample information: milk typologies (goat 
and cow) and heat treatments (pasteurization and 
UHT). In addition, a second X matrix (9 × 41) was 
constructed; it was composed of the 9 mixtures, the 40 
x variables and 1 continuous y variable consisting of 
the percentages of cow milk added. For both of them, 
the median fold change normalization row-wise was se-
lected for adjusting peak intensities between samples to 
a common scale. This centering method assumes that 
measured peak intensities are directly proportional to 
concentrations of metabolites in solution. Under this 
assumption, the change in intensity of a profile due 
to variable sample dilution or inconsistency of GC-MS 
acquisition parameters, or both, are expected to be uni-
form across all peaks and thus a fixed scaling factor is 
used (Veselkov et al., 2011). When a variable presented 
skew distribution it was logarithmically transformed 
and the improvement of the symmetry evaluated us-
ing the skewness test statistics as implemented in 
SIMCA-P software (version 13.0; MKS Umetrics AB, 
Umeå, Sweden). Prior to analysis, each data matrix 
was mean centered and unit variance scaled column-
wise. The obtained matrices were submitted to MVA. 
Principal components analysis (PCA), the partial least 
squares (PLS) method, PLS-discriminant analysis 

(PLS-DA), and their orthogonal extensions (OPLS 
and OPLS-DA; Eriksson et al., 2013) were performed 
with SIMCA-P software. The quality of the models was 
evaluated on the basis of the cumulative parameters 
R2X (variation in X explained by the model), R2Y 
(amount of Y explained by the model), and Q2 (i.e., 
the cumulated cross-validation for R2Y; or R2X for the 
PCA), estimated by the default leave-one-seventh-out 
cross-validation in the corresponding PLS-DA model. 
Models were tested for overfitting using the y-table 
permutation test (n = 400) as implemented in the 
SIMCA-P+ program. Jackknifed standard errors were 
calculated from all rounds of cross-validation. Accuracy 
for the PLS model, in which the leave-one-out cross-
validation was performed, was evaluated by the root 
mean square error in cross-validation (Eriksson et al., 
2013). Results of the OPLS-DA models were also com-
pared and reported as a shared and unique structures 
(SUS) plot; this is a 2-dimensional scatter plot of the 
loading correlation vectors of the predictive components 
of 2 separate models (Wiklund et al., 2008).

RESULTS AND DISCUSSION

A total of 31 commercial samples of goat and cow 
whole milks were studied by GC-MS; from the analysis 
of the chromatograms, we selected a total of 40 polar 
metabolites reported in Table 1. Twelve compounds 
were not identified and they will be hereafter named 
U1 to U12. The chemical composition analysis re-
vealed that the aqueous fraction obtained by the ex-
traction procedure was rich in short-chain hydroxylated 
carboxylic acids, such as lactic acid, succinic acid, fu-
maric acid, malic acid, 2-hydroxyglutaric acid, and 
gluconic acid; long-chain stearic and palmitic acids 
were also found. Among free amino acids, serine, valine, 
glycine, alanine, proline, and glutamine were detected. 
Also the saccharides d-glucose, fructose, talose, inosi-
tol, and galactose were identified. In Table 2, we re-
ported the normalized areas of each metabolite as 
means and standard deviations over all samples for the 
2 typologies of milk. In this work, aimed at observing 
also the variability of the detected metabolites within 
each milk typology, we also reported the coefficient of 
variation (SD/mean). The reported coefficient of varia-
tion for each variable gives a measure of the dispersion 
of the variable among samples in a way that does not 
depend on the variable measurement unit; this allowed 
us to directly compare the coefficients of variation, 
higher values of which indicated a greater dispersion in 
the variable. By the Student’s t-test, we also tested the 
null hypothesis (the means are not significantly differ-
ent among the 2 sets of samples) and we reported the 
results in Table 2. In this table, we observed that, with 
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a high level of confidence (P < 0.01), the null hypoth-
esis was rejected for a great number of metabolites (27 
out of 40). The sum of coefficient of variation values 
was 27.8 and 18 for goat and cow milk samples, respec-
tively, indicating a greater variability of the metabolite 
concentrations within caprine milk. The data we re-
ported in Table 2 were the results of univariate tests 
that analyze each variable separately. Conversely, in 
biological samples, the variables are often intercon-
nected and only a multivariate approach is able to fully 
describe these systems, taking into consideration sev-
eral variables and their relationship simultaneously. 
Under this perspective, we constructed a matrix com-
posed of the normalized area of chromatographic data 
for the analyzed samples and we submitted it to MVA. 
Initially, for sample distribution overview, to detect 

