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Introduction

The regulation of the reproductive systems and of many 
functions in liver, bones, central nervous system and 
cardiovascular systems are some examples of the effects 
of estrogens, endocrine molecules exemplified by 17β-
estradiol (Figure 1)1 The latter binds to the estrogen recep-
tor (ER), known to be present in two isoforms (ER-α and 
ER-β), leading to a conformational change that allows 
the ER to act as transcription factor, giving rise to gene 
expression changes and modulatory functions2.

ERs are known to be able to recognize non-steroido-
genic substances. Indeed, the promiscuity of the ER has 
led to the development of molecules with estrogenic and 
therapeutical potential3. In the past decades, the tremen-
dous effort made to characterize the interaction of the ER 
with its ligands and the activation cascade4 has led to a 
detailed knowledge of the receptor-ligand interactions 
and the pharmacophore is actually known5,6.

The pharmacophore ligand model (Figure 1) sum-
marizes the key structural features deducted from 17β-
estradiol: (1) H-bonding ability of the phenolic ring 
mimicking the 3-OH, (2) H-bond donor mimicking the 
17β-OH, (3) O-O distance between 3 and 17β-OH, (4) 

precise steric hydrophobic centers mimicking steric 7α 
and 11β-substituents, (5) hydrophobicity and (6) a ring 
structure6. Indeed, such understanding has led the phar-
maceutical industry to develop a number of estrogen ago-
nists and antagonists to modulate the hormonal activity 
in the different body districts and health conditions7.

In the last decades, the search for compounds 
endowed with higher affinity and selectivity (eventually 
with respect to the ER subtype) has led to the preparation 
or isolation of different estradiol analogs, the best known 
families being diarylethanes (e.g. hexestrol8,9), di/tri-
arylethenes (e.g. diethylstilbestrol10,11, tamoxifen12,13) and 
phytoestrogens14,15 (flavones, flavanones, isoflavones, 
etc.). In addition to these, a large number of synthetic 
estradiol analogs have been built over the pharmacoph-
ore model16. The main variations are observed in the 
central region, where different substructures have been 
employed to bear two phenolic ring with the OH-OH 
distance predicted by the established model. To this 
purpose, several analogs with central spacing structures 
such as five-membered heterocyclic rings17,18 have been 
synthesized and tested. Additional derivatives involve 
fusion of one of the phenolic ring with carbo-19,20 and 
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hetero-cycles21, five-membered rings being a common 
choice22–24 and leading to well known leads such as ralox-
ifen25. Quite surprisingly, simpler spacing substructures 
have been scarcely employed26,27 and we were therefore 
prompted to explore if simpler functional groups could be 
engaged in the preparation of efficient estrogen analogs. 
In particular, we were interested in the use of a simple car-
boxylic amide as the central section of novel potential ER 
ligands. The amide group can be readily assembled from 
carboxylic acids and amines precursors, each of them 
bearing the required structural features; its size is such 
that the phenolic rings may be positioned with a correct 
OH-OH distance. The restricted rotation around the C-N 
bond imparts an overall molecular rigidity while main-
taining a residual conformational mobility. The nitrogen 
atom may be eventually decorated with substituents in 
order to fine-tuning the lipophilicity of the molecule. 
Finally, the easy formation of the amide functional group 
is compatible with solid-phase and combinatorial syn-
thetic methods, allowing eventual wide-range screening 
to be performed with limited synthetic efforts.

In this work, we report the preparation of a small library 
of eight polyhydroxy-N-arylbenzamides (Figure 2), and 
preliminary tests on their activity towards ERs.

Material and methods

General procedure for the synthesis of  
compounds (1–8)
The aminophenol (1.0 mmol), the hydroxybenzoic acid 
(1.0 mmol) and EDC (N-(3-Dimethylaminopropyl)-
N′-ethylcarbodiimide hydrochloride, 1.2 mmol) were 
dissolved in acetone (5 mL). The mixture was stirred 
and refluxed 12 h under N

2
 atmosphere. The solvent 

was evaporated and the residual solid was dissolved in 
ethyl acetate and washed three times with 1 M aq HCl, 
and 10% aq Na

2
CO

3
. The organic phase was dried over 

Na
2
SO

4
 and evaporated in vacuum to give the desired 

polyhydroxyamide.

