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Abstract: Leaf wetness duration (LWD) is a critical parameter used to predict plant disease, but its determination under actual 
field conditions is a major challenge.  In this study, a method for determining LWD using thermal infrared imaging was 
developed and applied to cucumber plants grown in a solar greenhouse.  Thermal images of the plant leaves were captured 
using an infrared scanning camera, and a leaf wetness area segmentation method consisting of two procedures was applied.  
First, a color space conversion was performed automatically by an image-processing algorithm.  Then, the K-means clustering 
algorithm was applied to enable the segmentation of the wetness area on the thermal image.  Subsequently, to enable overall 
thermal image analysis, an initial leaf wetness threshold (LWT) of 5% was defined (where wetness values higher than 5% 
indicated that the leaf was in a wet state).  The results of comparative experiments conducted using thermal images of plant 
leaves captured using an infrared scanning camera and human visual observation indicated that the estimated LWD values were 
generally higher than the observed LWD values, because slight leaf wetness condensations were overlooked by the human eye 
but detected by the infrared scanning camera.  While these differences were not found to be statistically significant in this 
study, the proposed method for determining LWD using thermal infrared imaging may provide a new LWD detection method 
for cucumber and other plants grown in solar greenhouses. 
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1  Introduction  

For many plant crops grown in solar greenhouses, ideal 
conditions in terms of temperature, humidity, and surface wetness 
are important contributors to the development of foliar fungal 
diseases[1].  Leaf wetness is particularly important because it 
provides the free water required by pathogens to infect foliar 
tissue[2].  Leaf wetness, defined as the visible presence of water on 
a leaf surface[3], can be caused by the roof or plastic film runoff, 
guttation, or fertilization in solar greenhouses[4,5].  Guttation, 
which occurs with adequate irrigation and high relative humidity, 
increases leaf wetness duration (LWD)[6].  When free water on 
plants exceeds a pathogen-specific length of time and temperatures 
are appropriate, pathogen spores can germinate and infect the 
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host[7,8].  The incidence of downy mildew, caused by 
Pseudoperonospora cubensis, increases as LWD increases; studies 
conducted in growth chambers have confirmed the positive 
relationship between LWD and the incidence of this disease[9].  
The infection model developed for predicting infection periods by 
fungal foliar pathogens usually use inputs based on subjective 
estimates of the cardinal temperatures and the leaf wetness duration 
requirement[10].  Thus, LWD is a key consideration in disease 
prediction models and for decision support systems used for foliar 
fungal plant pathogens[11].  LWD investigation is one of the major 
issues in plant disease research[12,13].  Numerous studies have been 
conducted on LWD and two main methods are currently used to 
determine LWD: (1) sensor measurements and (2) model 
estimations[4,14-17].  Different types of sensors based on static, 
mechanical, or electronic systems can be used to monitor leaf 
wetness[18].  These sensors can adequately respond to 
condensation, rain, and fog.  However, there is no standard for the 
installation and maintenance of the sensors, which makes it 
difficult to obtain reliable measurements of LWD[19].  As an 
alternative to direct measurement of LWD using sensors, a number 
of different numerical models have been developed to 
quantitatively estimate LWD[20].  These models require a 
significant number of input parameters to achieve sufficient 
accuracies in the estimates, such as relative humidity, temperature, 
net radiation, and wind speed[21].  However, some of the 
parameters are particularly difficult to obtain[4,22].  Further, the 
considerable effort dedicated to developing a method for 
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determining LWD suggests a need for yet another alternative 
approach. 

As an emerging tool in modern agriculture, machine vision 
technology can simulate human eye functions with the added 
capability of continuous acquisition, storage, and analysis of data.  
To date, machine vision research in agricultural fields has primarily 
focused on leaf wetness caused by spray[23,24].  Derksen and 
Jiang[25] used machine vision technology to characterize the 
sedimentary features of the spray droplets.  Ramalingam et al.[26] 
used multispectral image technology to study the characteristics of 
a high-capacity spray on a leaf.  To date, very few studies that use 
machine vision technology to determine leaf wetness conditions 
have been performed. 