outliers, deviating features, and common trends, we 
performed a PCA; the first 2 principal components ac-
counted for 45% of the total variance. We report the 
results in the score plot, shown in the top panel of 
Figure 1; here, we observed that samples of cow and 
goat milk clustered in different areas of the plot and 
goat samples were very scattered. We concluded that 
cow milk samples had similar characteristics that dif-
fered from those of goat milk, and that goat milk, based 
on the detected variables, had a more heterogeneous 
composition, as already observed from the analysis of 
results in Table 2. Based on Hotelling’s T2 test at 99% 
confidence, sample G12 was identified as an outlier, 
and because no evident reasons for its deviating fea-
tures were found and, moreover, its behavior was in 
trend with sample G15, we decided to keep this sample 

Table 1. The GC-MS characteristics of milk metabolites 

Compound
Retention  
time (min)

EI-MS1 [m/z (amu),  
with relative abundance  

(%) in parentheses] Trivial name Abbreviation

2-Hydroxypropanoic acid 9,352 147 (100), 73 (80), 117 (74) Lactic acid Lac
Valine 9,713 72 (100), 75 (31), 73 (27) Valine Val
Butanoic acid 10,879 147 (100), 117 (52), 73 (53) Butyric acid BA
Unknown 1 11,665 73 (100), 228 (90), 184 (39) U1
Urea 12,139 147 (100), 189 (62), 171 (58) Urea Urea
Unknown 2 12,533 158 (100), 73 (64), 159 (15) U2
Glycine 13,02 174 (100), 73 (34), 248 (18) Glycine Gly
Butanedioic acid 13,064 147 (100), 73 (41), 75 (17) Succinic acid Suc
2-Butenedioic acid 13,495 245 (100), 147 (40), 73 (37) Fumaric acid Fum
Serine 13,782 204 (100), 73 (63), 218 (55) Serine Ser
Unknown 3 14,610 73 (100), 174 (74), 248 (58) U3
Hydroxybutanedioic acid 15,430 73 (100), 74 (86), 147 (74) Malic acid Mal
l-Proline 15,820 156 (100), 73 (55), 147 (20) Proline Pro
Alanine 15,883 84 (100), 174 (86), 75 (47) Alanine Ala
Creatinine 16,279 115 (100), 73 (67), 329 (33) Creatinine Crn
2,3,4-Trihydroxybutyric acid 16,399 73 (100), 147 (65), 292 (43) 2,3,4-Trihydroxybutyric acid 3-HBA
2-Hydroxypentanedioic 16,470 73 (100), 147 (49),129 (41) Hydroxyglutaric acid HGA
Glutamine 16,992 246 (100), 73 (46), 128 (21) Glutamine Gln
Unknown 4 18,366 117 (100), 73 (54), 160 (14) U4
Unknown 5 18,419 254 (100), 357 (51), 73 (45) U5
Unknown 6 18,497 117 (100), 73 (71), 147 (25) U6
Glycerophosphoric acid 18,691 357 (100), 299 (95), 73 (72) Phosphoglycerate PG
Unknown 7 18,793 73 (100), 292 (69), 147 (46) U7
Phosphoric acid 18,884 292 (100), 174 (28), 217 (20) Phosphoric acid PA
Unknown 8 19,422 73 (100), 147 (51), 117 (23) U8
Unknown 9 19,489 73 (100), 217 (60), 147 (40) U9
d-Fructose 19,929 73 (100), 103 (68), 217 (51) Fructose Frc
Unknown 10 19,990 73 (100), 331 (54), 147 (33) U10
Unknown 11 20,144 204 (100), 73 (50), 205 (20) U11
d-Glucose 20,203 73 (100), 319 (80), 205 (61) Glucose Glc
d-Galactose 20,601 73 (100), 333 (87), 292 (59) Galactose Gal
Talose 20,955 204 (100), 73 (52), 191 (46) Talose Tal
d-Gluconic acid 21,243 73 (100), 147(47), 333 (40) Gluconic acid GcA
Hexadecanoic acid 21,29 73 (100), 117 (75), 313 (73) Palmitic acid PmA
Inositol 22,050 73 (100), 217 (72), 305 (72) Inositol Ino
d-Ribose 22,240 73 (100), 315 (44), 299 (34) Ribose Rib
d-Mannitol 22,553 73 (100), 319 (70), 205 (50) Mannitol Man
Octadecanoic acid 23,077 73 (100), 341 (51), 117 (49) Stearic acid StA
Unknown 12 24,182 73 (100), 315 (82), 217 (45) U12
Unknown 13 24,317 73 (100), 387 (82), 299 (54) U13
1Electron impact-mass spectrometry.
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for further analysis. The role of the variables in sample 
distribution can be evinced by the analysis of the load-
ing plot shown in the bottom panel of Figure 1. Here, 
considering that samples clustered based on their ani-
mal provenience along the first principal component, 
we assumed that variables in the right side of the plot 
(ribose, glycine, and U9, among others) characterized 
goat milk and sugars (glucose, fructose, and talose) 
characterized cow milk. The deviating samples, G12 
and G15, were high in succinate, a metabolite entering 
the Krebs cycle. To classify goat and cow milk based on 
their metabolite profiles, we performed an OPLS-DA. 
This discriminant analysis, with a high degree of confi-
dence, correctly classified samples and well separated 