3-Hydroxy-N-(3-hydroxyphenyl)benzamide (1)
1H NMR (300 MHz, CD

3
OD) δ 7.34 (dt, J = 7.5, 1.5 Hz, 1H), 

7.31−7.27 (m, 3H), 7.14 (t, J = 8.0 Hz, 1H), 7.06 (ddd, J = 8.2, 
1.2, 1.2 Hz, 1H), 6.97 (ddd, J = 7.8, 2.5, 1.4 Hz, 1H), 6.58 
(ddd, J = 8.0, 2.5, 1.2 Hz, 1H) ppm; 13C NMR (75.4 MHz, 

CD
3
OD) δ 167.7, 157.5, 139.6, 136.5, 129.4, 129.2, 118.5, 

118.1, 114.2, 112.1, 113.3, 108.1 ppm; MS(EI): 230.2 
(M·H+); m.p. 187.5–188.7°C.

3-Hydroxy-N-(4-hydroxyphenyl)benzamide (2)
1H NMR (300 MHz, CD

3
OD) δ 7.42 (d, J = 8.8 Hz, 2H), 

7.37-7.28 (m, 3H), 6.87 (ddd J = 7.8, 2.4, 1.4 Hz, 1H), 6.78 
(d, J = 8.8, Hz, 2H) ppm; 13C NMR (75.4 MHz, CD

3
OD) 

δ 167.5, 157.6, 154.4, 136.4, 130.2, 129.3, 123.1, 118.4, 
118.0, 114.9, 114.1 ppm; MS(EI): 230.1 (M·H+); m.p. 
208.0–209.2°C.

4-Hydroxy-N-(3-hydroxyphenyl)benzamide (3)
1H NMR (300 MHz, CD

3
OD) δ 7.80 (d, J = 8.9 Hz, 2H), 

7.26 (t, J = 2.3 Hz 1H), 7.13 (t, J = 8.0 Hz, 1H), 7.05 (ddd, 
J = 8.1, 2.3, 1.1 Hz, 1H), 6.86 (d, J = 8.6 Hz, 2H), 6.56 (ddd, 
J = 8.1, 2.3, 1.1 Hz, 1H) ppm; 13C NMR (75.4 MHz, CD

3
OD) 

δ 167.4, 161.0, 157.5, 139.8, 131.4, 129.4, 129.1, 125.7, 
114.8, 112.2, 111.1, 108.2 ppm; MS(EI): 230.1 (M·H+); m.p. 
200.8–201.6°C.

Figure 2. N-arylbenzamides library.

Figure 1. 17-β estradiol and a simplified model of the ER 
pharmacophore.
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4-Hydroxy-N-(4-hydroxyphenyl)benzamide (4)
1H NMR (300 MHz, CD

3
OD) δ 7.79 (d, J = 8.6, Hz, 2H), 7.40 

(d, J = 8.9 Hz 2H), 6.85 (d, J = 8.9 Hz, 2H), 6.77 (d, J = 9.2 
Hz, 2H) ppm; 13C NMR (75.4 MHz, CD

3
OD) δ 168.6, 162.4, 

155.6, 131.7, 130.5, 126.7, 124.5, 116.2 ppm; MS(EI): 230.2 
(M·H+); m.p. 198–199.5°C.

2,4-Dihydroxy-N-(3-hydroxyphenyl)benzamide (5)
1H NMR (300 MHz, CD

3
OD) δ 7.80 (d, J = 8.9 Hz, 1H), 7.23 

(t, J = 2.1 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H),7.06 (dd, J = 8.7, 2.3 
Hz, 1H) 7.00 (bd, J = 8.0 Hz, 1H), 6.57 (ddd, J = 8.0, 2.4, 0.9 
Hz, 1H) 6.33 (d, J = 2.4 Hz, 1H) ppm; 13C NMR (75.4 MHz, 
CD

3
OD) δ 167.9, 162.8, 161.7, 157.6, 139.1, 129.9, 129.2, 

112.3, 111.2, 108.3, 108.2, 107.4, 102.6 ppm; MS(EI): 246.1 
(M·H+); m.p. 214.9–215.8°C.