The K-means algorithm is an unsupervised learning technique 
for clustering proposed by James MacQueen in the 1960s and 
widely used for image segmentation in medicine and biology 
fields[27].  Mohd et al.[28] apply K-means clustering detecting the 
hot spot of thermal infrared images, and prove this algorithm can 
be used for the hot spot detection on thermal infrared images of 
electronic boards.  Etehadtavakol et al.[29] apply K-means and 
fuzzy c-means for color segmentation of thermal infrared breast 
images to separate total colors to detect different temperature 
regions on the human body surface.  In this study, we apply 
K-means clustering for the color segmentation of collected thermal 
infrared images. 

In conventional digital images, water droplets on a leaf are 
difficult to discern because of their transparency, low volume, and 
uneven distribution across the leaf surface, and the veins in the leaf 
may also obscure the water droplets[30].  In recent years, thermal 
infrared imaging technology has been widely applied in biological 
and abiotic stress testing[15,31].  Thermal imaging can reflect the 
temperature distribution across the leaf surface, which is affected 
by leaf wetness.  As such, thermal imaging can theoretically be 
used to monitor changes in the leaf surface as conditions change 
from dry to wet[32]. 

In this study, we developed a method for determining LWD 
using thermal infrared imaging and applied it to cucumber plants 
grown in a solar greenhouse. Our objectives were (1) segment the 
wet part of leaves on the thermal infrared image accurately; (2) 
develop and validate a new method for estimating LWD. 

2  Materials and methods 

2.1  Plant preparation 
The cucumber (Cucumis sativus L.) seedlings were planted on 

September 28, 2016, and transplanted on October 15, 2016.  The 
cucumber plants were grown in a greenhouse at Beijing 
Xiaotangshan Precision Agriculture Experimental Base in 
Changping District, Beijing, China (116.47°E, 40.18°N).  Each 
greenhouse had an area of 50×7 m2, was constructed of metal 
arches covered with polyethylene film, and was oriented in a 
north-south direction.  A brick wall formed the eastern part of the 
greenhouse, and a glass window was on the western end.  The 
substrate used was a 2:1 mixture of peat and vermiculite with 500 g 
chicken manure and 10 g N15-P10-K15 compound fertilizer.  
Cucumber plants were watered with tap water every 5-8 d, 8-10 m3 
water at a time and grown in a greenhouse at 25°C/15°C 
(day/night), RH of 40%±15%, and solar radiation of 100-500 w/m2  

(DAVIS-6162, DAVIS, USA). 
In this study, cucumber samples for the thermography 

measurement were selected at the sixth true leaf stage.  For each 
sample, to avoid variation in the LWD caused by wind from the 

door, we randomly selected nine plants in the middle of the 
greenhouse for analysis.  Every leaf selected was complete one 
and each plant selected 3 leaves from the upper, middle and lower 
parts of the plant. 
2.2  Thermal image acquisition 

Thermal images of each leaf were obtained using an infrared 
scanning camera (FLIR A615, FLIR Systems, USA) with a spectral 
sensitivity of 7.5-14 μm and a geometric resolution of 0.69 mrad 
(640×480 pixels) in the greenhouse.  For each leaf, thermal 
images were captured every 60 min from 18:00 when leaves were 
totally dry until the leaf fully wet at night, and from sunrise, until 
the leaf was fully dry in the morning for four nights (November 
1-5).  The temperature is 23±2°C in the daytime and 15±2°C at 
night.  The humidity is 40±3% in the daytime and 35±2% at night. 