the 2 classes of milk, producing a model with R2(X) = 
0.43, R2(Y) = 0.95, and Q2(Y) = 0.87, with 1 predictive 
component and 1 orthogonal component; the resulting 
score plot is shown in the top panel of Figure 2. The 
analysis of loading values along the predictive compo-
nent, (bottom panel of Figure 2), indicated that the 
most important variables in discriminating the 2 classes 
[i.e., those having the largest values (negative or posi-
tive)] were glycine, ribose, and valine for goat milk 
(positive values in the bottom panel of Figure 2), and 
U5, U11, glucose, and talose for cow milk. In the or-
thogonal direction, interclass variability was dominated 
by the difference of the metabolite profiles due to the 
heat treatments. Consequently, we also compared UHT 

Table 2. Metabolite composition (peak area, %), as calculated by GC-MS, of goat and cow milk1 

Compound

Goat (n = 17) Cow (n = 14)

P-value2Mean SD CV Mean SD CV

Lactic acid 5.47 4.75 0.87 1.79 0.62 0.35 0.007**
Valine 0.56 0.47 0.84 0.10 0.04 0.37 0.001**
Butyric acid 0.20 0.11 0.56 0.33 0.13 0.38 0.004**
Unknown 1 0.84 0.26 0.31 0.55 0.23 0.41 0.004**
Urea 62.50 10.42 0.17 49.15 6.09 0.12 0.000**
Unknown 2 0.25 0.40 1.63 0.08 0.10 1.26 0.13
Glycine 4.99 2.40 0.48 1.20 0.24 0.20 0.000**
Succinic acid 1.34 2.54 1.89 0.31 0.14 0.46 0.14
Fumaric acid 0.15 0.16 1.07 0.23 0.08 0.32 0.081
Serine 0.09 0.10 1.12 0.05 0.03 0.56 0.10
Unknown 3 0.04 0.01 0.32 0.02 0.01 0.30 0.000**
Malic acid 0.24 0.30 1.23 0.66 0.20 0.30 0.000**
Proline 0.70 0.37 0.52 0.73 0.21 0.29 0.80
Alanine 0.15 0.10 0.63 0.38 0.31 0.80 0.007**
Creatinine 1.04 0.63 0.60 0.68 0.27 0.40 0.054
2,3,4-Trihydroxybutyric acid 0.14 0.11 0.78 0.09 0.05 0.49 0.16
Hydroxyglutaric acid 2.28 1.00 0.44 1.34 0.52 0.39 0.003**
Glutamine 1.86 0.89 0.48 3.05 0.65 0.21 0.000**
Unknown 4 0.85 0.61 0.71 0.88 0.23 0.26 0.86
Unknown 5 1.21 0.44 0.36 8.65 2.04 0.24 0.000**
Unknown 6 0.27 0.22 0.80 0.25 0.05 0.20 0.77
Phosphoglycerate 2.16 1.31 0.61 3.17 2.02 0.64 0.10
Unknown 7 0.13 0.11 0.88 0.23 0.10 0.45 0.015**
Phosphoric acid 0.24 0.12 0.49 0.20 0.26 1.32 0.52
Unknown 8 0.54 0.21 0.39 1.70 0.62 0.37 0.000**
Unknown 9 4.81 1.28 0.27 2.78 0.64 0.23 0.000**
Fructose 0.09 0.08 0.87 0.21 0.04 0.22 0.000**
Unknown 10 0.55 0.19 0.35 0.64 0.26 0.40 0.28
Unknown 11 1.50 1.02 0.68 8.60 3.05 0.35 0.000**
Glucose 0.76 0.51 0.67 4.18 1.71 0.41 0.000**
Galactose 0.80 0.35 0.44 1.19 0.22 0.18 0.001**
Talose 0.53 0.52 0.99 4.48 2.71 0.60 0.000**
d-Gluconic acid 0.11 0.13 1.11 0.16 0.05 0.30 0.26
Palmitic acid 0.21 0.18 0.86 0.36 0.37 1.02 0.15
Inositol 0.80 0.37 0.46 0.50 0.09 0.19 0.005**
Ribose 0.17 0.07 0.42 0.05 0.04 0.90 0.000**
Mannitol 0.21 0.19 0.87 0.27 0.08 0.31 0.34
Stearic acid 0.07 0.04 0.59 0.13 0.14 1.11 0.10
Unknown 12 0.42 0.20 0.48 0.23 0.10 0.44 0.004**
Unknown 13 0.70 0.39 0.56 0.38 0.11 0.29 0.006**