2,4-Dihydroxy-N-(4-hydroxyphenyl)benzamide (6)
1H NMR (300 MHz, CD

3
OD) δ 7.76 (d, J = 8.9 Hz, 1H), 7.36 

(d, J = 8.6 Hz, 2H), 6.77 (d, J = 8.3 Hz, 2H), 6.39-6.29 (m, 2H) 
ppm; 13C NMR (75.4 MHz, CD

3
OD) δ 168.2, 162.3, 162.0, 

154.5, 129.6, 129.5, 123.6, 115.0, 107.9, 107.3, 102.7 ppm; 
MS(EI): 246.2 (M·H+); m.p. 201.4–201.8°C.

3,5-Dihydroxy-N-(3-hydroxyphenyl)benzamide (7)
1H NMR (300 MHz, CD

3
OD) δ 7.26 (t, J = 2.2 Hz, 1H), 7.21 

(t, J = 8.0 Hz, 1H), 7.05 (m, 1H), 6.78 (d, J = 2.2 Hz, 2H) 6.58 
(ddd, J = 7.8, 2.4, 1.0 Hz, 1H), 6.44 (t, J = 2.3, Hz, 1H) ppm; 
13C NMR (75.4 MHz, CD

3
OD) δ 169.2, 159.9, 158.8, 140.9, 

138.6, 130.4, 113.4, 112.5, 110.0, 107.0, 106.7 ppm; MS(EI): 
246.1 (M·H+); m.p. 220.5–221.1°C.

3,5-Dihydroxy-N-(3-hydroxyphenyl)benzamide (8)
1H NMR (300 MHz, CD

3
OD) δ 7.41 (d, J = 8.8 Hz, 2H), 

6.78-6.74 (m, 3H), 6.44 (t, J = 2.1 Hz, 1H) ppm; 13C NMR 
(75.4 MHz, CD

3
OD) δ 169.0, 158.8, 154.6, 137.4, 130.5, 

124.4, 115.2, 105.2, 105.7 ppm; MS(EI): 246.2 (M·H+); m.p. 
229.7–230.8°C.

Biological methods
Plasmids
Estrogen responsive element-luciferase (ERE-Luc), 
kindly provided by Dr. J-M. Renoir, is a reporter for 
estrogen driven transcriptional activity, where the 
Firefly luciferase gene expression is under the control 
of the ERE. Cyto Megalo Virus (CMV)-hERα present the 
constitutive expression of the human ER α drove by the 
strong promoter of CMV, it allows an high expression of 
the human ER α. The pGL4.73 Renilla Luciferase plasmid 
from Promega (Milan, Italy) presents an elevated expres-
sion of the Renilla luciferase gene and served as transfec-
tion normalizer.

Cell culture, transfection and luciferase assay
HEK293 cell line was cultured in RPMI-1640, 10% fetal 
calf serum (Invitrogen, USA), Penicilin/streptomicyn 1% 
(Sigma Aldrich, Germany). At the day of transfection, 
10000 cells were seed in a 96 well plate in 50 µL of OPTI-
MEM (Invitrogen, USA) Penicilin/streptomicyn 1% 

(Sigma Aldrich, Germany) and 1% DCC stripped medium 
(Invitrogen, USA). After 6 h, cells were transfected by 0.2 
µL of Lipofectamine (Invitrogen, USA) mixed with 33 ng 
of reporter plasmid, ERE-Luc, 33 ng of CMV-ERa and 
33 ng pGL4.73 Renilla luciferase (Promega, as a normal-
izer of transfection). Sixteen hours after transfection, 
cells were treated by the compounds for 24 h. All com-
pounds were dissolved in dimethyl sulfoxide (DMSO) 
(Sigma Aldrich, Germany). DMSO treatment served as 
negative control.

Thereafter, luciferase assay was performed by Dual-
Glo luciferase assay (Promega, USA), following the pro-
ducer indication. The sample-value of firefly luciferase 
was devided by the relative renilla luciferase value to 
normalize the transfection level.

Statistic was performed according to the t-student test.