Each day, total thermal images in JPEG format were used in 
this study to estimate LWD on the cucumber plants.  The 
associated estimates of LWD (the time between when wetness first 
appeared and disappeared) were concurrently calculated.  
Concomitantly, the existence of wetness on the leaves was visually 
assessed by humans on select days (November 1-5).  During each 
day, beginning at 18:00 and ending at 11:00 or 12:00 the next day, 
the wetness for at least 12 min was defined based on the presence 
of water that was visible to the human eye[17].  Take the observed 
LWD as the standard value. 
2.3  Image pre-processing 

In order to improve the image quality, image-processing 
techniques were used to remove background noise and enhance 
important features of the samples before computation analysis.  
Median filtering, which is commonly used as an image-processing 
tool to remove background noise effects and improve image quality 
before segmentation, was used.  The RGB color space image was 
transformed into a gray image, filtering the gray image from R, G 
and B channels respectively, and then three filtered images were 
synthesized into RGB images. 
2.4  Conversion of RGB images into L*a*b* 

Several different color space alternatives exist.  In this study, 
we selected the International Commission of Illumination (CIE) 
L*a*b* color space, which is most commonly used because of its 
uniform distribution of colors and proximity to human color 
perception[33].  The L*a*b* color space mathematically describes 
colors in three dimensions: lightness (L) and color opponents of 
green-red (a) and blue-yellow (b).   

Selection of the L*a*b* color space required transformation 
from the red-green-blue (RGB) color space.  The transformation 
required two steps: (1) transforming RGB to XYZ coordinates and 
(2) transforming XYZ to L*a*b* coordinates.  Equations (1)-(5) 
support these two required transformations, respectively[34,35]: 
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where, X0, Y0, and Z0 are the initial reference values, and t is the 
ratio between X, Y, and Z and X0, Y0, and Z0.   
2.5  Segmentation of leaf wetness area 

Image segmentation was used to divide each image into related 
regions as segmentation of the leaf wetness area in the thermal 
image is a key step in LWD estimation.  After the color space was 
fully defined, the K-means clustering algorithm was next applied to 
support the segmentation of the thermal image.  This algorithm is 
commonly used in computer vision applications for image 
segmentation[36]. 

A digital image can be viewed as a data point set, X={X1, 
X2, ···, Xn} with n-dimensional vectors.  The K-means clustering 
algorithm segments this image (defined by X) into K clusters by 
defining a subset, Z={C1, C2, ···, Ck}, of X that minimizes the 

objective function 
1
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where, ni is the number of data points in cluster i.   
During the iterative minimization of the objective function, the 

cluster centers of K-means were constantly updated, and data points 
in the same cluster increased in similarity, while data points in 
different clusters decreased in similarity.  When the objective 
function was minimized and the cluster centers were no longer 
updated, the image segmentation process was complete. 

Figure 1 shows a flowchart of the complete thermal image 
segmentation process for the cucumber plants considered in this 
study.  After the image pre-processing, color images were 
converted to binary images and the appropriate image segmentation 
threshold selected.  Accordingly, target pixels comprising the 
thermal image were labeled 1 (white), while all other pixels were 
classified as background pixels and labeled 0 (black).  Finally, the 
target pixels (wet surface area of a leaf) comprising the segmented 
images from the thermal images were extracted and automatically 
represented in RGB. 
2.6  Leaf wetness duration estimation 

A predefined leaf wetness threshold (LWT) can be used to 
identify a leaf’s wet state and subsequently estimate LWD with 
some level of accuracy.  In this study, an LWT was defined based 
on the target image’s pixels[17].  Specifically, the LWT was 
determined as follows: 

100%NLWT
M

= ×                  (8) 

where N and M are the pixels for the target image and single blade  

image, respectively.  LWT>5% was used to indicate leaf wetness 
in the study.  The times when leaf wetness first appeared (LWT>5%) 
and disappeared (LWT<5%) were recorded as part of this study. 