1Means, SD, and CV over all samples.
2Probability associated with the Student’s t-test. 
**P < 0.01.
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and pasteurized samples by an OPLS-DA. It resulted in 
a model with 1 predictive component and 1 orthogonal 
component and with R2(X) = 0.44, R2(Y) = 0.83, and 
Q2(Y) = 0.68; the latter value indicated a higher uncer-
tainty in class separation compared with that of the 

model concerning milk animal origin. We reported the 
score plot and the loading values in the top and bottom 
panel of Figure 3, respectively. Loading values indicated 
that U7 and U11, together with the sugars glucose and 
fructose had higher levels in UHT samples, whereas 

Figure 1. Principal components (PC) analysis of milk samples: PC1 versus PC2 score plot (top) of goat (G in green circles) and cow (C in 
blue squares) milk. The explained variance is reported in parentheses. The ellipse encloses the 95% Hotelling’s T2 confidence region. The bot-
tom panel shows the corresponding loading plot. Metabolites are abbreviated as proposed in Table 1. Color version available in the online PDF.
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hydroxyglutaric acid, U9, and ribose had higher levels 
in pasteurized samples. To target metabolites due 
solely to milk typology (goat vs. cow) and solely to heat 
treatments (UHT vs. pasteurization) and to avoid con-
founding overlapping, we projected the correlation 

loading vector of the predictive component in the goat 
and cow OPLS-DA model versus that of the OPLS-DA 
model concerning heat treatments. In such a way, we 
obtained the SUS plot reported in Figure 4. This 2-di-
mensional plot helped us to visualize both the shared 

Figure 2. Orthogonal projections to latent structures-discriminant analysis of milk samples from different animal origin: score plot (top) of 
goat (G) and cow milk (C) samples, including pasteurized (green circles) and UHT-treated (blue squares) samples; tp = predictive component; 
to = first orthogonal component. The bottom panel shows loading plot values along the predictive component, with error bars indicating the 
jackknifed confidence interval. Only metabolites with the highest loading values are reported and aligned in ascending order, with positive values 
for goat milk. Metabolites are abbreviated as proposed in Table 1. Color version available in the online PDF.
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and unique information of the 2 OPLS-DA models. The 
variables lined up along the diagonal running from the 
lower left corner to the upper right corner represented 
the shared structure between the 2 compared OPLS 

models. Conversely, variables that were not located 
along this diagonal represented structures that were 
unique to each class of the 2 compared models, always 
under the assumption that correlation loading vectors 