Results and discussion

Dihydroxy-N-phenylbenzamides 1–4 are the simplest 
members of the library and are derived from all the 
possible combinations of 3- and 4-hydroxybenzoic 
acids with 3- and 4-aminophenols. The aminophenols 
were retained even in compounds 5–8, while includ-
ing an additional hydroxyl group in the benzoic acid 
counterpart. Trihydroxyamides 5–6 originate from 
2,4-dihydroxybenzoic acid, seeking the formation of an 
intramolecular hydrogen bond between the additional 
2-OH group and the amide group with a potential gain 
in the conformational rigidity. Entries 7–8 embody two 
OH groups exchangeable through rotation of their aryl 
ring around the Ar-C=O single bond, thereby doubling 
the hydrogen bond ability of this aryl ring.

Transcriptional activity of estrogen is a straightforward 
method to study estrogenic potential of a compound28. 
To evaluate the possibility that these compounds exhibit 
an estrogenic activity we transfected HEK293 cells with 
three plasmids: Estrogen responsive element-luciferase 
(to monitor estrogenic activity), CMV-hERα (to provide 
an high expression of ERα in the cell line29)and Renilla 
luciferase pGL4.73 (Promega, as a normalizer of transfec-
tion). Cells were treated with Phenol Red-free medium 
and stripped bovine serum for 24 h at the reported con-
centration, and then luciferase signal was measured by 
Dual-Glo luciferase assay (Promega) and reported in 
Figure 3. Cells that are not transfected with CMV-hERα, 
did not produce any firely luciferase signal (data not 
shown).

A preliminary test of estrogen activity was conducted 
for all compound exposing the cells after transfection by 
the reporter plasmid to 100 nM of drug, only compounds 
3, 4, 6 and 7 showed a statistical significance (p < 0.05). 
Consequently, a dose/effect curve was performed for 3, 4, 
6 and 7 (Figure 3). Compounds 3 and 4 resulted the most 
active with an estrogenic activity at 100 nM of 219% and 
335%, respectively compared to the control. Compound 3 
showed the most interesting agonistic activity, maintain-
ing a statistically significant agonistic activity up to 10 nM.
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These data allow extrapolating some indications on 
the structure-activity relationships. Amides 3 and 4 are 
characterized by the presence of the 4-OH group, closely 
superimposable to the 3-OH group of 17β-estradiol, 
known to be essential for the activity. The presence of 
an additional 2-OH groups on the benzoic acid counter-
part results in the reduction or loss of activity, probably 
as a result of a different conformation deriving from the 
intramolecular hydrogen bond or steric hindrance. It is 
worthwhile to note that amide 2 could be considered the 
“inverted” amide of the active entry 3 and this inversion 
of the carboxylic acid and the amine moiety results in 
the nearly complete loss of the activity; the 4-OH group 
should be located in the benzoic acid moiety, the latter 
playing the role of the A ring of 17β-estradiol.

Conclusions

In conclusion, we prepared a series of N-phenylbenza-
mides with the aim to produce a minimal structure that 
retains the estrogen pharmacophores hallmark. Here 
we demonstrated that the one-step condensation of 
an aminophenol with hydroxybenzoic acids results in 
simple amides that can satisfy some of the key structural 
features required in the interaction with ERs. In particu-
lar, compound 3, presenting a structure that can be easily 
superimposed to the natural ER ligand, shows the higher 
agonistic activity, confirming the quality of the structural 
design. The simplicity of the reported scaffold paves the 
way for a wide array of potential structural variations, 
through a fine-tuning of the substitution pattern and 
following the known guidelines for the design of ER 
ligands. The formation of amide bond is simple, reliable 
and easily automated, opening the possibility for large 
combinatorial screening on this scaffold. Pharmacology 
benefits from the use of combinatorial chemistry and 
high throughput assay screen exploited to find new 

molecules with defined characteristics. Here, we show 
that an almost unlimited combination of different sub-
structures, maintaining few pharmacophores hallmarks 
in molecules presenting elevated versatility, could be 
used to generate large libraries that can be produced and 
tested in an automated manner, with a potential impact 
in the field of drug discovery.
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