 
Figure 1  Flowchart of the complete thermal image segmentation 

process for the cucumber plants 
 

To relate the leaf wetness threshold and duration, the LWD can 
be expressed as follows: 

( 1)LWD n t= − ×                   (9) 
where n represents the sum of all image areas having an LWT>5%, 
and t is the time interval between image frames. 
2.7  Statistical analysis of LWD estimates 

To evaluate our proposed method for determining LWD, we 
compared the estimated LWD results obtained from the thermal 
image analysis with human visual observation.  Differences 
between the two sets of results were characterized using a Student’s 
t-test (SPSS 16.0, SPSS Inc., Chicago, IL, USA) and the root 
means square error (RMSE)[37].  The RMSE was determined as 
follows:  
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where di1 and di2 are the estimated and observed LWD results, 
respectively; and n is the sample number. 

3  Results and discussion 

3.1  Differences between thermal infrared images of the wet 
and dry leaf surface 

Thermal infrared imaging facilitated the differentiation 
between wet and dry leaves (Figure 2).  In conventional digital 
images, water droplets on a leaf are difficult to discern because of 
their transparency, low volume, and uneven distribution across the 
leaf surface[30].  In contrast, the thermal infrared image store 
temperature rather than color data in each pixel.  Furthermore, 
other studies have confirmed a correlation between leaf 
temperature and wetness state, given that water is the primary 
source of infrared absorption[38].  A previous study explored the 
possibility of using thermal imaging as a tool to identify water 
stress in plants, and this could be used in irrigation scheduling[39, 40].  
Hence, from this study, thermal images have great potential 
because leaf wetness causes a change in leaf temperature and color.  
Therefore, we thought it possible to segment the water droplets in 
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an infrared image. 
In this study, appreciable differences in color were apparent 

between the wet and dry leaf surface in one leaf, due to the leaf 
temperature changes.  Therefore, we fully utilized the color 
difference between the wet (blue) and dry (yellow) of the thermal 
infrared image, in Figure 2b.  This will enable the effective 
segmentation of the wet areas in thermal images.  
3.2  Image processing results 

Figure 3 shows sample thermal images of a cucumber leaf 
before (Figure 3a) and after denoising (Figure 3e).  Image quality 
was improved after removing background noise.  

 
Figure 2  Thermal images of a dry and b wet leaf of cucumber 

 
a. Original image             b. R channel image            c. G channel image             d. B channel image         d. Image after denoising 

Figure 3  Sample thermal images of a cucumber leaf before and after denoising 
 

Figure 4b shows a sample of the RGB color space that was 
transformed into the L*a*b* color space (Figure 4b).  Figure 4c 
shows the wetness region of thermal images.  The K-means 
clustering algorithm can successfully segment the wet part of the 
leaves.  

 
a. Original image after 

denoising and 
segmentation 

b. Image after L*a*b* 
color space trans 

formation 

c. Image after K-means 
clustering algorithm 

application 
 

Figure 4  Sample thermal images of a cucumber leaf before and 
after segmentation 

 

Using thermal imaging methods for determining LWD requires 
associated methods based on computer machine vision[39].  Hence, 
wet area segmentation of thermal images is a key process in the 
estimation of LWD.  Our results in this study clearly show that 
K-means clustering provides a method for wet area segmentation.  
This is because of the difference between the background color and 
an interest region[41].  In the process of image acquisition, the 
temperature in the greenhouse was changing from day till night.  
But our image acquisition was mainly at night, with small 
temperature fluctuation.  We think the impact of temperature on 
the thermal images can be ignored. 
3.3  Leaf wetness duration estimation 

We chose one leaf from the broader dataset as an example to 
show the estimated leaf wetness state over time based on the LWT 
(Figure 5).  The results indicated that the selected cucumber leaf 
was in a wet state (LWT>5%) between 23:00-24:00 and 
07:00-10:00 on November 1-2 and 4-5 (Figures 5a and 5d), 
24:00-01:00 and 07:00-11:00 on November 2-3 (Figure 5b), and 
23:00-01:00 and 07:00-09:00 (Figure 5c) on November 3-4.  The 
results also indicated that leaf wetness first appeared (LWT>5%) at 
23:00 on November 3 and 4 (Figures 5c and 5d) and 24:00 on 
November 1 and 2 (Figures 5a and 5b).  Leaf wetness disappeared 
(LWT<5%) between 9:00-10:00 on November 4 and 5 (Figures 5c 

and 5d) and between 10:00-11:00 on November 2 and 3 (Figures 5a 
and 5b). 