Figure 3. Orthogonal projections to latent structures-discriminant analysis of milk samples classified by heat treatments: score plot (top) of 
goat (G) and cow milk (C) samples, including pasteurized (green circles) and UHT-treated (blue squares) samples; t1 = predictive component; 
to = first orthogonal component. The bottom panel shows loading plot values along the predictive component, with error bars indicating the 
jackknifed confidence interval. Only metabolites with the highest loading values are reported and aligned in ascending order, with positive values 
for UHT milk. Metabolites are abbreviated as proposed in Table 1. Color version available in the online PDF.
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have significant values for the studied classes of samples. 
We observed that the metabolites with the highest cor-
relations with goat milk were valine and glycine; it is 
worth recalling that valine, together with leucine and 
isoleucine, enters in metabolic pathways involved in the 
production of branched-chain FA, of which caprine milk 
is particularly rich (Massart-Leën and Massart, 1981). 
An important characteristic of goat milk is the unique 
flavor, attributed to differences in the fat fraction 
(Amigo and Fontecha, 2011); contribution to milk taste 
can be also given by valine (bitter) and glycine (sweet). 
The SUS plot also indicated that U5, talose, U8, and 
malic acid were the metabolites unique to bovine milk. 
The UHT samples resulted high in U7 and pasteurized 
samples resulted high in hydroxyglutaric acid (Figure 
4). Ribose and U9 were shared by goat and pasteurized 
milk. Glucose, fructose, and U11 were shared by UHT 
and cow samples. This latter observation is in agree-
ment with previous findings that indicate a higher pres-
ence of lactose in cow milk compared with goat milk 
(Amigo and Fontecha, 2011) and that, following UHT 
treatments, lactose is hydrolyzed to monosaccharide-
reducing sugars, which, reacting with amino groups, 
can give rise to undesired Amadori compounds (Men-
doza et al., 2005). We also observed that other metabo-
lites, although lower in correlation, exhibited interest-
ing features; for example, proline exhibited a correlation 

value of approximately 0 for the goat versus cow OPLS-
DA model but had a correlation of 0.5 with UHT treat-
ment class. In this regard, it has been reported that, in 
UHT milk, casein exhibits lower proline content (Ta-
mime, 2009); a release of proline could then take place, 
thus increasing its presence as a free amino acid in the 
bulk.

The above-reported results proved that the GC-MS-
based metabolomic approach was able to discriminate 
the 2 milk typologies (goat and cow) based on their 
metabolites. To test the predictive potentiality of the 
GC-MS profile for fraud detection, we submitted to 
MVA the analytical data of the prepared mixtures of 
goat and cow milk (see Materials and Methods section). 
A single-Y OPLS technique was used to construct the 
model that correlated the chromatographic data of 
the mixtures to the percentages of cow milk added as 
the y dependent variable. The obtained OPLS model 
had R2(Y) = 0.996 and Q2 = 0.879; the accuracy for 
prediction in cross-validation of percentage of cow 
milk added, indicated by the root mean square error 
in cross-validation value, was approximately 5%. A 
detectability of addition of cow milk as low as 5% can 
be considered a satisfactory result when such a fraud 
has to be detected; lower quantities are economically 
meaningless. This strategy can be proposed as a valid, 
fast, and cheap tool against commercial fraud regarding 

Figure 4. Shared and unique structures plot of the orthogonal projections to latent structures-discriminant analysis models of milk samples. 
The horizontal axis contains the loading correlation values of goat versus cow model and the vertical axis contains the loading correlation values 
of the pasteurized versus UHT model. Variables in the lower left corner are shared in goat and pasteurized samples; variables in the upper right 
corner are shared in cow and UHT samples. Metabolites are abbreviated as proposed in Table 1.
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mixtures of milk having different commercial values. As 
a final remark, we want to recall the extreme variabil-
ity of goat milk reported by several authors (Haenlein, 
2004; Amigo and Fontecha, 2011; Sabahelkheir et al., 
2012); therefore, studies of caprine milk and deriva-
tives could still be far from delineating standardizable 
results.
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