To assess the accuracy of our proposed method for determining 
LWD using thermal images, we compared the estimated LWD 
averaged results obtained from the thermal image analysis with 
human visual observation (Table 1).  The estimated LWD 
averaged from thermal images was determined to be 9.93, 9.81, 
10.56, and 9.33 h on November 1-2, 2-3, 3-4, and 4-5, respectively, 
while the observed LWD averaged was 9.47, 9.52, 10.15, and 9.00.  
The estimated and observed LWD results were not significantly 
different (Student’s t-test, p>0.05) for any of the observation 
periods considered (November 1-2, 2-3, 3-4, and 4-5). 

 

Table 1  Statistical comparison of observed and estimated 
LWD results 

Mean LWD (±standard error) [h] Date of 
observation Estimated Observed 

Test statistic P-value 

November 1–2 9.93±0.22 9.47±0.25 t = 0.262 P = 0.611

November 2–3 9.81±0.21 9.52±0.22 t = 0.133 P = 0.717

November 3–4 10.56±0.21 10.15±0.20 t = 0.172 P = 0.680

November 4–5 9.33±0.20 9.00±0.23 t = 0.156 P = 0.695
 

To further compare the estimated and observed LWD results, 
we constructed scatter plots and calculated RMSE values.  Figure 
6 shows the correlation between the estimated and observed LWD 
results for each of the observation periods considered in this study.  
The results indicated that the difference between estimated LWD 
and overall observation period was 1 h, and lower RMSE values 
indicated higher LWD estimate accuracy.  These results also 
indicated that over 90% of the estimated LWD values were equal to 
or higher than the observed LWD values. 

One limitation with leaf surface wetness duration is the 
selection of the wetness threshold (LWT).  Predefined LWTs are 
generally required for the estimation of LWD[17], but are rarely 
determined through image analysis.  In this study, we selected an 
LWT of 5% based on target image pixels.  We found that the 
differences between the estimated and observed LWD results were 
not statistically significant, and the estimated LWD values were 
generally higher than the observed LWD values, which are both 
sufficient leaf wetness time for an infection to occur[37].  The 
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difference between the estimated and observed LWD was generally 
<0.5 h (Table 1).  We theorize that slight leaf wetness droplets 

may be overlooked by the human eye but detected by the infrared 
scanning camera.  

 
a. November 1-2  b. November 2-3 

 
c. November 3-4  d. November 4-5 

 

Figure 5  Estimated leaf wetness over time based on the LWT 

 
a. November 1-2  b. November 2-3 

 
c. November 3-4  d. November 4-5 

 

Figure 6  Correlation between estimated and observed LWD results 
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4  Conclusions 

This study shows that thermal infrared images are very suitable 
for detecting changes in wetness on cucumber leaves.  In our 
proposed method, the images of the cucumber leaves were 
pre-processed, after which the wetness area was segmented 
automatically from the thermal image using an image analysis 
algorithm and K-means clustering.  This was accomplished based 
on the differences in color between the wet and dry leaf surfaces.  
The good agreement between the estimated and observed LWD 
shows that the proposed method can be used to predict LWD with 
acceptable accuracy.  The LWD estimation method proposed in 
this study is rapid, accurate, and non-destructive.  Furthermore, it 
can be integrated into greenhouse disease forecast models and 
warning systems as an aid to suppress the development and 
propagation of infectious plant diseases.  Thus far, the use of 
thermal image processing and computer vision for LWD estimation 
is still new, which means that there are still many issues to be 
explored, such as the application of the proposed method in an 
online manner in greenhouses.  
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